sklears_kernel_approximation/sparse_gp/
inference.rs

1//! Scalable inference methods for sparse Gaussian Processes
2//!
3//! This module implements various scalable inference algorithms including
4//! direct matrix inversion, Preconditioned Conjugate Gradient (PCG),
5//! and Lanczos eigendecomposition methods.
6
7use crate::sparse_gp::core::*;
8use crate::sparse_gp::kernels::{KernelOps, SparseKernel};
9use scirs2_core::ndarray::ndarray_linalg::SVD;
10use scirs2_core::ndarray::s;
11use scirs2_core::ndarray::{Array1, Array2};
12use scirs2_core::random::essentials::Uniform as RandUniform;
13use scirs2_core::random::thread_rng;
14use sklears_core::error::{Result, SklearsError};
15
16/// Scalable inference method implementations
17pub struct ScalableInference;
18
19impl ScalableInference {
20    /// Perform scalable prediction using the specified method
21    pub fn predict<K: SparseKernel>(
22        method: &ScalableInferenceMethod,
23        k_star_m: &Array2<f64>,
24        inducing_points: &Array2<f64>,
25        alpha: &Array1<f64>,
26        kernel: &K,
27        noise_variance: f64,
28    ) -> Result<Array1<f64>> {
29        match method {
30            ScalableInferenceMethod::Direct => Self::predict_direct(k_star_m, alpha),
31            ScalableInferenceMethod::PreconditionedCG {
32                max_iter,
33                tol,
34                preconditioner,
35            } => Self::predict_with_pcg(
36                k_star_m,
37                inducing_points,
38                kernel,
39                noise_variance,
40                *max_iter,
41                *tol,
42                preconditioner,
43            ),
44            ScalableInferenceMethod::Lanczos { num_vectors, tol } => Self::predict_with_lanczos(
45                k_star_m,
46                inducing_points,
47                kernel,
48                noise_variance,
49                *num_vectors,
50                *tol,
51            ),
52        }
53    }
54
55    /// Direct prediction using precomputed alpha
56    fn predict_direct(k_star_m: &Array2<f64>, alpha: &Array1<f64>) -> Result<Array1<f64>> {
57        Ok(k_star_m.dot(alpha))
58    }
59
60    /// Prediction using Preconditioned Conjugate Gradient
61    fn predict_with_pcg<K: SparseKernel>(
62        k_star_m: &Array2<f64>,
63        inducing_points: &Array2<f64>,
64        kernel: &K,
65        noise_variance: f64,
66        max_iter: usize,
67        tol: f64,
68        preconditioner: &PreconditionerType,
69    ) -> Result<Array1<f64>> {
70        let m = inducing_points.nrows();
71
72        // Reconstruct the system matrix A = K_mm + noise
73        let mut a_matrix = kernel.kernel_matrix(inducing_points, inducing_points);
74        for i in 0..m {
75            a_matrix[(i, i)] += noise_variance;
76        }
77
78        // Right-hand side for prediction
79        let rhs = k_star_m.t().dot(&Array1::ones(k_star_m.nrows()));
80
81        // Solve A * x = rhs using PCG
82        let solution = PreconditionedCG::solve(&a_matrix, &rhs, max_iter, tol, preconditioner)?;
83
84        Ok(k_star_m.dot(&solution))
85    }
86
87    /// Prediction using Lanczos method
88    fn predict_with_lanczos<K: SparseKernel>(
89        k_star_m: &Array2<f64>,
90        inducing_points: &Array2<f64>,
91        kernel: &K,
92        noise_variance: f64,
93        num_vectors: usize,
94        tol: f64,
95    ) -> Result<Array1<f64>> {
96        // Reconstruct kernel matrix
97        let k_mm = kernel.kernel_matrix(inducing_points, inducing_points);
98
99        // Apply Lanczos algorithm for eigendecomposition
100        let (eigenvals, eigenvecs) = LanczosMethod::eigendecomposition(&k_mm, num_vectors, tol)?;
101
102        // Use eigendecomposition for prediction
103        // This is a simplified version - full implementation would use proper alpha reconstruction
104        let k_star_transformed = k_star_m.dot(&eigenvecs);
105
106        // Apply eigenvalue scaling (simplified)
107        let scaled_eigenvals = eigenvals.mapv(|x| {
108            if x > 1e-10 {
109                1.0 / (x + noise_variance)
110            } else {
111                0.0
112            }
113        });
114
115        // Compute prediction (simplified)
116        let prediction = k_star_transformed.dot(&scaled_eigenvals);
117        Ok(prediction)
118    }
119}
120
121/// Preconditioned Conjugate Gradient solver
122pub struct PreconditionedCG;
123
124impl PreconditionedCG {
125    /// Solve Ax = b using Preconditioned Conjugate Gradient
126    pub fn solve(
127        a: &Array2<f64>,
128        b: &Array1<f64>,
129        max_iter: usize,
130        tol: f64,
131        preconditioner: &PreconditionerType,
132    ) -> Result<Array1<f64>> {
133        let n = a.nrows();
134        let mut x = Array1::zeros(n);
135        let mut r = b - &a.dot(&x);
136
137        // Setup preconditioner
138        let precond_matrix = PreconditionerSetup::setup_preconditioner(a, preconditioner)?;
139        let mut z = PreconditionerSetup::apply_preconditioner(&precond_matrix, &r, preconditioner)?;
140        let mut p = z.clone();
141        let mut rsold = r.dot(&z);
142
143        for _iter in 0..max_iter {
144            let ap = a.dot(&p);
145            let alpha = rsold / p.dot(&ap);
146
147            x = &x + alpha * &p;
148            r = &r - alpha * &ap;
149
150            // Check convergence
151            let rnorm = r.mapv(|x| x * x).sum().sqrt();
152            if rnorm < tol {
153                break;
154            }
155
156            z = PreconditionerSetup::apply_preconditioner(&precond_matrix, &r, preconditioner)?;
157            let rsnew = r.dot(&z);
158            let beta = rsnew / rsold;
159
160            p = &z + beta * &p;
161            rsold = rsnew;
162        }
163
164        Ok(x)
165    }
166}
167
168/// Preconditioner setup and application
169pub struct PreconditionerSetup;
170
171impl PreconditionerSetup {
172    /// Setup preconditioner matrix
173    pub fn setup_preconditioner(
174        a: &Array2<f64>,
175        preconditioner: &PreconditionerType,
176    ) -> Result<Array2<f64>> {
177        match preconditioner {
178            PreconditionerType::None => Ok(Array2::eye(a.nrows())),
179
180            PreconditionerType::Diagonal => {
181                // Diagonal preconditioner M = diag(A)
182                let diag_inv = a
183                    .diag()
184                    .mapv(|x| if x.abs() > 1e-12 { 1.0 / x } else { 1.0 });
185                Ok(Array2::from_diag(&diag_inv))
186            }
187
188            PreconditionerType::IncompleteCholesky { fill_factor: _ } => {
189                // Simplified incomplete Cholesky (just return diagonal for now)
190                let diag_inv = a
191                    .diag()
192                    .mapv(|x| if x > 1e-12 { 1.0 / x.sqrt() } else { 1.0 });
193                Ok(Array2::from_diag(&diag_inv))
194            }
195
196            PreconditionerType::SSOR { omega } => {
197                // SSOR preconditioner setup
198                let n = a.nrows();
199                let mut d = Array2::zeros((n, n));
200                let mut l = Array2::zeros((n, n));
201
202                // Extract diagonal and lower triangular parts
203                for i in 0..n {
204                    d[(i, i)] = a[(i, i)];
205                    for j in 0..i {
206                        l[(i, j)] = a[(i, j)];
207                    }
208                }
209
210                // SSOR matrix: M = (D + omega*L) * D^(-1) * (D + omega*L)^T
211                let d_inv =
212                    Array2::from_diag(
213                        &d.diag()
214                            .mapv(|x| if x.abs() > 1e-12 { 1.0 / x } else { 1.0 }),
215                    );
216                let dl = &d + *omega * &l;
217                Ok(dl.dot(&d_inv).dot(&dl.t()))
218            }
219        }
220    }
221
222    /// Apply preconditioner to vector
223    pub fn apply_preconditioner(
224        precond: &Array2<f64>,
225        vector: &Array1<f64>,
226        preconditioner: &PreconditionerType,
227    ) -> Result<Array1<f64>> {
228        match preconditioner {
229            PreconditionerType::None => Ok(vector.clone()),
230            PreconditionerType::Diagonal => Ok(&precond.diag().to_owned() * vector),
231            _ => Ok(precond.dot(vector)),
232        }
233    }
234}
235
236/// Lanczos eigendecomposition method
237pub struct LanczosMethod;
238
239impl LanczosMethod {
240    /// Perform Lanczos eigendecomposition
241    pub fn eigendecomposition(
242        matrix: &Array2<f64>,
243        num_vectors: usize,
244        tol: f64,
245    ) -> Result<(Array1<f64>, Array2<f64>)> {
246        let n = matrix.nrows();
247        let m = num_vectors.min(n);
248
249        // Initialize Lanczos vectors
250        let mut q_matrix = Array2::zeros((n, m));
251        let mut alpha_vec = Array1::zeros(m);
252        let mut beta_vec = Array1::zeros(m);
253
254        // Random starting vector
255        let mut rng = thread_rng();
256        let uniform = RandUniform::new(-1.0, 1.0).unwrap();
257        let mut q_0 = Array1::zeros(n);
258        for i in 0..n {
259            q_0[i] = rng.sample(uniform);
260        }
261        #[allow(clippy::unnecessary_cast)]
262        let q_0_norm = (q_0.mapv(|x| x * x).sum() as f64).sqrt();
263        q_0 /= q_0_norm;
264        q_matrix.column_mut(0).assign(&q_0);
265
266        let mut beta = 0.0;
267        let mut q_prev = Array1::zeros(n);
268
269        for j in 0..m {
270            let q_j = q_matrix.column(j).to_owned();
271            let mut w: Array1<f64> = matrix.dot(&q_j) - beta * &q_prev;
272
273            alpha_vec[j] = q_j.dot(&w);
274            w = &w - alpha_vec[j] * &q_j;
275
276            beta = w.mapv(|x| x * x).sum().sqrt();
277            if j < m - 1 {
278                beta_vec[j] = beta;
279                if beta < tol {
280                    break;
281                }
282                q_matrix.column_mut(j + 1).assign(&(&w / beta));
283            }
284
285            q_prev = q_j;
286        }
287
288        // Solve tridiagonal eigenvalue problem
289        let (eigenvals, eigenvecs_tri) = TridiagonalEigenSolver::solve(&alpha_vec, &beta_vec)?;
290
291        // Transform back to original space
292        let eigenvecs = q_matrix.dot(&eigenvecs_tri);
293
294        Ok((eigenvals, eigenvecs))
295    }
296}
297
298/// Tridiagonal eigenvalue problem solver
299pub struct TridiagonalEigenSolver;
300
301impl TridiagonalEigenSolver {
302    /// Solve tridiagonal eigenvalue problem using simplified QR algorithm
303    pub fn solve(alpha: &Array1<f64>, beta: &Array1<f64>) -> Result<(Array1<f64>, Array2<f64>)> {
304        let n = alpha.len();
305
306        // Build tridiagonal matrix
307        let mut tri_matrix = Array2::zeros((n, n));
308        for i in 0..n {
309            tri_matrix[(i, i)] = alpha[i];
310            if i < n - 1 {
311                tri_matrix[(i, i + 1)] = beta[i];
312                tri_matrix[(i + 1, i)] = beta[i];
313            }
314        }
315
316        // Use SVD for eigendecomposition (simplified approach)
317        let (u, s, _vt) = tri_matrix
318            .svd(true, true)
319            .map_err(|e| SklearsError::NumericalError(format!("SVD failed: {:?}", e)))?;
320        let u =
321            u.ok_or_else(|| SklearsError::NumericalError("U matrix not computed".to_string()))?;
322
323        Ok((s, u))
324    }
325}
326
327/// Iterative refinement for improved numerical accuracy
328pub struct IterativeRefinement;
329
330impl IterativeRefinement {
331    /// Perform iterative refinement on a linear system solution
332    pub fn refine_solution(
333        a: &Array2<f64>,
334        b: &Array1<f64>,
335        x: &Array1<f64>,
336        max_iter: usize,
337        tol: f64,
338    ) -> Result<Array1<f64>> {
339        let mut x_refined = x.clone();
340
341        for _iter in 0..max_iter {
342            // Compute residual: r = b - A*x
343            let residual = b - &a.dot(&x_refined);
344
345            // Check convergence
346            let residual_norm = residual.mapv(|x| x * x).sum().sqrt();
347            if residual_norm < tol {
348                break;
349            }
350
351            // Solve A*dx = r for correction
352            let dx = KernelOps::invert_using_cholesky(a)?.dot(&residual);
353
354            // Update solution
355            x_refined = &x_refined + &dx;
356        }
357
358        Ok(x_refined)
359    }
360}
361
362/// Specialized solvers for specific matrix structures
363pub struct SpecializedSolvers;
364
365impl SpecializedSolvers {
366    /// Solve system with Kronecker product structure
367    pub fn solve_kronecker(
368        a1: &Array2<f64>,
369        a2: &Array2<f64>,
370        b: &Array2<f64>,
371    ) -> Result<Array2<f64>> {
372        // For system (A2 ⊗ A1) vec(X) = vec(B)
373        // Solution is X = A1^(-1) * B * A2^(-T)
374
375        let a1_inv = KernelOps::invert_using_cholesky(a1)?;
376        let a2_inv = KernelOps::invert_using_cholesky(a2)?;
377
378        let x = a1_inv.dot(b).dot(&a2_inv.t());
379
380        Ok(x)
381    }
382
383    /// Solve system with block diagonal structure
384    pub fn solve_block_diagonal(
385        blocks: &[Array2<f64>],
386        rhs_blocks: &[Array1<f64>],
387    ) -> Result<Array1<f64>> {
388        if blocks.len() != rhs_blocks.len() {
389            return Err(SklearsError::InvalidInput(
390                "Number of blocks must match RHS blocks".to_string(),
391            ));
392        }
393
394        let mut solution_blocks = Vec::new();
395
396        for (block, rhs_block) in blocks.iter().zip(rhs_blocks.iter()) {
397            let block_inv = KernelOps::invert_using_cholesky(block)?;
398            let block_solution = block_inv.dot(rhs_block);
399            solution_blocks.push(block_solution);
400        }
401
402        // Concatenate solutions
403        let total_size: usize = solution_blocks.iter().map(|b| b.len()).sum();
404        let mut solution = Array1::zeros(total_size);
405        let mut offset = 0;
406
407        for block_solution in solution_blocks {
408            let block_size = block_solution.len();
409            solution
410                .slice_mut(s![offset..offset + block_size])
411                .assign(&block_solution);
412            offset += block_size;
413        }
414
415        Ok(solution)
416    }
417}
418
419#[allow(non_snake_case)]
420#[cfg(test)]
421mod tests {
422    use super::*;
423
424    use approx::assert_abs_diff_eq;
425    use scirs2_core::ndarray::array;
426
427    #[test]
428    fn test_direct_prediction() {
429        let k_star_m = array![[0.5, 0.3], [0.7, 0.2]];
430        let alpha = array![1.0, 2.0];
431
432        let result = ScalableInference::predict_direct(&k_star_m, &alpha).unwrap();
433        let expected = array![1.1, 1.1]; // 0.5*1.0 + 0.3*2.0, 0.7*1.0 + 0.2*2.0
434
435        for (a, b) in result.iter().zip(expected.iter()) {
436            assert_abs_diff_eq!(*a, *b, epsilon = 1e-10);
437        }
438    }
439
440    #[test]
441    fn test_diagonal_preconditioner() {
442        let matrix = array![[4.0, 1.0], [1.0, 3.0]];
443        let precond =
444            PreconditionerSetup::setup_preconditioner(&matrix, &PreconditionerType::Diagonal)
445                .unwrap();
446
447        // Should be diag([1/4, 1/3])
448        assert_abs_diff_eq!(precond[(0, 0)], 0.25, epsilon = 1e-10);
449        assert_abs_diff_eq!(precond[(1, 1)], 1.0 / 3.0, epsilon = 1e-10);
450        assert_abs_diff_eq!(precond[(0, 1)], 0.0, epsilon = 1e-10);
451    }
452
453    #[test]
454    fn test_pcg_solver() {
455        let a = array![[4.0, 1.0], [1.0, 3.0]];
456        let b = array![1.0, 2.0];
457
458        let solution =
459            PreconditionedCG::solve(&a, &b, 100, 1e-10, &PreconditionerType::Diagonal).unwrap();
460
461        // Verify A*x = b
462        let residual = &b - &a.dot(&solution);
463        let residual_norm = residual.mapv(|x| x * x).sum().sqrt();
464        assert!(residual_norm < 1e-8);
465    }
466
467    #[test]
468    fn test_lanczos_eigendecomposition() {
469        let matrix = array![[3.0, 1.0], [1.0, 2.0]];
470
471        let (eigenvals, eigenvecs) = LanczosMethod::eigendecomposition(&matrix, 2, 1e-10).unwrap();
472
473        assert_eq!(eigenvals.len(), 2);
474        assert_eq!(eigenvecs.shape(), &[2, 2]);
475
476        // Eigenvalues should be positive for positive definite matrix
477        assert!(eigenvals.iter().all(|&x| x > 0.0));
478    }
479
480    #[test]
481    fn test_iterative_refinement() {
482        let a = array![[2.0, 1.0], [1.0, 2.0]];
483        let b = array![3.0, 3.0];
484        let x_initial = array![1.0, 1.0]; // Exact solution
485
486        let x_refined =
487            IterativeRefinement::refine_solution(&a, &b, &x_initial, 10, 1e-12).unwrap();
488
489        // Solution should remain close to initial (which is exact)
490        for (a, b) in x_refined.iter().zip(x_initial.iter()) {
491            assert_abs_diff_eq!(*a, *b, epsilon = 1e-10);
492        }
493    }
494
495    #[test]
496    fn test_block_diagonal_solver() {
497        let block1 = array![[2.0, 0.0], [0.0, 3.0]];
498        let block2 = array![[1.0]];
499        let blocks = vec![block1, block2];
500
501        let rhs1 = array![4.0, 6.0];
502        let rhs2 = array![2.0];
503        let rhs_blocks = vec![rhs1, rhs2];
504
505        let solution = SpecializedSolvers::solve_block_diagonal(&blocks, &rhs_blocks).unwrap();
506
507        // Expected: [2.0, 2.0, 2.0] (4/2, 6/3, 2/1)
508        let expected = array![2.0, 2.0, 2.0];
509        assert_eq!(solution.len(), expected.len());
510
511        for (a, b) in solution.iter().zip(expected.iter()) {
512            assert_abs_diff_eq!(*a, *b, epsilon = 1e-5);
513        }
514    }
515}