Expand description
Sparse Gaussian Process implementations with comprehensive approximation methods
This module provides a complete sparse GP framework with multiple approximation methods, SIMD acceleration, scalable inference, and structured kernel interpolation.
Re-exports§
pub use approximations::InducingPointSelector;pub use approximations::SparseApproximationMethods;pub use inference::LanczosMethod;pub use inference::PreconditionedCG;pub use inference::ScalableInference;pub use kernels::KernelOps;pub use kernels::MaternKernel;pub use kernels::RBFKernel;pub use kernels::SparseKernel;pub use simd_operations::simd_sparse_gp;pub use ski::FittedTensorSKI;pub use ski::TensorSKI;pub use variational::StochasticVariationalInference;pub use variational::VariationalFreeEnergy;pub use core::*;
Modules§
- approximations
- Sparse approximation methods for Gaussian Processes
- core
- Core types, enums, and structures for sparse Gaussian Process implementation
- inference
- Scalable inference methods for sparse Gaussian Processes
- kernels
- Kernel functions and matrix operations for sparse Gaussian Processes
- simd_
operations - SIMD-accelerated operations for sparse Gaussian Processes
- ski
- Structured Kernel Interpolation (SKI/KISS-GP) for fast GP inference
- utils
- Utility functions and helpers
- variational
- Variational methods for sparse Gaussian Process approximation