Module sparse_gp

Module sparse_gp 

Source
Expand description

Sparse Gaussian Process implementations with comprehensive approximation methods

This module provides a complete sparse GP framework with multiple approximation methods, SIMD acceleration, scalable inference, and structured kernel interpolation.

Re-exports§

pub use approximations::InducingPointSelector;
pub use approximations::SparseApproximationMethods;
pub use inference::LanczosMethod;
pub use inference::PreconditionedCG;
pub use inference::ScalableInference;
pub use kernels::KernelOps;
pub use kernels::MaternKernel;
pub use kernels::RBFKernel;
pub use kernels::SparseKernel;
pub use simd_operations::simd_sparse_gp;
pub use ski::FittedTensorSKI;
pub use ski::TensorSKI;
pub use variational::StochasticVariationalInference;
pub use variational::VariationalFreeEnergy;
pub use core::*;

Modules§

approximations
Sparse approximation methods for Gaussian Processes
core
Core types, enums, and structures for sparse Gaussian Process implementation
inference
Scalable inference methods for sparse Gaussian Processes
kernels
Kernel functions and matrix operations for sparse Gaussian Processes
simd_operations
SIMD-accelerated operations for sparse Gaussian Processes
ski
Structured Kernel Interpolation (SKI/KISS-GP) for fast GP inference
utils
Utility functions and helpers
variational
Variational methods for sparse Gaussian Process approximation