Module kernel_framework

Module kernel_framework 

Source
Expand description

Comprehensive trait-based framework for kernel approximations

This module provides a unified trait system for implementing kernel approximation methods, making it easy to create new approximation strategies and compose them.

§Architecture

  • KernelMethod: Core trait for all kernel approximation methods
  • SamplingStrategy: Abstract sampling strategies (uniform, importance, etc.)
  • FeatureMap: Abstract feature transformations
  • ApproximationQuality: Quality metrics and guarantees
  • ComposableKernel: Combine multiple kernels

Structs§

CompositeKernelMethod
Composable kernel that combines multiple kernel methods
ErrorBound
Error bound information
KMeansSampling
K-means based sampling strategy
KernelAlignmentMetric
Kernel alignment quality metric
UniformSampling
Uniform random sampling strategy

Enums§

BoundType
Type of error bound
CombinationStrategy
Strategy for combining multiple kernels
Complexity
Computational complexity classification
KernelType
Kernel type classification

Traits§

ApproximationQuality
Approximation quality metrics
FeatureMap
Feature map transformation
KernelMethod
Core trait for kernel approximation methods
SamplingStrategy
Sampling strategy for selecting landmarks/components