sklears_kernel_approximation/sparse_gp/
inference.rs

1//! Scalable inference methods for sparse Gaussian Processes
2//!
3//! This module implements various scalable inference algorithms including
4//! direct matrix inversion, Preconditioned Conjugate Gradient (PCG),
5//! and Lanczos eigendecomposition methods.
6
7use crate::sparse_gp::core::*;
8use crate::sparse_gp::kernels::{KernelOps, SparseKernel};
9use scirs2_core::ndarray::ndarray_linalg::SVD;
10use scirs2_core::ndarray::s;
11use scirs2_core::ndarray::{Array1, Array2};
12use scirs2_core::random::essentials::Uniform as RandUniform;
13use scirs2_core::random::Distribution;
14use scirs2_core::random::{thread_rng, Rng};
15use sklears_core::error::{Result, SklearsError};
16
17/// Scalable inference method implementations
18pub struct ScalableInference;
19
20impl ScalableInference {
21    /// Perform scalable prediction using the specified method
22    pub fn predict<K: SparseKernel>(
23        method: &ScalableInferenceMethod,
24        k_star_m: &Array2<f64>,
25        inducing_points: &Array2<f64>,
26        alpha: &Array1<f64>,
27        kernel: &K,
28        noise_variance: f64,
29    ) -> Result<Array1<f64>> {
30        match method {
31            ScalableInferenceMethod::Direct => Self::predict_direct(k_star_m, alpha),
32            ScalableInferenceMethod::PreconditionedCG {
33                max_iter,
34                tol,
35                preconditioner,
36            } => Self::predict_with_pcg(
37                k_star_m,
38                inducing_points,
39                kernel,
40                noise_variance,
41                *max_iter,
42                *tol,
43                preconditioner,
44            ),
45            ScalableInferenceMethod::Lanczos { num_vectors, tol } => Self::predict_with_lanczos(
46                k_star_m,
47                inducing_points,
48                kernel,
49                noise_variance,
50                *num_vectors,
51                *tol,
52            ),
53        }
54    }
55
56    /// Direct prediction using precomputed alpha
57    fn predict_direct(k_star_m: &Array2<f64>, alpha: &Array1<f64>) -> Result<Array1<f64>> {
58        Ok(k_star_m.dot(alpha))
59    }
60
61    /// Prediction using Preconditioned Conjugate Gradient
62    fn predict_with_pcg<K: SparseKernel>(
63        k_star_m: &Array2<f64>,
64        inducing_points: &Array2<f64>,
65        kernel: &K,
66        noise_variance: f64,
67        max_iter: usize,
68        tol: f64,
69        preconditioner: &PreconditionerType,
70    ) -> Result<Array1<f64>> {
71        let m = inducing_points.nrows();
72
73        // Reconstruct the system matrix A = K_mm + noise
74        let mut a_matrix = kernel.kernel_matrix(inducing_points, inducing_points);
75        for i in 0..m {
76            a_matrix[(i, i)] += noise_variance;
77        }
78
79        // Right-hand side for prediction
80        let rhs = k_star_m.t().dot(&Array1::ones(k_star_m.nrows()));
81
82        // Solve A * x = rhs using PCG
83        let solution = PreconditionedCG::solve(&a_matrix, &rhs, max_iter, tol, preconditioner)?;
84
85        Ok(k_star_m.dot(&solution))
86    }
87
88    /// Prediction using Lanczos method
89    fn predict_with_lanczos<K: SparseKernel>(
90        k_star_m: &Array2<f64>,
91        inducing_points: &Array2<f64>,
92        kernel: &K,
93        noise_variance: f64,
94        num_vectors: usize,
95        tol: f64,
96    ) -> Result<Array1<f64>> {
97        // Reconstruct kernel matrix
98        let k_mm = kernel.kernel_matrix(inducing_points, inducing_points);
99
100        // Apply Lanczos algorithm for eigendecomposition
101        let (eigenvals, eigenvecs) = LanczosMethod::eigendecomposition(&k_mm, num_vectors, tol)?;
102
103        // Use eigendecomposition for prediction
104        // This is a simplified version - full implementation would use proper alpha reconstruction
105        let k_star_transformed = k_star_m.dot(&eigenvecs);
106
107        // Apply eigenvalue scaling (simplified)
108        let scaled_eigenvals = eigenvals.mapv(|x| {
109            if x > 1e-10 {
110                1.0 / (x + noise_variance)
111            } else {
112                0.0
113            }
114        });
115
116        // Compute prediction (simplified)
117        let prediction = k_star_transformed.dot(&scaled_eigenvals);
118        Ok(prediction)
119    }
120}
121
122/// Preconditioned Conjugate Gradient solver
123pub struct PreconditionedCG;
124
125impl PreconditionedCG {
126    /// Solve Ax = b using Preconditioned Conjugate Gradient
127    pub fn solve(
128        a: &Array2<f64>,
129        b: &Array1<f64>,
130        max_iter: usize,
131        tol: f64,
132        preconditioner: &PreconditionerType,
133    ) -> Result<Array1<f64>> {
134        let n = a.nrows();
135        let mut x = Array1::zeros(n);
136        let mut r = b - &a.dot(&x);
137
138        // Setup preconditioner
139        let precond_matrix = PreconditionerSetup::setup_preconditioner(a, preconditioner)?;
140        let mut z = PreconditionerSetup::apply_preconditioner(&precond_matrix, &r, preconditioner)?;
141        let mut p = z.clone();
142        let mut rsold = r.dot(&z);
143
144        for iter in 0..max_iter {
145            let ap = a.dot(&p);
146            let alpha = rsold / p.dot(&ap);
147
148            x = &x + alpha * &p;
149            r = &r - alpha * &ap;
150
151            // Check convergence
152            let rnorm = r.mapv(|x| x * x).sum().sqrt();
153            if rnorm < tol {
154                break;
155            }
156
157            z = PreconditionerSetup::apply_preconditioner(&precond_matrix, &r, preconditioner)?;
158            let rsnew = r.dot(&z);
159            let beta = rsnew / rsold;
160
161            p = &z + beta * &p;
162            rsold = rsnew;
163        }
164
165        Ok(x)
166    }
167}
168
169/// Preconditioner setup and application
170pub struct PreconditionerSetup;
171
172impl PreconditionerSetup {
173    /// Setup preconditioner matrix
174    pub fn setup_preconditioner(
175        a: &Array2<f64>,
176        preconditioner: &PreconditionerType,
177    ) -> Result<Array2<f64>> {
178        match preconditioner {
179            PreconditionerType::None => Ok(Array2::eye(a.nrows())),
180
181            PreconditionerType::Diagonal => {
182                // Diagonal preconditioner M = diag(A)
183                let diag_inv = a
184                    .diag()
185                    .mapv(|x| if x.abs() > 1e-12 { 1.0 / x } else { 1.0 });
186                Ok(Array2::from_diag(&diag_inv))
187            }
188
189            PreconditionerType::IncompleteCholesky { fill_factor: _ } => {
190                // Simplified incomplete Cholesky (just return diagonal for now)
191                let diag_inv = a
192                    .diag()
193                    .mapv(|x| if x > 1e-12 { 1.0 / x.sqrt() } else { 1.0 });
194                Ok(Array2::from_diag(&diag_inv))
195            }
196
197            PreconditionerType::SSOR { omega } => {
198                // SSOR preconditioner setup
199                let n = a.nrows();
200                let mut d = Array2::zeros((n, n));
201                let mut l = Array2::zeros((n, n));
202
203                // Extract diagonal and lower triangular parts
204                for i in 0..n {
205                    d[(i, i)] = a[(i, i)];
206                    for j in 0..i {
207                        l[(i, j)] = a[(i, j)];
208                    }
209                }
210
211                // SSOR matrix: M = (D + omega*L) * D^(-1) * (D + omega*L)^T
212                let d_inv =
213                    Array2::from_diag(
214                        &d.diag()
215                            .mapv(|x| if x.abs() > 1e-12 { 1.0 / x } else { 1.0 }),
216                    );
217                let dl = &d + *omega * &l;
218                Ok(dl.dot(&d_inv).dot(&dl.t()))
219            }
220        }
221    }
222
223    /// Apply preconditioner to vector
224    pub fn apply_preconditioner(
225        precond: &Array2<f64>,
226        vector: &Array1<f64>,
227        preconditioner: &PreconditionerType,
228    ) -> Result<Array1<f64>> {
229        match preconditioner {
230            PreconditionerType::None => Ok(vector.clone()),
231            PreconditionerType::Diagonal => Ok(&precond.diag().to_owned() * vector),
232            _ => Ok(precond.dot(vector)),
233        }
234    }
235}
236
237/// Lanczos eigendecomposition method
238pub struct LanczosMethod;
239
240impl LanczosMethod {
241    /// Perform Lanczos eigendecomposition
242    pub fn eigendecomposition(
243        matrix: &Array2<f64>,
244        num_vectors: usize,
245        tol: f64,
246    ) -> Result<(Array1<f64>, Array2<f64>)> {
247        let n = matrix.nrows();
248        let m = num_vectors.min(n);
249
250        // Initialize Lanczos vectors
251        let mut q_matrix = Array2::zeros((n, m));
252        let mut alpha_vec = Array1::zeros(m);
253        let mut beta_vec = Array1::zeros(m);
254
255        // Random starting vector
256        let mut rng = thread_rng();
257        let uniform = RandUniform::new(-1.0, 1.0).unwrap();
258        let mut q_0 = Array1::zeros(n);
259        for i in 0..n {
260            q_0[i] = rng.sample(uniform);
261        }
262        let q_0_norm = (q_0.mapv(|x| x * x).sum() as f64).sqrt();
263        q_0 = q_0 / q_0_norm;
264        q_matrix.column_mut(0).assign(&q_0);
265
266        let mut beta = 0.0;
267        let mut q_prev = Array1::zeros(n);
268
269        for j in 0..m {
270            let q_j = q_matrix.column(j).to_owned();
271            let mut w: Array1<f64> = matrix.dot(&q_j) - beta * &q_prev;
272
273            alpha_vec[j] = q_j.dot(&w);
274            w = &w - alpha_vec[j] * &q_j;
275
276            beta = w.mapv(|x| x * x).sum().sqrt();
277            if j < m - 1 {
278                beta_vec[j] = beta;
279                if beta < tol {
280                    break;
281                }
282                q_matrix.column_mut(j + 1).assign(&(&w / beta));
283            }
284
285            q_prev = q_j;
286        }
287
288        // Solve tridiagonal eigenvalue problem
289        let (eigenvals, eigenvecs_tri) = TridiagonalEigenSolver::solve(&alpha_vec, &beta_vec)?;
290
291        // Transform back to original space
292        let eigenvecs = q_matrix.dot(&eigenvecs_tri);
293
294        Ok((eigenvals, eigenvecs))
295    }
296}
297
298/// Tridiagonal eigenvalue problem solver
299pub struct TridiagonalEigenSolver;
300
301impl TridiagonalEigenSolver {
302    /// Solve tridiagonal eigenvalue problem using simplified QR algorithm
303    pub fn solve(alpha: &Array1<f64>, beta: &Array1<f64>) -> Result<(Array1<f64>, Array2<f64>)> {
304        let n = alpha.len();
305
306        // Build tridiagonal matrix
307        let mut tri_matrix = Array2::zeros((n, n));
308        for i in 0..n {
309            tri_matrix[(i, i)] = alpha[i];
310            if i < n - 1 {
311                tri_matrix[(i, i + 1)] = beta[i];
312                tri_matrix[(i + 1, i)] = beta[i];
313            }
314        }
315
316        // Use SVD for eigendecomposition (simplified approach)
317        let (u, s, _vt) = tri_matrix
318            .svd(true, true)
319            .map_err(|e| SklearsError::NumericalError(format!("SVD failed: {:?}", e)))?;
320        let u =
321            u.ok_or_else(|| SklearsError::NumericalError("U matrix not computed".to_string()))?;
322
323        Ok((s, u))
324    }
325}
326
327/// Iterative refinement for improved numerical accuracy
328pub struct IterativeRefinement;
329
330impl IterativeRefinement {
331    /// Perform iterative refinement on a linear system solution
332    pub fn refine_solution(
333        a: &Array2<f64>,
334        b: &Array1<f64>,
335        x: &Array1<f64>,
336        max_iter: usize,
337        tol: f64,
338    ) -> Result<Array1<f64>> {
339        let mut x_refined = x.clone();
340
341        for _iter in 0..max_iter {
342            // Compute residual: r = b - A*x
343            let residual = b - &a.dot(&x_refined);
344
345            // Check convergence
346            let residual_norm = residual.mapv(|x| x * x).sum().sqrt();
347            if residual_norm < tol {
348                break;
349            }
350
351            // Solve A*dx = r for correction
352            let dx = KernelOps::invert_using_cholesky(a)?.dot(&residual);
353
354            // Update solution
355            x_refined = &x_refined + &dx;
356        }
357
358        Ok(x_refined)
359    }
360}
361
362/// Specialized solvers for specific matrix structures
363pub struct SpecializedSolvers;
364
365impl SpecializedSolvers {
366    /// Solve system with Kronecker product structure
367    pub fn solve_kronecker(
368        a1: &Array2<f64>,
369        a2: &Array2<f64>,
370        b: &Array2<f64>,
371    ) -> Result<Array2<f64>> {
372        // For system (A2 ⊗ A1) vec(X) = vec(B)
373        // Solution is X = A1^(-1) * B * A2^(-T)
374
375        let a1_inv = KernelOps::invert_using_cholesky(a1)?;
376        let a2_inv = KernelOps::invert_using_cholesky(a2)?;
377
378        let x = a1_inv.dot(b).dot(&a2_inv.t());
379
380        Ok(x)
381    }
382
383    /// Solve system with block diagonal structure
384    pub fn solve_block_diagonal(
385        blocks: &[Array2<f64>],
386        rhs_blocks: &[Array1<f64>],
387    ) -> Result<Array1<f64>> {
388        if blocks.len() != rhs_blocks.len() {
389            return Err(SklearsError::InvalidInput(
390                "Number of blocks must match RHS blocks".to_string(),
391            ));
392        }
393
394        let mut solution_blocks = Vec::new();
395
396        for (block, rhs_block) in blocks.iter().zip(rhs_blocks.iter()) {
397            let block_inv = KernelOps::invert_using_cholesky(block)?;
398            let block_solution = block_inv.dot(rhs_block);
399            solution_blocks.push(block_solution);
400        }
401
402        // Concatenate solutions
403        let total_size: usize = solution_blocks.iter().map(|b| b.len()).sum();
404        let mut solution = Array1::zeros(total_size);
405        let mut offset = 0;
406
407        for block_solution in solution_blocks {
408            let block_size = block_solution.len();
409            solution
410                .slice_mut(s![offset..offset + block_size])
411                .assign(&block_solution);
412            offset += block_size;
413        }
414
415        Ok(solution)
416    }
417}
418
419#[allow(non_snake_case)]
420#[cfg(test)]
421mod tests {
422    use super::*;
423
424    use approx::assert_abs_diff_eq;
425    use scirs2_core::ndarray::array;
426
427    #[test]
428    fn test_direct_prediction() {
429        let k_star_m = array![[0.5, 0.3], [0.7, 0.2]];
430        let alpha = array![1.0, 2.0];
431
432        let result = ScalableInference::predict_direct(&k_star_m, &alpha).unwrap();
433        let expected = array![1.1, 1.1]; // 0.5*1.0 + 0.3*2.0, 0.7*1.0 + 0.2*2.0
434
435        for (a, b) in result.iter().zip(expected.iter()) {
436            assert_abs_diff_eq!(*a, *b, epsilon = 1e-10);
437        }
438    }
439
440    #[test]
441    fn test_diagonal_preconditioner() {
442        let matrix = array![[4.0, 1.0], [1.0, 3.0]];
443        let precond =
444            PreconditionerSetup::setup_preconditioner(&matrix, &PreconditionerType::Diagonal)
445                .unwrap();
446
447        // Should be diag([1/4, 1/3])
448        assert_abs_diff_eq!(precond[(0, 0)], 0.25, epsilon = 1e-10);
449        assert_abs_diff_eq!(precond[(1, 1)], 1.0 / 3.0, epsilon = 1e-10);
450        assert_abs_diff_eq!(precond[(0, 1)], 0.0, epsilon = 1e-10);
451    }
452
453    #[test]
454    fn test_pcg_solver() {
455        let a = array![[4.0, 1.0], [1.0, 3.0]];
456        let b = array![1.0, 2.0];
457
458        let solution =
459            PreconditionedCG::solve(&a, &b, 100, 1e-10, &PreconditionerType::Diagonal).unwrap();
460
461        // Verify A*x = b
462        let residual = &b - &a.dot(&solution);
463        let residual_norm = residual.mapv(|x| x * x).sum().sqrt();
464        assert!(residual_norm < 1e-8);
465    }
466
467    #[test]
468    fn test_lanczos_eigendecomposition() {
469        let matrix = array![[3.0, 1.0], [1.0, 2.0]];
470
471        let (eigenvals, eigenvecs) = LanczosMethod::eigendecomposition(&matrix, 2, 1e-10).unwrap();
472
473        assert_eq!(eigenvals.len(), 2);
474        assert_eq!(eigenvecs.shape(), &[2, 2]);
475
476        // Eigenvalues should be positive for positive definite matrix
477        assert!(eigenvals.iter().all(|&x| x > 0.0));
478    }
479
480    #[test]
481    fn test_iterative_refinement() {
482        let a = array![[2.0, 1.0], [1.0, 2.0]];
483        let b = array![3.0, 3.0];
484        let x_initial = array![1.0, 1.0]; // Exact solution
485
486        let x_refined =
487            IterativeRefinement::refine_solution(&a, &b, &x_initial, 10, 1e-12).unwrap();
488
489        // Solution should remain close to initial (which is exact)
490        for (a, b) in x_refined.iter().zip(x_initial.iter()) {
491            assert_abs_diff_eq!(*a, *b, epsilon = 1e-10);
492        }
493    }
494
495    #[test]
496    fn test_block_diagonal_solver() {
497        let block1 = array![[2.0, 0.0], [0.0, 3.0]];
498        let block2 = array![[1.0]];
499        let blocks = vec![block1, block2];
500
501        let rhs1 = array![4.0, 6.0];
502        let rhs2 = array![2.0];
503        let rhs_blocks = vec![rhs1, rhs2];
504
505        let solution = SpecializedSolvers::solve_block_diagonal(&blocks, &rhs_blocks).unwrap();
506
507        // Expected: [2.0, 2.0, 2.0] (4/2, 6/3, 2/1)
508        let expected = array![2.0, 2.0, 2.0];
509        assert_eq!(solution.len(), expected.len());
510
511        for (a, b) in solution.iter().zip(expected.iter()) {
512            assert_abs_diff_eq!(*a, *b, epsilon = 1e-5);
513        }
514    }
515}