Module scientific_computing_kernels

Module scientific_computing_kernels 

Source
Expand description

Scientific Computing Kernel Methods

This module implements kernel methods for scientific computing applications, including physics-informed kernels, differential equation kernels, conservation law kernels, and multiscale methods.

§References

  • Raissi et al. (2019): “Physics-informed neural networks”
  • Karniadakis et al. (2021): “Physics-informed machine learning”
  • Chen & Sideris (2020): “Finite element method with interpolation at the nodes”
  • E & Yu (2018): “The Deep Ritz Method”

Structs§

MultiscaleKernel
Multiscale Kernel for hierarchical phenomena
PhysicsInformedConfig
Configuration for physics-informed kernels
PhysicsInformedKernel
Physics-Informed Kernel

Enums§

PhysicalSystem
Types of physical systems