sklears_kernel_approximation/sparse_gp/
mod.rs

1//! Sparse Gaussian Process implementations with comprehensive approximation methods
2//!
3//! This module provides a complete sparse GP framework with multiple approximation methods,
4//! SIMD acceleration, scalable inference, and structured kernel interpolation.
5
6pub mod approximations;
7pub mod core;
8pub mod inference;
9pub mod kernels;
10pub mod simd_operations;
11pub mod ski;
12pub mod variational;
13
14// Re-export main types and traits
15pub use approximations::{InducingPointSelector, SparseApproximationMethods};
16pub use core::*;
17pub use inference::{LanczosMethod, PreconditionedCG, ScalableInference};
18pub use kernels::{KernelOps, MaternKernel, RBFKernel, SparseKernel};
19pub use simd_operations::simd_sparse_gp;
20pub use ski::{FittedTensorSKI, TensorSKI};
21pub use variational::{StochasticVariationalInference, VariationalFreeEnergy};
22
23use scirs2_core::ndarray::{Array1, Array2};
24use scirs2_core::random::essentials::Normal as RandNormal;
25use scirs2_core::random::Distribution;
26use scirs2_core::random::{thread_rng, Rng};
27use sklears_core::error::{Result, SklearsError};
28use sklears_core::traits::{Fit, Predict};
29
30/// Main sparse Gaussian Process implementation
31impl<K: SparseKernel> SparseGaussianProcess<K> {
32    /// Create new sparse Gaussian Process with specified inducing points and kernel
33    pub fn new(num_inducing: usize, kernel: K) -> Self {
34        Self {
35            num_inducing,
36            kernel,
37            approximation: SparseApproximation::FullyIndependentConditional,
38            inducing_strategy: InducingPointStrategy::KMeans,
39            noise_variance: 1e-6,
40            max_iter: 100,
41            tol: 1e-6,
42        }
43    }
44
45    /// Select inducing points based on the configured strategy
46    pub fn select_inducing_points(&self, x: &Array2<f64>) -> Result<Array2<f64>> {
47        InducingPointSelector::select_points(
48            &self.inducing_strategy,
49            x,
50            self.num_inducing,
51            &self.kernel,
52        )
53    }
54
55    /// Fit the sparse GP model using the configured approximation method
56    fn fit_approximation(
57        &self,
58        x: &Array2<f64>,
59        y: &Array1<f64>,
60        inducing_points: &Array2<f64>,
61    ) -> Result<(Array1<f64>, Array2<f64>, Option<VariationalParams>)> {
62        match &self.approximation {
63            SparseApproximation::SubsetOfRegressors => {
64                let (alpha, k_mm_inv) = SparseApproximationMethods::fit_sor(
65                    x,
66                    y,
67                    inducing_points,
68                    &self.kernel,
69                    self.noise_variance,
70                )?;
71                Ok((alpha, k_mm_inv, None))
72            }
73
74            SparseApproximation::FullyIndependentConditional => {
75                let (alpha, k_mm_inv) = SparseApproximationMethods::fit_fic(
76                    x,
77                    y,
78                    inducing_points,
79                    &self.kernel,
80                    self.noise_variance,
81                )?;
82                Ok((alpha, k_mm_inv, None))
83            }
84
85            SparseApproximation::PartiallyIndependentConditional { block_size } => {
86                let (alpha, k_mm_inv) = SparseApproximationMethods::fit_pic(
87                    x,
88                    y,
89                    inducing_points,
90                    &self.kernel,
91                    self.noise_variance,
92                    *block_size,
93                )?;
94                Ok((alpha, k_mm_inv, None))
95            }
96
97            SparseApproximation::VariationalFreeEnergy {
98                whitened,
99                natural_gradients,
100            } => {
101                let (alpha, k_mm_inv, vfe_params) = VariationalFreeEnergy::fit(
102                    x,
103                    y,
104                    inducing_points,
105                    &self.kernel,
106                    self.noise_variance,
107                    *whitened,
108                    *natural_gradients,
109                    self.max_iter,
110                    self.tol,
111                )?;
112                Ok((alpha, k_mm_inv, Some(vfe_params)))
113            }
114        }
115    }
116}
117
118/// Fit implementation for sparse GP
119impl<K: SparseKernel> Fit<Array2<f64>, Array1<f64>> for SparseGaussianProcess<K> {
120    type Fitted = FittedSparseGP<K>;
121
122    fn fit(self, x: &Array2<f64>, y: &Array1<f64>) -> Result<Self::Fitted> {
123        // Validate input dimensions
124        if x.nrows() != y.len() {
125            return Err(SklearsError::InvalidInput(
126                "Number of samples must match between X and y".to_string(),
127            ));
128        }
129
130        if self.num_inducing > x.nrows() {
131            return Err(SklearsError::InvalidInput(
132                "Number of inducing points cannot exceed number of data points".to_string(),
133            ));
134        }
135
136        // Select inducing points
137        let inducing_points = self.select_inducing_points(x)?;
138
139        // Validate inducing points configuration
140        utils::validate_inducing_points(self.num_inducing, x.ncols(), &self.inducing_strategy)?;
141
142        // Fit using the specified approximation method
143        let (alpha, k_mm_inv, variational_params) =
144            self.fit_approximation(x, y, &inducing_points)?;
145
146        Ok(FittedSparseGP {
147            inducing_points,
148            kernel: self.kernel,
149            approximation: self.approximation,
150            alpha,
151            k_mm_inv,
152            noise_variance: self.noise_variance,
153            variational_params,
154        })
155    }
156}
157
158/// Prediction implementation for fitted sparse GP
159impl<K: SparseKernel> Predict<Array2<f64>, Array1<f64>> for FittedSparseGP<K> {
160    fn predict(&self, x: &Array2<f64>) -> Result<Array1<f64>> {
161        let k_star_m = self.kernel.kernel_matrix(x, &self.inducing_points);
162
163        // Use SIMD-accelerated prediction when available
164        let predictions = simd_sparse_gp::simd_posterior_mean(&k_star_m, &self.alpha);
165
166        Ok(predictions)
167    }
168}
169
170impl<K: SparseKernel> FittedSparseGP<K> {
171    /// Predict with uncertainty quantification
172    pub fn predict_with_variance(&self, x: &Array2<f64>) -> Result<(Array1<f64>, Array1<f64>)> {
173        let k_star_m = self.kernel.kernel_matrix(x, &self.inducing_points);
174
175        // Use SIMD-accelerated posterior mean computation
176        let mean = simd_sparse_gp::simd_posterior_mean(&k_star_m, &self.alpha);
177
178        // SIMD-accelerated predictive variance computation
179        let v = self.k_mm_inv.dot(&k_star_m.t());
180        let k_star_star = self.kernel.kernel_diagonal(x);
181        let variance = simd_sparse_gp::simd_posterior_variance(&k_star_star, &v);
182
183        Ok((mean, variance))
184    }
185
186    /// Scalable prediction using different inference methods
187    pub fn predict_scalable(
188        &self,
189        x: &Array2<f64>,
190        method: ScalableInferenceMethod,
191    ) -> Result<Array1<f64>> {
192        let k_star_m = self.kernel.kernel_matrix(x, &self.inducing_points);
193
194        ScalableInference::predict(
195            &method,
196            &k_star_m,
197            &self.inducing_points,
198            &self.alpha,
199            &self.kernel,
200            self.noise_variance,
201        )
202    }
203
204    /// Compute log marginal likelihood for model selection
205    pub fn log_marginal_likelihood(&self) -> Result<f64> {
206        if let Some(vfe_params) = &self.variational_params {
207            // Use ELBO as approximation to log marginal likelihood
208            Ok(vfe_params.elbo)
209        } else {
210            // Compute approximate log marginal likelihood for other methods
211            let m = self.inducing_points.nrows();
212
213            // Log determinant from inverse (simplified)
214            let log_det = self
215                .k_mm_inv
216                .diag()
217                .mapv(|x| if x > 1e-10 { -x.ln() } else { 23.0 })
218                .sum();
219
220            // Data fit term
221            let data_fit = self.alpha.dot(&self.alpha);
222
223            // Marginal likelihood approximation
224            let log_ml = -0.5 * (data_fit + log_det + m as f64 * (2.0 * std::f64::consts::PI).ln());
225
226            Ok(log_ml)
227        }
228    }
229
230    /// Sample from the posterior predictive distribution
231    pub fn sample_posterior(&self, x: &Array2<f64>, num_samples: usize) -> Result<Array2<f64>> {
232        let (mean, var) = self.predict_with_variance(x)?;
233        let n_test = x.nrows();
234
235        let mut samples = Array2::zeros((num_samples, n_test));
236        let mut rng = thread_rng();
237
238        for i in 0..num_samples {
239            for j in 0..n_test {
240                let std_dev = var[j].sqrt();
241                let normal = RandNormal::new(mean[j], std_dev).unwrap();
242                samples[(i, j)] = rng.sample(normal);
243            }
244        }
245
246        Ok(samples)
247    }
248
249    /// Compute acquisition function for active learning
250    pub fn acquisition_function(
251        &self,
252        x: &Array2<f64>,
253        acquisition_type: &str,
254    ) -> Result<Array1<f64>> {
255        let (mean, var) = self.predict_with_variance(x)?;
256
257        match acquisition_type {
258            "variance" => Ok(var),
259            "entropy" => {
260                // Predictive entropy: 0.5 * log(2πe * σ²)
261                let entropy =
262                    var.mapv(|v| 0.5 * (2.0 * std::f64::consts::PI * std::f64::consts::E * v).ln());
263                Ok(entropy)
264            }
265            "upper_confidence_bound" => {
266                // Upper confidence bound with β = 2
267                let ucb = &mean + 2.0 * &var.mapv(|v| v.sqrt());
268                Ok(ucb)
269            }
270            _ => Err(SklearsError::InvalidInput(format!(
271                "Unknown acquisition function: {}",
272                acquisition_type
273            ))),
274        }
275    }
276}
277
278/// Utility functions and helpers
279pub mod utils {
280    pub use super::core::utils::*;
281    use super::*;
282
283    /// Compute effective degrees of freedom for sparse GP
284    pub fn effective_degrees_of_freedom<K: SparseKernel>(
285        fitted_gp: &FittedSparseGP<K>,
286        x: &Array2<f64>,
287    ) -> Result<f64> {
288        let k_nm = fitted_gp
289            .kernel
290            .kernel_matrix(x, &fitted_gp.inducing_points);
291        let k_mm_inv_k_mn = fitted_gp.k_mm_inv.dot(&k_nm.t());
292
293        // Trace of the hat matrix approximation
294        let mut trace = 0.0;
295        for i in 0..k_nm.nrows() {
296            trace += k_nm.row(i).dot(&k_mm_inv_k_mn.column(i));
297        }
298
299        Ok(trace)
300    }
301
302    /// Compute model complexity penalty
303    pub fn model_complexity_penalty<K: SparseKernel>(fitted_gp: &FittedSparseGP<K>) -> f64 {
304        // Simplified complexity penalty based on number of inducing points
305        fitted_gp.inducing_points.nrows() as f64 * (fitted_gp.inducing_points.nrows() as f64).ln()
306    }
307
308    /// Optimize hyperparameters using gradient-based methods
309    pub fn optimize_hyperparameters<K: SparseKernel>(
310        sparse_gp: &mut SparseGaussianProcess<K>,
311        x: &Array2<f64>,
312        y: &Array1<f64>,
313        max_iter: usize,
314        learning_rate: f64,
315    ) -> Result<f64> {
316        let mut best_likelihood = f64::NEG_INFINITY;
317
318        for _iter in 0..max_iter {
319            // Fit current model
320            let fitted = sparse_gp.clone().fit(x, y)?;
321
322            // Compute log marginal likelihood
323            let log_ml = fitted.log_marginal_likelihood()?;
324
325            if log_ml > best_likelihood {
326                best_likelihood = log_ml;
327            }
328
329            // Compute gradients (simplified - would use automatic differentiation)
330            let gradients = sparse_gp
331                .kernel
332                .parameter_gradients(&fitted.inducing_points, &fitted.inducing_points);
333
334            // Update kernel parameters (simplified gradient step)
335            let mut params = sparse_gp.kernel.parameters();
336            for (i, grad_matrix) in gradients.iter().enumerate() {
337                let grad_scalar =
338                    grad_matrix.sum() / (grad_matrix.nrows() * grad_matrix.ncols()) as f64;
339                params[i] += learning_rate * grad_scalar;
340                params[i] = params[i].max(1e-6); // Ensure positivity
341            }
342            sparse_gp.kernel.set_parameters(&params);
343        }
344
345        Ok(best_likelihood)
346    }
347}