Expand description
Kernel approximation methods
This module is part of sklears, providing scikit-learn compatible machine learning algorithms in Rust.
Re-exports§
pub use adaptive_bandwidth_rbf::AdaptiveBandwidthRBFSampler;pub use adaptive_bandwidth_rbf::BandwidthSelectionStrategy;pub use adaptive_bandwidth_rbf::ObjectiveFunction;pub use adaptive_dimension::AdaptiveDimensionConfig;pub use adaptive_dimension::AdaptiveRBFSampler;pub use adaptive_dimension::DimensionSelectionResult;pub use adaptive_dimension::FittedAdaptiveRBFSampler;pub use adaptive_dimension::QualityMetric as AdaptiveQualityMetric;pub use adaptive_dimension::SelectionStrategy;pub use adaptive_nystroem::AdaptiveNystroem;pub use adaptive_nystroem::ComponentSelectionStrategy;pub use adaptive_nystroem::ErrorBoundMethod as AdaptiveErrorBoundMethod;pub use advanced_testing::ApproximationError;pub use advanced_testing::BaselineMethod;pub use advanced_testing::BoundType as TestingBoundType;pub use advanced_testing::BoundValidation;pub use advanced_testing::ConvergenceAnalyzer;pub use advanced_testing::ConvergenceResult;pub use advanced_testing::ErrorBoundsResult;pub use advanced_testing::ErrorBoundsValidator;pub use advanced_testing::QualityAssessment;pub use advanced_testing::QualityMetric as TestingQualityMetric;pub use advanced_testing::QualityResult;pub use advanced_testing::ReferenceMethod;pub use anisotropic_rbf::AnisotropicRBFSampler;pub use anisotropic_rbf::FittedAnisotropicRBF;pub use anisotropic_rbf::FittedMahalanobisRBF;pub use anisotropic_rbf::FittedRobustAnisotropicRBF;pub use anisotropic_rbf::MahalanobisRBFSampler;pub use anisotropic_rbf::RobustAnisotropicRBFSampler;pub use anisotropic_rbf::RobustEstimator;pub use benchmarking::BenchmarkConfig;pub use benchmarking::BenchmarkDataset;pub use benchmarking::BenchmarkResult;pub use benchmarking::BenchmarkSummary;pub use benchmarking::BenchmarkableKernelMethod;pub use benchmarking::BenchmarkableTransformer;pub use benchmarking::KernelApproximationBenchmark;pub use benchmarking::PerformanceMetric;pub use benchmarking::QualityMetric;pub use bioinformatics_kernels::GenomicKernel;pub use bioinformatics_kernels::MetabolicNetworkKernel;pub use bioinformatics_kernels::MultiOmicsKernel;pub use bioinformatics_kernels::OmicsIntegrationMethod;pub use bioinformatics_kernels::PhylogeneticKernel;pub use bioinformatics_kernels::ProteinKernel;pub use budget_constrained::BudgetConstrainedConfig;pub use budget_constrained::BudgetConstrainedNystroem;pub use budget_constrained::BudgetConstrainedRBFSampler;pub use budget_constrained::BudgetConstraint;pub use budget_constrained::BudgetOptimizationResult;pub use budget_constrained::BudgetUsage;pub use budget_constrained::FittedBudgetConstrainedNystroem;pub use budget_constrained::FittedBudgetConstrainedRBFSampler;pub use budget_constrained::OptimizationStrategy;pub use cache_optimization::AlignedBuffer;pub use cache_optimization::CacheAwareTransform;pub use cache_optimization::CacheConfig;pub use cache_optimization::CacheFriendlyMatrix;pub use cache_optimization::MemoryLayout;pub use causal_kernels::CausalKernel;pub use causal_kernels::CausalKernelConfig;pub use causal_kernels::CausalMethod;pub use causal_kernels::CounterfactualKernel;pub use chi2_samplers::AdditiveChi2Sampler;pub use chi2_samplers::SkewedChi2Sampler;pub use computer_vision_kernels::ActivationFunction;pub use computer_vision_kernels::ConvolutionalKernelFeatures;pub use computer_vision_kernels::FittedConvolutionalKernelFeatures;pub use computer_vision_kernels::FittedScaleInvariantFeatures;pub use computer_vision_kernels::FittedSpatialPyramidFeatures;pub use computer_vision_kernels::FittedTextureKernelApproximation;pub use computer_vision_kernels::PoolingMethod;pub use computer_vision_kernels::ScaleInvariantFeatures;pub use computer_vision_kernels::SpatialPyramidFeatures;pub use computer_vision_kernels::TextureKernelApproximation;pub use cross_validation::CVSplitter;pub use cross_validation::CVStrategy;pub use cross_validation::CrossValidationConfig;pub use cross_validation::CrossValidationResult as CVResult;pub use cross_validation::CrossValidator;pub use cross_validation::KFoldSplitter;pub use cross_validation::MonteCarloCVSplitter;pub use cross_validation::ScoringMetric;pub use cross_validation::TimeSeriesSplitter;pub use custom_kernel::CustomExponentialKernel;pub use custom_kernel::CustomKernelSampler;pub use custom_kernel::CustomLaplacianKernel;pub use custom_kernel::CustomPolynomialKernel;pub use custom_kernel::CustomRBFKernel;pub use custom_kernel::KernelFunction;pub use deep_learning_kernels::Activation as DeepLearningActivation;pub use deep_learning_kernels::DKLConfig;pub use deep_learning_kernels::DeepKernelLearning;pub use deep_learning_kernels::InfiniteWidthKernel;pub use deep_learning_kernels::NTKConfig;pub use deep_learning_kernels::NeuralTangentKernel;pub use distributed_kernel::AggregationMethod;pub use distributed_kernel::CommunicationPattern;pub use distributed_kernel::DistributedConfig;pub use distributed_kernel::DistributedNystroem;pub use distributed_kernel::DistributedRBFSampler;pub use distributed_kernel::PartitionStrategy;pub use distributed_kernel::Worker;pub use ensemble_nystroem::EnsembleMethod;pub use ensemble_nystroem::EnsembleNystroem;pub use ensemble_nystroem::QualityMetric as EnsembleQualityMetric;pub use error_bounded::ErrorBound;pub use error_bounded::ErrorBoundMethod;pub use error_bounded::ErrorBoundedConfig;pub use error_bounded::ErrorBoundedNystroem;pub use error_bounded::ErrorBoundedRBFSampler;pub use error_bounded::FittedErrorBoundedNystroem;pub use error_bounded::FittedErrorBoundedRBFSampler;pub use fastfood::FastfoodKernel;pub use fastfood::FastfoodKernelParams;pub use fastfood::FastfoodTransform;pub use feature_generation::CompositeGenerator;pub use feature_generation::FeatureGenerator;pub use feature_generation::FeatureGeneratorBuilder;pub use feature_generation::PolynomialGenerator;pub use feature_generation::RandomFourierGenerator;pub use finance_kernels::EconometricKernel;pub use finance_kernels::FinancialKernel;pub use finance_kernels::PortfolioKernel;pub use finance_kernels::RiskKernel;pub use finance_kernels::VolatilityKernel;pub use finance_kernels::VolatilityModel;pub use gpu_acceleration::FittedGpuNystroem;pub use gpu_acceleration::FittedGpuRBFSampler;pub use gpu_acceleration::GpuBackend;pub use gpu_acceleration::GpuConfig;pub use gpu_acceleration::GpuContext;pub use gpu_acceleration::GpuDevice;pub use gpu_acceleration::GpuNystroem;pub use gpu_acceleration::GpuProfiler;pub use gpu_acceleration::GpuRBFSampler;pub use gpu_acceleration::MemoryStrategy;pub use gpu_acceleration::Precision;pub use gradient_kernel_learning::GradientConfig;pub use gradient_kernel_learning::GradientKernelLearner;pub use gradient_kernel_learning::GradientMultiKernelLearner;pub use gradient_kernel_learning::GradientOptimizer;pub use gradient_kernel_learning::GradientResult;pub use gradient_kernel_learning::KernelObjective;pub use graph_kernels::FittedRandomWalkKernel;pub use graph_kernels::FittedShortestPathKernel;pub use graph_kernels::FittedSubgraphKernel;pub use graph_kernels::FittedWeisfeilerLehmanKernel;pub use graph_kernels::Graph;pub use graph_kernels::RandomWalkKernel;pub use graph_kernels::ShortestPathKernel;pub use graph_kernels::SubgraphKernel;pub use graph_kernels::WeisfeilerLehmanKernel;pub use homogeneous_polynomial::CoefficientMethod;pub use homogeneous_polynomial::HomogeneousPolynomialFeatures;pub use homogeneous_polynomial::NormalizationMethod;pub use incremental_nystroem::IncrementalNystroem;pub use incremental_nystroem::UpdateStrategy;pub use information_theoretic::EntropyFeatureSelector;pub use information_theoretic::EntropySelectionMethod;pub use information_theoretic::FittedEntropyFeatureSelector;pub use information_theoretic::FittedInformationBottleneckExtractor;pub use information_theoretic::FittedKLDivergenceKernel;pub use information_theoretic::FittedMutualInformationKernel;pub use information_theoretic::InformationBottleneckExtractor;pub use information_theoretic::KLDivergenceKernel;pub use information_theoretic::KLReferenceDistribution;pub use information_theoretic::MutualInformationKernel;pub use kernel_framework::ApproximationQuality;pub use kernel_framework::BoundType as FrameworkBoundType;pub use kernel_framework::CombinationStrategy as FrameworkCombinationStrategy;pub use kernel_framework::Complexity;pub use kernel_framework::CompositeKernelMethod;pub use kernel_framework::ErrorBound as FrameworkErrorBound;pub use kernel_framework::FeatureMap;pub use kernel_framework::KMeansSampling;pub use kernel_framework::KernelAlignmentMetric;pub use kernel_framework::KernelMethod;pub use kernel_framework::KernelType as FrameworkKernelType;pub use kernel_framework::SamplingStrategy as SamplingStrategyTrait;pub use kernel_framework::UniformSampling;pub use kernel_ridge_regression::ApproximationMethod as KRRApproximationMethod;pub use kernel_ridge_regression::KernelRidgeRegression;pub use kernel_ridge_regression::MultiTaskKernelRidgeRegression;pub use kernel_ridge_regression::OnlineKernelRidgeRegression;pub use kernel_ridge_regression::RobustKernelRidgeRegression;pub use kernel_ridge_regression::RobustLoss;pub use kernel_ridge_regression::Solver;pub use kernel_ridge_regression::TaskRegularization;pub use memory_efficient::FittedMemoryEfficientNystroem;pub use memory_efficient::FittedMemoryEfficientRBFSampler;pub use memory_efficient::MemoryConfig;pub use memory_efficient::MemoryEfficientNystroem;pub use memory_efficient::MemoryEfficientRBFSampler;pub use memory_efficient::MemoryMonitor;pub use meta_learning_kernels::DatasetMetaFeatures;pub use meta_learning_kernels::MetaKernelType;pub use meta_learning_kernels::MetaLearningConfig;pub use meta_learning_kernels::MetaLearningKernelSelector;pub use meta_learning_kernels::MetaLearningStrategy;pub use meta_learning_kernels::PerformanceMetric as MetaPerformanceMetric;pub use meta_learning_kernels::TaskMetadata;pub use middleware::Hook;pub use middleware::HookContext;pub use middleware::LoggingHook;pub use middleware::Middleware;pub use middleware::NormalizationMiddleware;pub use middleware::PerformanceHook;pub use middleware::Pipeline;pub use middleware::PipelineBuilder;pub use middleware::PipelineStage;pub use middleware::ValidationHook;pub use multi_kernel_learning::ApproximationMethod as MKLApproximationMethod;pub use multi_kernel_learning::BaseKernel;pub use multi_kernel_learning::CombinationStrategy as MKLCombinationStrategy;pub use multi_kernel_learning::KernelStatistics;pub use multi_kernel_learning::MultiKernelConfig;pub use multi_kernel_learning::MultipleKernelLearning;pub use multi_kernel_learning::WeightLearningAlgorithm;pub use multi_scale_rbf::BandwidthStrategy;pub use multi_scale_rbf::CombinationStrategy;pub use multi_scale_rbf::MultiScaleRBFSampler;pub use nlp_kernels::AggregationMethod as NLPAggregationMethod;pub use nlp_kernels::DocumentKernelApproximation;pub use nlp_kernels::FittedDocumentKernelApproximation;pub use nlp_kernels::FittedSemanticKernelApproximation;pub use nlp_kernels::FittedSyntacticKernelApproximation;pub use nlp_kernels::FittedTextKernelApproximation;pub use nlp_kernels::SemanticKernelApproximation;pub use nlp_kernels::SimilarityMeasure;pub use nlp_kernels::SyntacticKernelApproximation;pub use nlp_kernels::TextKernelApproximation;pub use nlp_kernels::TreeKernelType;pub use numerical_stability::stable_kernel_matrix;pub use numerical_stability::NumericalStabilityMonitor;pub use numerical_stability::StabilityConfig;pub use numerical_stability::StabilityMetrics;pub use numerical_stability::StabilityWarning;pub use nystroem::Kernel;pub use nystroem::Nystroem;pub use nystroem::SamplingStrategy;pub use optimal_transport::EMDKernelSampler;pub use optimal_transport::GWLossFunction;pub use optimal_transport::GromovWassersteinSampler;pub use optimal_transport::GroundMetric;pub use optimal_transport::TransportMethod;pub use optimal_transport::WassersteinKernelSampler;pub use out_of_core::OutOfCoreConfig;pub use out_of_core::OutOfCoreKernelPipeline;pub use out_of_core::OutOfCoreLoader;pub use out_of_core::OutOfCoreNystroem;pub use out_of_core::OutOfCoreRBFSampler;pub use out_of_core::OutOfCoreStrategy;pub use parameter_learning::ObjectiveFunction as ParameterObjectiveFunction;pub use parameter_learning::OptimizationResult;pub use parameter_learning::ParameterBounds;pub use parameter_learning::ParameterLearner;pub use parameter_learning::ParameterLearningConfig;pub use parameter_learning::ParameterSet;pub use parameter_learning::SearchStrategy;pub use plugin_architecture::create_global_plugin_instance;pub use plugin_architecture::list_global_plugins;pub use plugin_architecture::register_global_plugin;pub use plugin_architecture::FittedPluginWrapper;pub use plugin_architecture::KernelApproximationInstance;pub use plugin_architecture::KernelApproximationPlugin;pub use plugin_architecture::LinearKernelInstance;pub use plugin_architecture::LinearKernelPlugin;pub use plugin_architecture::PluginConfig;pub use plugin_architecture::PluginError;pub use plugin_architecture::PluginFactory;pub use plugin_architecture::PluginMetadata;pub use plugin_architecture::PluginWrapper;pub use polynomial_count_sketch::PolynomialCountSketch;pub use polynomial_features::PolynomialFeatures;pub use progressive::FittedProgressiveNystroem;pub use progressive::FittedProgressiveRBFSampler;pub use progressive::ProgressiveConfig;pub use progressive::ProgressiveNystroem;pub use progressive::ProgressiveQualityMetric;pub use progressive::ProgressiveRBFSampler;pub use progressive::ProgressiveResult;pub use progressive::ProgressiveStep;pub use progressive::ProgressiveStrategy;pub use progressive::StoppingCriterion;pub use quantum_kernel_methods::EntanglementPattern;pub use quantum_kernel_methods::QuantumFeatureMap;pub use quantum_kernel_methods::QuantumKernelApproximation;pub use quantum_kernel_methods::QuantumKernelConfig;pub use quasi_random_features::QuasiRandomRBFSampler;pub use quasi_random_features::QuasiRandomSequence;pub use rbf_sampler::ArcCosineSampler;pub use rbf_sampler::LaplacianSampler;pub use rbf_sampler::PolynomialSampler;pub use rbf_sampler::RBFSampler;pub use robust_kernels::BreakdownPointAnalysis;pub use robust_kernels::InfluenceFunctionDiagnostics;pub use robust_kernels::RobustEstimator as RobustKernelEstimator;pub use robust_kernels::RobustKernelConfig;pub use robust_kernels::RobustLoss as RobustKernelLoss;pub use robust_kernels::RobustNystroem;pub use robust_kernels::RobustRBFSampler;pub use scientific_computing_kernels::MultiscaleKernel;pub use scientific_computing_kernels::PhysicalSystem;pub use scientific_computing_kernels::PhysicsInformedConfig;pub use scientific_computing_kernels::PhysicsInformedKernel;pub use sparse_gp::simd_sparse_gp;pub use sparse_gp::FittedSKI;pub use sparse_gp::FittedSparseGP;pub use sparse_gp::FittedTensorSKI;pub use sparse_gp::InducingPointSelector;pub use sparse_gp::InducingPointStrategy;pub use sparse_gp::InterpolationMethod;pub use sparse_gp::KernelOps;pub use sparse_gp::LanczosMethod;pub use sparse_gp::MaternKernel;pub use sparse_gp::PreconditionedCG;pub use sparse_gp::PreconditionerType;pub use sparse_gp::RBFKernel as SparseRBFKernel;pub use sparse_gp::ScalableInference;pub use sparse_gp::ScalableInferenceMethod;pub use sparse_gp::SparseApproximation;pub use sparse_gp::SparseApproximationMethods;pub use sparse_gp::SparseGaussianProcess;pub use sparse_gp::SparseKernel;pub use sparse_gp::StochasticVariationalInference;pub use sparse_gp::StructuredKernelInterpolation;pub use sparse_gp::TensorSKI;pub use sparse_gp::VariationalFreeEnergy;pub use sparse_gp::VariationalParams;pub use sparse_polynomial::SparseFormat;pub use sparse_polynomial::SparseMatrix;pub use sparse_polynomial::SparsePolynomialFeatures;pub use sparse_polynomial::SparsityStrategy;pub use streaming_kernel::BufferStrategy;pub use streaming_kernel::FeatureStatistics;pub use streaming_kernel::ForgettingMechanism;pub use streaming_kernel::StreamingConfig;pub use streaming_kernel::StreamingNystroem;pub use streaming_kernel::StreamingRBFSampler;pub use streaming_kernel::StreamingSample;pub use streaming_kernel::UpdateFrequency;pub use string_kernels::EditDistanceKernel;pub use string_kernels::FittedEditDistanceKernel;pub use string_kernels::FittedMismatchKernel;pub use string_kernels::FittedNGramKernel;pub use string_kernels::FittedSpectrumKernel;pub use string_kernels::FittedSubsequenceKernel;pub use string_kernels::MismatchKernel;pub use string_kernels::NGramKernel;pub use string_kernels::NGramMode;pub use string_kernels::SpectrumKernel;pub use string_kernels::SubsequenceKernel;pub use structured_random_features::FastWalshHadamardTransform;pub use structured_random_features::StructuredMatrix;pub use structured_random_features::StructuredRFFHadamard;pub use structured_random_features::StructuredRandomFeatures;pub use tensor_polynomial::ContractionMethod;pub use tensor_polynomial::TensorOrdering;pub use tensor_polynomial::TensorPolynomialFeatures;pub use time_series_kernels::AutoregressiveKernelApproximation;pub use time_series_kernels::DTWConfig;pub use time_series_kernels::DTWDistanceMetric;pub use time_series_kernels::DTWKernelApproximation;pub use time_series_kernels::DTWStepPattern;pub use time_series_kernels::DTWWindowType;pub use time_series_kernels::GlobalAlignmentKernelApproximation;pub use time_series_kernels::SpectralKernelApproximation;pub use time_series_kernels::TimeSeriesKernelConfig;pub use time_series_kernels::TimeSeriesKernelType;pub use type_safe_kernels::ArcCosineKernel as TypeSafeArcCosineKernel;pub use type_safe_kernels::FastfoodMethod as TypeSafeFastfoodMethod;pub use type_safe_kernels::FittedTypeSafeKernelApproximation;pub use type_safe_kernels::FittedTypeSafeLaplacianRandomFourierFeatures;pub use type_safe_kernels::FittedTypeSafePolynomialNystrom;pub use type_safe_kernels::FittedTypeSafeRBFFastfood;pub use type_safe_kernels::FittedTypeSafeRBFNystrom;pub use type_safe_kernels::FittedTypeSafeRBFRandomFourierFeatures;pub use type_safe_kernels::KernelType as TypeSafeKernelType;pub use type_safe_kernels::LaplacianKernel as TypeSafeLaplacianKernel;pub use type_safe_kernels::NystromMethod as TypeSafeNystromMethod;pub use type_safe_kernels::PolynomialKernel as TypeSafePolynomialKernel;pub use type_safe_kernels::QualityMetrics as TypeSafeQualityMetrics;pub use type_safe_kernels::RBFKernel as TypeSafeRBFKernel;pub use type_safe_kernels::RandomFourierFeatures as TypeSafeRandomFourierFeatures;pub use type_safe_kernels::Trained as TypeSafeTrained;pub use type_safe_kernels::TypeSafeKernelApproximation;pub use type_safe_kernels::TypeSafeLaplacianRandomFourierFeatures;pub use type_safe_kernels::TypeSafePolynomialNystrom;pub use type_safe_kernels::TypeSafeRBFFastfood;pub use type_safe_kernels::TypeSafeRBFNystrom;pub use type_safe_kernels::TypeSafeRBFRandomFourierFeatures;pub use type_safe_kernels::Untrained as TypeSafeUntrained;pub use type_safety::ApproximationMethod;pub use type_safety::ApproximationParameters;pub use type_safety::ApproximationState;pub use type_safety::ArcCosineKernel;pub use type_safety::ComplexityClass;pub use type_safety::FastfoodMethod;pub use type_safety::FittableKernel;pub use type_safety::FittableMethod;pub use type_safety::FittedLaplacianRandomFourierFeatures;pub use type_safety::FittedRBFNystrom;pub use type_safety::FittedRBFRandomFourierFeatures;pub use type_safety::KernelPresets;pub use type_safety::KernelType;pub use type_safety::KernelTypeWithBandwidth;pub use type_safety::LaplacianKernel;pub use type_safety::LaplacianRandomFourierFeatures;pub use type_safety::NystromMethod;pub use type_safety::OptimizationLevel;pub use type_safety::PolynomialKernel;pub use type_safety::PolynomialKernelType;pub use type_safety::PolynomialNystrom;pub use type_safety::ProfileGuidedConfig;pub use type_safety::QualityMetrics;pub use type_safety::RBFFastfood;pub use type_safety::RBFKernel;pub use type_safety::RBFNystrom;pub use type_safety::RBFRandomFourierFeatures;pub use type_safety::RandomFourierFeatures;pub use type_safety::SerializableFittedParams;pub use type_safety::SerializableKernelApproximation;pub use type_safety::SerializableKernelConfig;pub use type_safety::TargetArchitecture;pub use type_safety::Trained;pub use type_safety::TransformationParameters;pub use type_safety::Untrained;pub use unsafe_optimizations::batch_rbf_kernel_fast;pub use unsafe_optimizations::dot_product_unrolled;pub use unsafe_optimizations::elementwise_op_fast;pub use unsafe_optimizations::fast_cosine_features;pub use unsafe_optimizations::matvec_multiply_fast;pub use unsafe_optimizations::rbf_kernel_fast;pub use unsafe_optimizations::safe_dot_product;pub use unsafe_optimizations::safe_matvec_multiply;pub use validation::BoundFunction;pub use validation::BoundType;pub use validation::CrossValidationResult;pub use validation::DimensionDependencyAnalysis;pub use validation::KernelApproximationValidator;pub use validation::SampleComplexityAnalysis;pub use validation::StabilityAnalysis;pub use validation::TheoreticalBound;pub use validation::ValidatableKernelMethod;pub use validation::ValidatedFittedMethod;pub use validation::ValidationConfig;pub use validation::ValidationResult;
Modules§
- adaptive_
bandwidth_ rbf - Adaptive bandwidth RBF kernel approximation methods
- adaptive_
dimension - Adaptive feature dimension selection for kernel approximations
- adaptive_
nystroem - Adaptive Nyström method with error bounds and automatic component selection
- advanced_
testing - Advanced testing and validation for kernel approximations
- anisotropic_
rbf - Anisotropic RBF Kernel Approximations
- benchmarking
- Comprehensive Benchmarking Framework for Kernel Approximation Methods
- bioinformatics_
kernels - Bioinformatics Kernel Methods
- budget_
constrained - Budget-constrained kernel approximation methods
- cache_
optimization - Cache-friendly feature layouts for improved performance
- causal_
kernels - Causal Inference Kernel Methods
- chi2_
samplers - Chi-squared kernel approximation methods
- computer_
vision_ kernels - Computer vision kernel approximations
- cross_
validation - Cross-validation framework for kernel parameter selection
- custom_
kernel - Custom kernel random feature generation framework
- deep_
learning_ kernels - Deep Learning Integration for Kernel Approximation
- distributed_
kernel - ensemble_
nystroem - Ensemble Nyström method for improved kernel approximation
- error_
bounded - Error-bounded kernel approximation methods
- fastfood
- Fastfood Transform for efficient random feature approximation
- feature_
generation - Extensible feature generation framework
- finance_
kernels - Finance and Economics Kernel Methods
- gpu_
acceleration - GPU acceleration for kernel approximations
- gradient_
kernel_ learning - Gradient-based kernel learning for automatic parameter optimization
- graph_
kernels - Graph Kernel Approximations
- homogeneous_
polynomial - Homogeneous polynomial features with fixed total degree
- incremental_
nystroem - Incremental Nyström method for online kernel approximation
- information_
theoretic - Information-Theoretic Kernel Methods
- kernel_
framework - Comprehensive trait-based framework for kernel approximations
- kernel_
ridge_ regression - Kernel Ridge Regression Module
- memory_
efficient - Memory-efficient kernel approximation methods
- meta_
learning_ kernels - Meta-Learning for Kernel Selection
- middleware
- Middleware system for kernel approximation pipelines
- multi_
kernel_ learning - multi_
scale_ rbf - Multi-scale RBF kernel approximation methods
- nlp_
kernels - Natural Language Processing kernel approximations
- numerical_
stability - Numerical Stability Enhancements for Kernel Approximation Methods
- nystroem
- Nyström method for kernel approximation
- optimal_
transport - Optimal transport kernel approximation methods
- out_
of_ core - Out-of-core kernel computations for large datasets
- parameter_
learning - Automatic kernel parameter learning and optimization
- plugin_
architecture - Plugin architecture for custom kernel approximations
- polynomial_
count_ sketch - Polynomial kernel approximation via Tensor Sketch
- polynomial_
features - Explicit polynomial feature maps
- progressive
- Progressive kernel approximation methods
- quantum_
kernel_ methods - Quantum Kernel Methods and Quantum-Inspired Approximations
- quasi_
random_ features - Quasi-random feature generation for improved kernel approximations
- rbf_
sampler - Random Fourier Features for RBF Kernel Approximation
- robust_
kernels - Robust kernel methods with outlier resistance
- scientific_
computing_ kernels - Scientific Computing Kernel Methods
- simd_
kernel - SIMD-accelerated kernel ridge regression operations
- simple_
test - Simple manual test for kernel approximation implementations
- sparse_
gp - Sparse Gaussian Process implementations with comprehensive approximation methods
- sparse_
polynomial - Sparse polynomial features for memory-efficient computation
- streaming_
kernel - string_
kernels - String Kernel Approximations
- structured_
random_ features - Structured orthogonal random features for efficient kernel approximation
- tensor_
polynomial - Tensor product polynomial features for multi-dimensional feature interactions
- time_
series_ kernels - Time series kernel approximations
- type_
safe_ kernels - Type-safe kernel approximations with phantom types and const generics
- type_
safety - Type Safety Enhancements for Kernel Approximation Methods
- unsafe_
optimizations - Performance-critical unsafe optimizations
- validation
- Advanced Validation Framework for Kernel Approximation Methods
Macros§
- validated_
kernel_ approximation - Macro for easy creation of validated kernel approximations