Crate sklears_kernel_approximation

Crate sklears_kernel_approximation 

Source
Expand description

Kernel approximation methods

This module is part of sklears, providing scikit-learn compatible machine learning algorithms in Rust.

Re-exports§

pub use adaptive_bandwidth_rbf::AdaptiveBandwidthRBFSampler;
pub use adaptive_bandwidth_rbf::BandwidthSelectionStrategy;
pub use adaptive_bandwidth_rbf::ObjectiveFunction;
pub use adaptive_dimension::AdaptiveDimensionConfig;
pub use adaptive_dimension::AdaptiveRBFSampler;
pub use adaptive_dimension::DimensionSelectionResult;
pub use adaptive_dimension::FittedAdaptiveRBFSampler;
pub use adaptive_dimension::QualityMetric as AdaptiveQualityMetric;
pub use adaptive_dimension::SelectionStrategy;
pub use adaptive_nystroem::AdaptiveNystroem;
pub use adaptive_nystroem::ComponentSelectionStrategy;
pub use adaptive_nystroem::ErrorBoundMethod as AdaptiveErrorBoundMethod;
pub use advanced_testing::ApproximationError;
pub use advanced_testing::BaselineMethod;
pub use advanced_testing::BoundType as TestingBoundType;
pub use advanced_testing::BoundValidation;
pub use advanced_testing::ConvergenceAnalyzer;
pub use advanced_testing::ConvergenceResult;
pub use advanced_testing::ErrorBoundsResult;
pub use advanced_testing::ErrorBoundsValidator;
pub use advanced_testing::QualityAssessment;
pub use advanced_testing::QualityMetric as TestingQualityMetric;
pub use advanced_testing::QualityResult;
pub use advanced_testing::ReferenceMethod;
pub use anisotropic_rbf::AnisotropicRBFSampler;
pub use anisotropic_rbf::FittedAnisotropicRBF;
pub use anisotropic_rbf::FittedMahalanobisRBF;
pub use anisotropic_rbf::FittedRobustAnisotropicRBF;
pub use anisotropic_rbf::MahalanobisRBFSampler;
pub use anisotropic_rbf::RobustAnisotropicRBFSampler;
pub use anisotropic_rbf::RobustEstimator;
pub use benchmarking::BenchmarkConfig;
pub use benchmarking::BenchmarkDataset;
pub use benchmarking::BenchmarkResult;
pub use benchmarking::BenchmarkSummary;
pub use benchmarking::BenchmarkableKernelMethod;
pub use benchmarking::BenchmarkableTransformer;
pub use benchmarking::KernelApproximationBenchmark;
pub use benchmarking::PerformanceMetric;
pub use benchmarking::QualityMetric;
pub use bioinformatics_kernels::GenomicKernel;
pub use bioinformatics_kernels::MetabolicNetworkKernel;
pub use bioinformatics_kernels::MultiOmicsKernel;
pub use bioinformatics_kernels::OmicsIntegrationMethod;
pub use bioinformatics_kernels::PhylogeneticKernel;
pub use bioinformatics_kernels::ProteinKernel;
pub use budget_constrained::BudgetConstrainedConfig;
pub use budget_constrained::BudgetConstrainedNystroem;
pub use budget_constrained::BudgetConstrainedRBFSampler;
pub use budget_constrained::BudgetConstraint;
pub use budget_constrained::BudgetOptimizationResult;
pub use budget_constrained::BudgetUsage;
pub use budget_constrained::FittedBudgetConstrainedNystroem;
pub use budget_constrained::FittedBudgetConstrainedRBFSampler;
pub use budget_constrained::OptimizationStrategy;
pub use cache_optimization::AlignedBuffer;
pub use cache_optimization::CacheAwareTransform;
pub use cache_optimization::CacheConfig;
pub use cache_optimization::CacheFriendlyMatrix;
pub use cache_optimization::MemoryLayout;
pub use causal_kernels::CausalKernel;
pub use causal_kernels::CausalKernelConfig;
pub use causal_kernels::CausalMethod;
pub use causal_kernels::CounterfactualKernel;
pub use chi2_samplers::AdditiveChi2Sampler;
pub use chi2_samplers::SkewedChi2Sampler;
pub use computer_vision_kernels::ActivationFunction;
pub use computer_vision_kernels::ConvolutionalKernelFeatures;
pub use computer_vision_kernels::FittedConvolutionalKernelFeatures;
pub use computer_vision_kernels::FittedScaleInvariantFeatures;
pub use computer_vision_kernels::FittedSpatialPyramidFeatures;
pub use computer_vision_kernels::FittedTextureKernelApproximation;
pub use computer_vision_kernels::PoolingMethod;
pub use computer_vision_kernels::ScaleInvariantFeatures;
pub use computer_vision_kernels::SpatialPyramidFeatures;
pub use computer_vision_kernels::TextureKernelApproximation;
pub use cross_validation::CVSplitter;
pub use cross_validation::CVStrategy;
pub use cross_validation::CrossValidationConfig;
pub use cross_validation::CrossValidationResult as CVResult;
pub use cross_validation::CrossValidator;
pub use cross_validation::KFoldSplitter;
pub use cross_validation::MonteCarloCVSplitter;
pub use cross_validation::ScoringMetric;
pub use cross_validation::TimeSeriesSplitter;
pub use custom_kernel::CustomExponentialKernel;
pub use custom_kernel::CustomKernelSampler;
pub use custom_kernel::CustomLaplacianKernel;
pub use custom_kernel::CustomPolynomialKernel;
pub use custom_kernel::CustomRBFKernel;
pub use custom_kernel::KernelFunction;
pub use deep_learning_kernels::Activation as DeepLearningActivation;
pub use deep_learning_kernels::DKLConfig;
pub use deep_learning_kernels::DeepKernelLearning;
pub use deep_learning_kernels::InfiniteWidthKernel;
pub use deep_learning_kernels::NTKConfig;
pub use deep_learning_kernels::NeuralTangentKernel;
pub use distributed_kernel::AggregationMethod;
pub use distributed_kernel::CommunicationPattern;
pub use distributed_kernel::DistributedConfig;
pub use distributed_kernel::DistributedNystroem;
pub use distributed_kernel::DistributedRBFSampler;
pub use distributed_kernel::PartitionStrategy;
pub use distributed_kernel::Worker;
pub use ensemble_nystroem::EnsembleMethod;
pub use ensemble_nystroem::EnsembleNystroem;
pub use ensemble_nystroem::QualityMetric as EnsembleQualityMetric;
pub use error_bounded::ErrorBound;
pub use error_bounded::ErrorBoundMethod;
pub use error_bounded::ErrorBoundedConfig;
pub use error_bounded::ErrorBoundedNystroem;
pub use error_bounded::ErrorBoundedRBFSampler;
pub use error_bounded::FittedErrorBoundedNystroem;
pub use error_bounded::FittedErrorBoundedRBFSampler;
pub use fastfood::FastfoodKernel;
pub use fastfood::FastfoodKernelParams;
pub use fastfood::FastfoodTransform;
pub use feature_generation::CompositeGenerator;
pub use feature_generation::FeatureGenerator;
pub use feature_generation::FeatureGeneratorBuilder;
pub use feature_generation::PolynomialGenerator;
pub use feature_generation::RandomFourierGenerator;
pub use finance_kernels::EconometricKernel;
pub use finance_kernels::FinancialKernel;
pub use finance_kernels::PortfolioKernel;
pub use finance_kernels::RiskKernel;
pub use finance_kernels::VolatilityKernel;
pub use finance_kernels::VolatilityModel;
pub use gpu_acceleration::FittedGpuNystroem;
pub use gpu_acceleration::FittedGpuRBFSampler;
pub use gpu_acceleration::GpuBackend;
pub use gpu_acceleration::GpuConfig;
pub use gpu_acceleration::GpuContext;
pub use gpu_acceleration::GpuDevice;
pub use gpu_acceleration::GpuNystroem;
pub use gpu_acceleration::GpuProfiler;
pub use gpu_acceleration::GpuRBFSampler;
pub use gpu_acceleration::MemoryStrategy;
pub use gpu_acceleration::Precision;
pub use gradient_kernel_learning::GradientConfig;
pub use gradient_kernel_learning::GradientKernelLearner;
pub use gradient_kernel_learning::GradientMultiKernelLearner;
pub use gradient_kernel_learning::GradientOptimizer;
pub use gradient_kernel_learning::GradientResult;
pub use gradient_kernel_learning::KernelObjective;
pub use graph_kernels::FittedRandomWalkKernel;
pub use graph_kernels::FittedShortestPathKernel;
pub use graph_kernels::FittedSubgraphKernel;
pub use graph_kernels::FittedWeisfeilerLehmanKernel;
pub use graph_kernels::Graph;
pub use graph_kernels::RandomWalkKernel;
pub use graph_kernels::ShortestPathKernel;
pub use graph_kernels::SubgraphKernel;
pub use graph_kernels::WeisfeilerLehmanKernel;
pub use homogeneous_polynomial::CoefficientMethod;
pub use homogeneous_polynomial::HomogeneousPolynomialFeatures;
pub use homogeneous_polynomial::NormalizationMethod;
pub use incremental_nystroem::IncrementalNystroem;
pub use incremental_nystroem::UpdateStrategy;
pub use information_theoretic::EntropyFeatureSelector;
pub use information_theoretic::EntropySelectionMethod;
pub use information_theoretic::FittedEntropyFeatureSelector;
pub use information_theoretic::FittedInformationBottleneckExtractor;
pub use information_theoretic::FittedKLDivergenceKernel;
pub use information_theoretic::FittedMutualInformationKernel;
pub use information_theoretic::InformationBottleneckExtractor;
pub use information_theoretic::KLDivergenceKernel;
pub use information_theoretic::KLReferenceDistribution;
pub use information_theoretic::MutualInformationKernel;
pub use kernel_framework::ApproximationQuality;
pub use kernel_framework::BoundType as FrameworkBoundType;
pub use kernel_framework::CombinationStrategy as FrameworkCombinationStrategy;
pub use kernel_framework::Complexity;
pub use kernel_framework::CompositeKernelMethod;
pub use kernel_framework::ErrorBound as FrameworkErrorBound;
pub use kernel_framework::FeatureMap;
pub use kernel_framework::KMeansSampling;
pub use kernel_framework::KernelAlignmentMetric;
pub use kernel_framework::KernelMethod;
pub use kernel_framework::KernelType as FrameworkKernelType;
pub use kernel_framework::SamplingStrategy as SamplingStrategyTrait;
pub use kernel_framework::UniformSampling;
pub use kernel_ridge_regression::ApproximationMethod as KRRApproximationMethod;
pub use kernel_ridge_regression::KernelRidgeRegression;
pub use kernel_ridge_regression::MultiTaskKernelRidgeRegression;
pub use kernel_ridge_regression::OnlineKernelRidgeRegression;
pub use kernel_ridge_regression::RobustKernelRidgeRegression;
pub use kernel_ridge_regression::RobustLoss;
pub use kernel_ridge_regression::Solver;
pub use kernel_ridge_regression::TaskRegularization;
pub use memory_efficient::FittedMemoryEfficientNystroem;
pub use memory_efficient::FittedMemoryEfficientRBFSampler;
pub use memory_efficient::MemoryConfig;
pub use memory_efficient::MemoryEfficientNystroem;
pub use memory_efficient::MemoryEfficientRBFSampler;
pub use memory_efficient::MemoryMonitor;
pub use meta_learning_kernels::DatasetMetaFeatures;
pub use meta_learning_kernels::MetaKernelType;
pub use meta_learning_kernels::MetaLearningConfig;
pub use meta_learning_kernels::MetaLearningKernelSelector;
pub use meta_learning_kernels::MetaLearningStrategy;
pub use meta_learning_kernels::PerformanceMetric as MetaPerformanceMetric;
pub use meta_learning_kernels::TaskMetadata;
pub use middleware::Hook;
pub use middleware::HookContext;
pub use middleware::LoggingHook;
pub use middleware::Middleware;
pub use middleware::NormalizationMiddleware;
pub use middleware::PerformanceHook;
pub use middleware::Pipeline;
pub use middleware::PipelineBuilder;
pub use middleware::PipelineStage;
pub use middleware::ValidationHook;
pub use multi_kernel_learning::ApproximationMethod as MKLApproximationMethod;
pub use multi_kernel_learning::BaseKernel;
pub use multi_kernel_learning::CombinationStrategy as MKLCombinationStrategy;
pub use multi_kernel_learning::KernelStatistics;
pub use multi_kernel_learning::MultiKernelConfig;
pub use multi_kernel_learning::MultipleKernelLearning;
pub use multi_kernel_learning::WeightLearningAlgorithm;
pub use multi_scale_rbf::BandwidthStrategy;
pub use multi_scale_rbf::CombinationStrategy;
pub use multi_scale_rbf::MultiScaleRBFSampler;
pub use nlp_kernels::AggregationMethod as NLPAggregationMethod;
pub use nlp_kernels::DocumentKernelApproximation;
pub use nlp_kernels::FittedDocumentKernelApproximation;
pub use nlp_kernels::FittedSemanticKernelApproximation;
pub use nlp_kernels::FittedSyntacticKernelApproximation;
pub use nlp_kernels::FittedTextKernelApproximation;
pub use nlp_kernels::SemanticKernelApproximation;
pub use nlp_kernels::SimilarityMeasure;
pub use nlp_kernels::SyntacticKernelApproximation;
pub use nlp_kernels::TextKernelApproximation;
pub use nlp_kernels::TreeKernelType;
pub use numerical_stability::stable_kernel_matrix;
pub use numerical_stability::NumericalStabilityMonitor;
pub use numerical_stability::StabilityConfig;
pub use numerical_stability::StabilityMetrics;
pub use numerical_stability::StabilityWarning;
pub use nystroem::Kernel;
pub use nystroem::Nystroem;
pub use nystroem::SamplingStrategy;
pub use optimal_transport::EMDKernelSampler;
pub use optimal_transport::GWLossFunction;
pub use optimal_transport::GromovWassersteinSampler;
pub use optimal_transport::GroundMetric;
pub use optimal_transport::TransportMethod;
pub use optimal_transport::WassersteinKernelSampler;
pub use out_of_core::OutOfCoreConfig;
pub use out_of_core::OutOfCoreKernelPipeline;
pub use out_of_core::OutOfCoreLoader;
pub use out_of_core::OutOfCoreNystroem;
pub use out_of_core::OutOfCoreRBFSampler;
pub use out_of_core::OutOfCoreStrategy;
pub use parameter_learning::ObjectiveFunction as ParameterObjectiveFunction;
pub use parameter_learning::OptimizationResult;
pub use parameter_learning::ParameterBounds;
pub use parameter_learning::ParameterLearner;
pub use parameter_learning::ParameterLearningConfig;
pub use parameter_learning::ParameterSet;
pub use parameter_learning::SearchStrategy;
pub use plugin_architecture::create_global_plugin_instance;
pub use plugin_architecture::list_global_plugins;
pub use plugin_architecture::register_global_plugin;
pub use plugin_architecture::FittedPluginWrapper;
pub use plugin_architecture::KernelApproximationInstance;
pub use plugin_architecture::KernelApproximationPlugin;
pub use plugin_architecture::LinearKernelInstance;
pub use plugin_architecture::LinearKernelPlugin;
pub use plugin_architecture::PluginConfig;
pub use plugin_architecture::PluginError;
pub use plugin_architecture::PluginFactory;
pub use plugin_architecture::PluginMetadata;
pub use plugin_architecture::PluginWrapper;
pub use polynomial_count_sketch::PolynomialCountSketch;
pub use polynomial_features::PolynomialFeatures;
pub use progressive::FittedProgressiveNystroem;
pub use progressive::FittedProgressiveRBFSampler;
pub use progressive::ProgressiveConfig;
pub use progressive::ProgressiveNystroem;
pub use progressive::ProgressiveQualityMetric;
pub use progressive::ProgressiveRBFSampler;
pub use progressive::ProgressiveResult;
pub use progressive::ProgressiveStep;
pub use progressive::ProgressiveStrategy;
pub use progressive::StoppingCriterion;
pub use quantum_kernel_methods::EntanglementPattern;
pub use quantum_kernel_methods::QuantumFeatureMap;
pub use quantum_kernel_methods::QuantumKernelApproximation;
pub use quantum_kernel_methods::QuantumKernelConfig;
pub use quasi_random_features::QuasiRandomRBFSampler;
pub use quasi_random_features::QuasiRandomSequence;
pub use rbf_sampler::ArcCosineSampler;
pub use rbf_sampler::LaplacianSampler;
pub use rbf_sampler::PolynomialSampler;
pub use rbf_sampler::RBFSampler;
pub use robust_kernels::BreakdownPointAnalysis;
pub use robust_kernels::InfluenceFunctionDiagnostics;
pub use robust_kernels::RobustEstimator as RobustKernelEstimator;
pub use robust_kernels::RobustKernelConfig;
pub use robust_kernels::RobustLoss as RobustKernelLoss;
pub use robust_kernels::RobustNystroem;
pub use robust_kernels::RobustRBFSampler;
pub use scientific_computing_kernels::MultiscaleKernel;
pub use scientific_computing_kernels::PhysicalSystem;
pub use scientific_computing_kernels::PhysicsInformedConfig;
pub use scientific_computing_kernels::PhysicsInformedKernel;
pub use sparse_gp::simd_sparse_gp;
pub use sparse_gp::FittedSKI;
pub use sparse_gp::FittedSparseGP;
pub use sparse_gp::FittedTensorSKI;
pub use sparse_gp::InducingPointSelector;
pub use sparse_gp::InducingPointStrategy;
pub use sparse_gp::InterpolationMethod;
pub use sparse_gp::KernelOps;
pub use sparse_gp::LanczosMethod;
pub use sparse_gp::MaternKernel;
pub use sparse_gp::PreconditionedCG;
pub use sparse_gp::PreconditionerType;
pub use sparse_gp::RBFKernel as SparseRBFKernel;
pub use sparse_gp::ScalableInference;
pub use sparse_gp::ScalableInferenceMethod;
pub use sparse_gp::SparseApproximation;
pub use sparse_gp::SparseApproximationMethods;
pub use sparse_gp::SparseGaussianProcess;
pub use sparse_gp::SparseKernel;
pub use sparse_gp::StochasticVariationalInference;
pub use sparse_gp::StructuredKernelInterpolation;
pub use sparse_gp::TensorSKI;
pub use sparse_gp::VariationalFreeEnergy;
pub use sparse_gp::VariationalParams;
pub use sparse_polynomial::SparseFormat;
pub use sparse_polynomial::SparseMatrix;
pub use sparse_polynomial::SparsePolynomialFeatures;
pub use sparse_polynomial::SparsityStrategy;
pub use streaming_kernel::BufferStrategy;
pub use streaming_kernel::FeatureStatistics;
pub use streaming_kernel::ForgettingMechanism;
pub use streaming_kernel::StreamingConfig;
pub use streaming_kernel::StreamingNystroem;
pub use streaming_kernel::StreamingRBFSampler;
pub use streaming_kernel::StreamingSample;
pub use streaming_kernel::UpdateFrequency;
pub use string_kernels::EditDistanceKernel;
pub use string_kernels::FittedEditDistanceKernel;
pub use string_kernels::FittedMismatchKernel;
pub use string_kernels::FittedNGramKernel;
pub use string_kernels::FittedSpectrumKernel;
pub use string_kernels::FittedSubsequenceKernel;
pub use string_kernels::MismatchKernel;
pub use string_kernels::NGramKernel;
pub use string_kernels::NGramMode;
pub use string_kernels::SpectrumKernel;
pub use string_kernels::SubsequenceKernel;
pub use structured_random_features::FastWalshHadamardTransform;
pub use structured_random_features::StructuredMatrix;
pub use structured_random_features::StructuredRFFHadamard;
pub use structured_random_features::StructuredRandomFeatures;
pub use tensor_polynomial::ContractionMethod;
pub use tensor_polynomial::TensorOrdering;
pub use tensor_polynomial::TensorPolynomialFeatures;
pub use time_series_kernels::AutoregressiveKernelApproximation;
pub use time_series_kernels::DTWConfig;
pub use time_series_kernels::DTWDistanceMetric;
pub use time_series_kernels::DTWKernelApproximation;
pub use time_series_kernels::DTWStepPattern;
pub use time_series_kernels::DTWWindowType;
pub use time_series_kernels::GlobalAlignmentKernelApproximation;
pub use time_series_kernels::SpectralKernelApproximation;
pub use time_series_kernels::TimeSeriesKernelConfig;
pub use time_series_kernels::TimeSeriesKernelType;
pub use type_safe_kernels::ArcCosineKernel as TypeSafeArcCosineKernel;
pub use type_safe_kernels::FastfoodMethod as TypeSafeFastfoodMethod;
pub use type_safe_kernels::FittedTypeSafeKernelApproximation;
pub use type_safe_kernels::FittedTypeSafeLaplacianRandomFourierFeatures;
pub use type_safe_kernels::FittedTypeSafePolynomialNystrom;
pub use type_safe_kernels::FittedTypeSafeRBFFastfood;
pub use type_safe_kernels::FittedTypeSafeRBFNystrom;
pub use type_safe_kernels::FittedTypeSafeRBFRandomFourierFeatures;
pub use type_safe_kernels::KernelType as TypeSafeKernelType;
pub use type_safe_kernels::LaplacianKernel as TypeSafeLaplacianKernel;
pub use type_safe_kernels::NystromMethod as TypeSafeNystromMethod;
pub use type_safe_kernels::PolynomialKernel as TypeSafePolynomialKernel;
pub use type_safe_kernels::QualityMetrics as TypeSafeQualityMetrics;
pub use type_safe_kernels::RBFKernel as TypeSafeRBFKernel;
pub use type_safe_kernels::RandomFourierFeatures as TypeSafeRandomFourierFeatures;
pub use type_safe_kernels::Trained as TypeSafeTrained;
pub use type_safe_kernels::TypeSafeKernelApproximation;
pub use type_safe_kernels::TypeSafeLaplacianRandomFourierFeatures;
pub use type_safe_kernels::TypeSafePolynomialNystrom;
pub use type_safe_kernels::TypeSafeRBFFastfood;
pub use type_safe_kernels::TypeSafeRBFNystrom;
pub use type_safe_kernels::TypeSafeRBFRandomFourierFeatures;
pub use type_safe_kernels::Untrained as TypeSafeUntrained;
pub use type_safety::ApproximationMethod;
pub use type_safety::ApproximationParameters;
pub use type_safety::ApproximationState;
pub use type_safety::ArcCosineKernel;
pub use type_safety::ComplexityClass;
pub use type_safety::FastfoodMethod;
pub use type_safety::FittableKernel;
pub use type_safety::FittableMethod;
pub use type_safety::FittedLaplacianRandomFourierFeatures;
pub use type_safety::FittedRBFNystrom;
pub use type_safety::FittedRBFRandomFourierFeatures;
pub use type_safety::KernelPresets;
pub use type_safety::KernelType;
pub use type_safety::KernelTypeWithBandwidth;
pub use type_safety::LaplacianKernel;
pub use type_safety::LaplacianRandomFourierFeatures;
pub use type_safety::NystromMethod;
pub use type_safety::OptimizationLevel;
pub use type_safety::PolynomialKernel;
pub use type_safety::PolynomialKernelType;
pub use type_safety::PolynomialNystrom;
pub use type_safety::ProfileGuidedConfig;
pub use type_safety::QualityMetrics;
pub use type_safety::RBFFastfood;
pub use type_safety::RBFKernel;
pub use type_safety::RBFNystrom;
pub use type_safety::RBFRandomFourierFeatures;
pub use type_safety::RandomFourierFeatures;
pub use type_safety::SerializableFittedParams;
pub use type_safety::SerializableKernelApproximation;
pub use type_safety::SerializableKernelConfig;
pub use type_safety::TargetArchitecture;
pub use type_safety::Trained;
pub use type_safety::TransformationParameters;
pub use type_safety::Untrained;
pub use unsafe_optimizations::batch_rbf_kernel_fast;
pub use unsafe_optimizations::dot_product_unrolled;
pub use unsafe_optimizations::elementwise_op_fast;
pub use unsafe_optimizations::fast_cosine_features;
pub use unsafe_optimizations::matvec_multiply_fast;
pub use unsafe_optimizations::rbf_kernel_fast;
pub use unsafe_optimizations::safe_dot_product;
pub use unsafe_optimizations::safe_matvec_multiply;
pub use validation::BoundFunction;
pub use validation::BoundType;
pub use validation::CrossValidationResult;
pub use validation::DimensionDependencyAnalysis;
pub use validation::KernelApproximationValidator;
pub use validation::SampleComplexityAnalysis;
pub use validation::StabilityAnalysis;
pub use validation::TheoreticalBound;
pub use validation::ValidatableKernelMethod;
pub use validation::ValidatedFittedMethod;
pub use validation::ValidationConfig;
pub use validation::ValidationResult;

Modules§

adaptive_bandwidth_rbf
Adaptive bandwidth RBF kernel approximation methods
adaptive_dimension
Adaptive feature dimension selection for kernel approximations
adaptive_nystroem
Adaptive Nyström method with error bounds and automatic component selection
advanced_testing
Advanced testing and validation for kernel approximations
anisotropic_rbf
Anisotropic RBF Kernel Approximations
benchmarking
Comprehensive Benchmarking Framework for Kernel Approximation Methods
bioinformatics_kernels
Bioinformatics Kernel Methods
budget_constrained
Budget-constrained kernel approximation methods
cache_optimization
Cache-friendly feature layouts for improved performance
causal_kernels
Causal Inference Kernel Methods
chi2_samplers
Chi-squared kernel approximation methods
computer_vision_kernels
Computer vision kernel approximations
cross_validation
Cross-validation framework for kernel parameter selection
custom_kernel
Custom kernel random feature generation framework
deep_learning_kernels
Deep Learning Integration for Kernel Approximation
distributed_kernel
ensemble_nystroem
Ensemble Nyström method for improved kernel approximation
error_bounded
Error-bounded kernel approximation methods
fastfood
Fastfood Transform for efficient random feature approximation
feature_generation
Extensible feature generation framework
finance_kernels
Finance and Economics Kernel Methods
gpu_acceleration
GPU acceleration for kernel approximations
gradient_kernel_learning
Gradient-based kernel learning for automatic parameter optimization
graph_kernels
Graph Kernel Approximations
homogeneous_polynomial
Homogeneous polynomial features with fixed total degree
incremental_nystroem
Incremental Nyström method for online kernel approximation
information_theoretic
Information-Theoretic Kernel Methods
kernel_framework
Comprehensive trait-based framework for kernel approximations
kernel_ridge_regression
Kernel Ridge Regression Module
memory_efficient
Memory-efficient kernel approximation methods
meta_learning_kernels
Meta-Learning for Kernel Selection
middleware
Middleware system for kernel approximation pipelines
multi_kernel_learning
multi_scale_rbf
Multi-scale RBF kernel approximation methods
nlp_kernels
Natural Language Processing kernel approximations
numerical_stability
Numerical Stability Enhancements for Kernel Approximation Methods
nystroem
Nyström method for kernel approximation
optimal_transport
Optimal transport kernel approximation methods
out_of_core
Out-of-core kernel computations for large datasets
parameter_learning
Automatic kernel parameter learning and optimization
plugin_architecture
Plugin architecture for custom kernel approximations
polynomial_count_sketch
Polynomial kernel approximation via Tensor Sketch
polynomial_features
Explicit polynomial feature maps
progressive
Progressive kernel approximation methods
quantum_kernel_methods
Quantum Kernel Methods and Quantum-Inspired Approximations
quasi_random_features
Quasi-random feature generation for improved kernel approximations
rbf_sampler
Random Fourier Features for RBF Kernel Approximation
robust_kernels
Robust kernel methods with outlier resistance
scientific_computing_kernels
Scientific Computing Kernel Methods
simd_kernel
SIMD-accelerated kernel ridge regression operations
simple_test
Simple manual test for kernel approximation implementations
sparse_gp
Sparse Gaussian Process implementations with comprehensive approximation methods
sparse_polynomial
Sparse polynomial features for memory-efficient computation
streaming_kernel
string_kernels
String Kernel Approximations
structured_random_features
Structured orthogonal random features for efficient kernel approximation
tensor_polynomial
Tensor product polynomial features for multi-dimensional feature interactions
time_series_kernels
Time series kernel approximations
type_safe_kernels
Type-safe kernel approximations with phantom types and const generics
type_safety
Type Safety Enhancements for Kernel Approximation Methods
unsafe_optimizations
Performance-critical unsafe optimizations
validation
Advanced Validation Framework for Kernel Approximation Methods

Macros§

validated_kernel_approximation
Macro for easy creation of validated kernel approximations