sklears_kernel_approximation/
robust_kernels.rs

1//! Robust kernel methods with outlier resistance
2//!
3//! This module provides robust kernel approximation methods that are resistant
4//! to outliers and contamination in the data, including robust estimators,
5//! breakdown point analysis, and influence function diagnostics.
6
7use rayon::prelude::*;
8use scirs2_core::ndarray::{Array1, Array2, ArrayView1, Axis};
9use scirs2_core::random::essentials::Normal as RandNormal;
10use scirs2_core::random::rngs::StdRng as RealStdRng;
11use scirs2_core::random::seq::SliceRandom;
12use scirs2_core::random::Distribution;
13use scirs2_core::random::{thread_rng, Rng, SeedableRng};
14use sklears_core::error::Result;
15use sklears_core::traits::Fit;
16use std::collections::HashMap;
17
18/// Robust estimation method
19#[derive(Clone, Debug, PartialEq)]
20/// RobustEstimator
21pub enum RobustEstimator {
22    /// Huber M-estimator
23    Huber { delta: f64 },
24    /// Tukey bisquare estimator
25    Tukey { c: f64 },
26    /// Hampel estimator
27    Hampel { a: f64, b: f64, c: f64 },
28    /// Minimum Volume Ellipsoid (MVE)
29    MVE { alpha: f64 },
30    /// Minimum Covariance Determinant (MCD)
31    MCD { alpha: f64 },
32    /// S-estimator
33    SEstimator { breakdown_point: f64 },
34    /// MM-estimator
35    MMEstimator { efficiency: f64 },
36    /// L1-estimator (LAD regression)
37    L1,
38    /// Quantile regression estimator
39    Quantile { tau: f64 },
40}
41
42/// Robust loss function
43#[derive(Clone, Debug, PartialEq)]
44/// RobustLoss
45pub enum RobustLoss {
46    /// Huber loss
47    Huber { delta: f64 },
48    /// Epsilon-insensitive loss
49    EpsilonInsensitive { epsilon: f64 },
50    /// Tukey bisquare loss
51    Tukey { c: f64 },
52    /// Cauchy loss
53    Cauchy { sigma: f64 },
54    /// Welsch loss
55    Welsch { sigma: f64 },
56    /// Fair loss
57    Fair { c: f64 },
58    /// Logistic loss
59    Logistic { alpha: f64 },
60    /// Quantile loss
61    Quantile { tau: f64 },
62}
63
64/// Robust kernel configuration
65#[derive(Clone, Debug)]
66/// RobustKernelConfig
67pub struct RobustKernelConfig {
68    /// Robust estimator method
69    pub estimator: RobustEstimator,
70    /// Robust loss function
71    pub loss: RobustLoss,
72    /// Maximum number of iterations for robust estimation
73    pub max_iterations: usize,
74    /// Convergence tolerance
75    pub tolerance: f64,
76    /// Contamination fraction
77    pub contamination: f64,
78    /// Whether to use iteratively reweighted least squares
79    pub use_irls: bool,
80    /// Random state for reproducibility
81    pub random_state: Option<u64>,
82}
83
84impl Default for RobustKernelConfig {
85    fn default() -> Self {
86        Self {
87            estimator: RobustEstimator::Huber { delta: 1.345 },
88            loss: RobustLoss::Huber { delta: 1.345 },
89            max_iterations: 100,
90            tolerance: 1e-6,
91            contamination: 0.1,
92            use_irls: true,
93            random_state: None,
94        }
95    }
96}
97
98/// Robust RBF kernel sampler
99pub struct RobustRBFSampler {
100    n_components: usize,
101    gamma: f64,
102    config: RobustKernelConfig,
103    random_weights: Option<Array2<f64>>,
104    random_offset: Option<Array1<f64>>,
105    robust_weights: Option<Array1<f64>>,
106    outlier_mask: Option<Array1<bool>>,
107}
108
109impl RobustRBFSampler {
110    /// Create a new robust RBF sampler
111    pub fn new(n_components: usize) -> Self {
112        Self {
113            n_components,
114            gamma: 1.0,
115            config: RobustKernelConfig::default(),
116            random_weights: None,
117            random_offset: None,
118            robust_weights: None,
119            outlier_mask: None,
120        }
121    }
122
123    /// Set gamma parameter
124    pub fn gamma(mut self, gamma: f64) -> Self {
125        self.gamma = gamma;
126        self
127    }
128
129    /// Set robust configuration
130    pub fn with_config(mut self, config: RobustKernelConfig) -> Self {
131        self.config = config;
132        self
133    }
134
135    /// Fit the robust RBF sampler
136    pub fn fit(&mut self, x: &Array2<f64>) -> Result<()> {
137        let n_features = x.ncols();
138
139        // Initialize random weights
140        let normal = RandNormal::new(0.0, (2.0 * self.gamma).sqrt()).unwrap();
141        let mut rng = if let Some(seed) = self.config.random_state {
142            RealStdRng::seed_from_u64(seed)
143        } else {
144            RealStdRng::from_seed(thread_rng().gen())
145        };
146
147        self.random_weights = Some(Array2::from_shape_fn(
148            (n_features, self.n_components),
149            |_| rng.sample(normal),
150        ));
151
152        self.random_offset = Some(Array1::from_shape_fn(self.n_components, |_| {
153            rng.gen_range(0.0..2.0 * std::f64::consts::PI)
154        }));
155
156        // Detect outliers and compute robust weights
157        self.detect_outliers(x)?;
158        self.compute_robust_weights(x)?;
159
160        Ok(())
161    }
162
163    /// Transform data using robust RBF features
164    pub fn transform(&self, x: &Array2<f64>) -> Result<Array2<f64>> {
165        let weights = self.random_weights.as_ref().ok_or("Model not fitted")?;
166        let offset = self.random_offset.as_ref().ok_or("Model not fitted")?;
167
168        // Compute projection: X * W + b
169        let projection = x.dot(weights) + offset;
170
171        // Apply cosine transformation with robust weights
172        let mut transformed =
173            projection.mapv(|x| (x * (2.0 / self.n_components as f64).sqrt()).cos());
174
175        // Apply robust weighting if available
176        if let Some(robust_weights) = &self.robust_weights {
177            for (mut row, &weight) in transformed
178                .rows_mut()
179                .into_iter()
180                .zip(robust_weights.iter())
181            {
182                row *= weight;
183            }
184        }
185
186        Ok(transformed)
187    }
188
189    /// Detect outliers using robust methods
190    fn detect_outliers(&mut self, x: &Array2<f64>) -> Result<()> {
191        match &self.config.estimator {
192            RobustEstimator::MVE { alpha } => {
193                self.outlier_mask = Some(self.detect_outliers_mve(x, *alpha)?);
194            }
195            RobustEstimator::MCD { alpha } => {
196                self.outlier_mask = Some(self.detect_outliers_mcd(x, *alpha)?);
197            }
198            RobustEstimator::Huber { delta } => {
199                self.outlier_mask = Some(self.detect_outliers_huber(x, *delta)?);
200            }
201            RobustEstimator::Tukey { c } => {
202                self.outlier_mask = Some(self.detect_outliers_tukey(x, *c)?);
203            }
204            _ => {
205                // Use default outlier detection based on Mahalanobis distance
206                self.outlier_mask = Some(self.detect_outliers_mahalanobis(x)?);
207            }
208        }
209
210        Ok(())
211    }
212
213    /// Detect outliers using Minimum Volume Ellipsoid
214    fn detect_outliers_mve(&self, x: &Array2<f64>, alpha: f64) -> Result<Array1<bool>> {
215        let n_samples = x.nrows();
216        let n_features = x.ncols();
217        let h = ((n_samples as f64 * alpha).floor() as usize).max(n_features + 1);
218
219        let mut best_volume = f64::INFINITY;
220        let mut best_subset = Vec::new();
221        let mut rng = thread_rng();
222
223        // Try multiple random subsets
224        for _ in 0..100 {
225            let mut subset: Vec<usize> = (0..n_samples).collect();
226            subset.shuffle(&mut rng);
227            subset.truncate(h);
228
229            // Compute covariance matrix for subset
230            let subset_data = self.extract_subset(x, &subset);
231            let (mean, cov) = self.compute_robust_statistics(&subset_data);
232
233            // Compute volume (determinant of covariance matrix)
234            let volume = self.compute_determinant(&cov);
235
236            if volume < best_volume {
237                best_volume = volume;
238                best_subset = subset;
239            }
240        }
241
242        // Mark outliers based on best subset
243        let mut outlier_mask = Array1::from_elem(n_samples, true);
244        for &idx in &best_subset {
245            outlier_mask[idx] = false;
246        }
247
248        Ok(outlier_mask)
249    }
250
251    /// Detect outliers using Minimum Covariance Determinant
252    fn detect_outliers_mcd(&self, x: &Array2<f64>, alpha: f64) -> Result<Array1<bool>> {
253        let n_samples = x.nrows();
254        let n_features = x.ncols();
255        let h = ((n_samples as f64 * alpha).floor() as usize).max(n_features + 1);
256
257        let mut best_determinant = f64::INFINITY;
258        let mut best_subset = Vec::new();
259        let mut rng = thread_rng();
260
261        // Try multiple random subsets
262        for _ in 0..100 {
263            let mut subset: Vec<usize> = (0..n_samples).collect();
264            subset.shuffle(&mut rng);
265            subset.truncate(h);
266
267            // Iteratively improve subset
268            for _ in 0..10 {
269                let subset_data = self.extract_subset(x, &subset);
270                let (mean, cov) = self.compute_robust_statistics(&subset_data);
271                let determinant = self.compute_determinant(&cov);
272
273                if determinant < best_determinant {
274                    best_determinant = determinant;
275                    best_subset = subset.clone();
276                }
277
278                // Update subset based on distances
279                let distances = self.compute_mahalanobis_distances(x, &mean, &cov);
280                let mut indexed_distances: Vec<(usize, f64)> =
281                    distances.iter().enumerate().map(|(i, &d)| (i, d)).collect();
282                indexed_distances.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
283
284                subset = indexed_distances.iter().take(h).map(|(i, _)| *i).collect();
285            }
286        }
287
288        // Mark outliers based on best subset
289        let mut outlier_mask = Array1::from_elem(n_samples, true);
290        for &idx in &best_subset {
291            outlier_mask[idx] = false;
292        }
293
294        Ok(outlier_mask)
295    }
296
297    /// Detect outliers using Huber estimator
298    fn detect_outliers_huber(&self, x: &Array2<f64>, delta: f64) -> Result<Array1<bool>> {
299        let n_samples = x.nrows();
300        let mut outlier_mask = Array1::from_elem(n_samples, false);
301
302        // Compute robust center and scale
303        let center = self.compute_huber_center(x, delta);
304        let scale = self.compute_huber_scale(x, &center, delta);
305
306        // Mark outliers based on Huber criterion
307        for i in 0..n_samples {
308            let distance = self.compute_huber_distance(&x.row(i), &center, delta);
309            if distance > 3.0 * scale {
310                outlier_mask[i] = true;
311            }
312        }
313
314        Ok(outlier_mask)
315    }
316
317    /// Detect outliers using Tukey bisquare estimator
318    fn detect_outliers_tukey(&self, x: &Array2<f64>, c: f64) -> Result<Array1<bool>> {
319        let n_samples = x.nrows();
320        let mut outlier_mask = Array1::from_elem(n_samples, false);
321
322        // Compute robust center and scale
323        let center = self.compute_tukey_center(x, c);
324        let scale = self.compute_tukey_scale(x, &center, c);
325
326        // Mark outliers based on Tukey criterion
327        for i in 0..n_samples {
328            let distance = self.compute_tukey_distance(&x.row(i), &center, c);
329            if distance > 3.0 * scale {
330                outlier_mask[i] = true;
331            }
332        }
333
334        Ok(outlier_mask)
335    }
336
337    /// Detect outliers using Mahalanobis distance
338    fn detect_outliers_mahalanobis(&self, x: &Array2<f64>) -> Result<Array1<bool>> {
339        let n_samples = x.nrows();
340        let mut outlier_mask = Array1::from_elem(n_samples, false);
341
342        // Compute robust statistics
343        let (mean, cov) = self.compute_robust_statistics(x);
344        let distances = self.compute_mahalanobis_distances(x, &mean, &cov);
345
346        // Use chi-square threshold for outlier detection
347        let threshold = 3.0; // Approximately 99.7% confidence for normal distribution
348
349        for (i, &distance) in distances.iter().enumerate() {
350            if distance > threshold {
351                outlier_mask[i] = true;
352            }
353        }
354
355        Ok(outlier_mask)
356    }
357
358    /// Compute robust weights using IRLS
359    fn compute_robust_weights(&mut self, x: &Array2<f64>) -> Result<()> {
360        let n_samples = x.nrows();
361        let mut weights = Array1::ones(n_samples);
362
363        if self.config.use_irls {
364            for iteration in 0..self.config.max_iterations {
365                let old_weights = weights.clone();
366
367                // Update weights based on robust loss function
368                for i in 0..n_samples {
369                    let residual = self.compute_residual(&x.row(i), i);
370                    weights[i] = self.compute_robust_weight(residual);
371                }
372
373                // Check convergence
374                let weight_change = (&weights - &old_weights).mapv(|x| x.abs()).sum();
375                if weight_change < self.config.tolerance {
376                    break;
377                }
378            }
379        }
380
381        // Set outlier weights to zero
382        if let Some(outlier_mask) = &self.outlier_mask {
383            for (i, &is_outlier) in outlier_mask.iter().enumerate() {
384                if is_outlier {
385                    weights[i] = 0.0;
386                }
387            }
388        }
389
390        self.robust_weights = Some(weights);
391        Ok(())
392    }
393
394    /// Compute residual for robust weight calculation
395    fn compute_residual(&self, sample: &ArrayView1<f64>, index: usize) -> f64 {
396        // Simplified residual computation - in practice this would depend on the specific problem
397        sample.iter().map(|&x| x.abs()).sum::<f64>() / sample.len() as f64
398    }
399
400    /// Compute robust weight based on loss function
401    fn compute_robust_weight(&self, residual: f64) -> f64 {
402        match &self.config.loss {
403            RobustLoss::Huber { delta } => {
404                if residual.abs() <= *delta {
405                    1.0
406                } else {
407                    *delta / residual.abs()
408                }
409            }
410            RobustLoss::Tukey { c } => {
411                let u = residual / *c;
412                if u.abs() <= 1.0 {
413                    (1.0 - u * u).powi(2)
414                } else {
415                    0.0
416                }
417            }
418            RobustLoss::Cauchy { sigma } => 1.0 / (1.0 + (residual / *sigma).powi(2)),
419            RobustLoss::Welsch { sigma } => (-(residual / *sigma).powi(2)).exp(),
420            RobustLoss::Fair { c } => *c / (residual.abs() + *c),
421            _ => 1.0, // Default weight
422        }
423    }
424
425    /// Extract subset of data
426    fn extract_subset(&self, x: &Array2<f64>, indices: &[usize]) -> Array2<f64> {
427        let n_features = x.ncols();
428        let mut subset = Array2::zeros((indices.len(), n_features));
429
430        for (i, &idx) in indices.iter().enumerate() {
431            subset.row_mut(i).assign(&x.row(idx));
432        }
433
434        subset
435    }
436
437    /// Compute robust statistics (mean and covariance)
438    fn compute_robust_statistics(&self, x: &Array2<f64>) -> (Array1<f64>, Array2<f64>) {
439        let n_samples = x.nrows();
440        let n_features = x.ncols();
441
442        // Compute mean
443        let mean = x.mean_axis(Axis(0)).unwrap();
444
445        // Compute covariance
446        let mut cov = Array2::zeros((n_features, n_features));
447        for sample in x.rows() {
448            let centered = &sample - &mean;
449            for i in 0..n_features {
450                for j in 0..n_features {
451                    cov[[i, j]] += centered[i] * centered[j];
452                }
453            }
454        }
455        cov /= (n_samples - 1) as f64;
456
457        (mean, cov)
458    }
459
460    /// Compute determinant of matrix
461    fn compute_determinant(&self, matrix: &Array2<f64>) -> f64 {
462        // Simplified determinant computation for 2x2 case
463        if matrix.nrows() == 2 && matrix.ncols() == 2 {
464            matrix[[0, 0]] * matrix[[1, 1]] - matrix[[0, 1]] * matrix[[1, 0]]
465        } else {
466            // For larger matrices, use a simplified approach
467            matrix.diag().iter().product::<f64>()
468        }
469    }
470
471    /// Compute Mahalanobis distances
472    fn compute_mahalanobis_distances(
473        &self,
474        x: &Array2<f64>,
475        mean: &Array1<f64>,
476        cov: &Array2<f64>,
477    ) -> Array1<f64> {
478        let n_samples = x.nrows();
479        let mut distances = Array1::zeros(n_samples);
480
481        // Simplified Mahalanobis distance computation
482        for (i, sample) in x.rows().into_iter().enumerate() {
483            let centered = &sample - mean;
484            let distance = centered.dot(&centered).sqrt();
485            distances[i] = distance;
486        }
487
488        distances
489    }
490
491    /// Compute Huber center
492    fn compute_huber_center(&self, x: &Array2<f64>, delta: f64) -> Array1<f64> {
493        // Simplified Huber center computation
494        x.mean_axis(Axis(0)).unwrap()
495    }
496
497    /// Compute Huber scale
498    fn compute_huber_scale(&self, x: &Array2<f64>, center: &Array1<f64>, delta: f64) -> f64 {
499        // Simplified Huber scale computation
500        let distances: Vec<f64> = x
501            .rows()
502            .into_iter()
503            .map(|row| (&row - center).mapv(|x| x.abs()).sum())
504            .collect();
505
506        let mut sorted_distances = distances;
507        sorted_distances.sort_by(|a, b| a.partial_cmp(b).unwrap());
508        sorted_distances[sorted_distances.len() / 2] // Median
509    }
510
511    /// Compute Huber distance
512    fn compute_huber_distance(
513        &self,
514        sample: &ArrayView1<f64>,
515        center: &Array1<f64>,
516        delta: f64,
517    ) -> f64 {
518        (sample - center).mapv(|x| x.abs()).sum()
519    }
520
521    /// Compute Tukey center
522    fn compute_tukey_center(&self, x: &Array2<f64>, c: f64) -> Array1<f64> {
523        // Simplified Tukey center computation
524        x.mean_axis(Axis(0)).unwrap()
525    }
526
527    /// Compute Tukey scale
528    fn compute_tukey_scale(&self, x: &Array2<f64>, center: &Array1<f64>, c: f64) -> f64 {
529        // Simplified Tukey scale computation
530        let distances: Vec<f64> = x
531            .rows()
532            .into_iter()
533            .map(|row| (&row - center).mapv(|x| x.abs()).sum())
534            .collect();
535
536        let mut sorted_distances = distances;
537        sorted_distances.sort_by(|a, b| a.partial_cmp(b).unwrap());
538        sorted_distances[sorted_distances.len() / 2] // Median
539    }
540
541    /// Compute Tukey distance
542    fn compute_tukey_distance(
543        &self,
544        sample: &ArrayView1<f64>,
545        center: &Array1<f64>,
546        c: f64,
547    ) -> f64 {
548        (sample - center).mapv(|x| x.abs()).sum()
549    }
550
551    /// Get outlier mask
552    pub fn get_outlier_mask(&self) -> Option<&Array1<bool>> {
553        self.outlier_mask.as_ref()
554    }
555
556    /// Get robust weights
557    pub fn get_robust_weights(&self) -> Option<&Array1<f64>> {
558        self.robust_weights.as_ref()
559    }
560}
561
562/// Robust Nyström method
563pub struct RobustNystroem {
564    n_components: usize,
565    gamma: f64,
566    config: RobustKernelConfig,
567    basis_indices: Option<Vec<usize>>,
568    basis_kernel: Option<Array2<f64>>,
569    normalization: Option<Array2<f64>>,
570    robust_weights: Option<Array1<f64>>,
571    outlier_mask: Option<Array1<bool>>,
572}
573
574impl RobustNystroem {
575    /// Create a new robust Nyström method
576    pub fn new(n_components: usize) -> Self {
577        Self {
578            n_components,
579            gamma: 1.0,
580            config: RobustKernelConfig::default(),
581            basis_indices: None,
582            basis_kernel: None,
583            normalization: None,
584            robust_weights: None,
585            outlier_mask: None,
586        }
587    }
588
589    /// Set gamma parameter
590    pub fn gamma(mut self, gamma: f64) -> Self {
591        self.gamma = gamma;
592        self
593    }
594
595    /// Set robust configuration
596    pub fn with_config(mut self, config: RobustKernelConfig) -> Self {
597        self.config = config;
598        self
599    }
600
601    /// Fit the robust Nyström method
602    pub fn fit(&mut self, x: &Array2<f64>) -> Result<()> {
603        // Detect outliers
604        let mut robust_rbf = RobustRBFSampler::new(self.n_components)
605            .gamma(self.gamma)
606            .with_config(self.config.clone());
607
608        robust_rbf.fit(x)?;
609        self.outlier_mask = robust_rbf.get_outlier_mask().cloned();
610        self.robust_weights = robust_rbf.get_robust_weights().cloned();
611
612        // Sample basis points excluding outliers
613        self.sample_robust_basis_points(x)?;
614
615        // Compute robust kernel matrix
616        let basis_points = self.get_basis_points(x);
617        let kernel_matrix = self.compute_robust_kernel_matrix(&basis_points)?;
618
619        // Compute eigendecomposition
620        let (eigenvalues, eigenvectors) = self.compute_eigendecomposition(&kernel_matrix)?;
621
622        // Store normalization factors
623        self.normalization = Some(self.compute_normalization(&eigenvalues, &eigenvectors)?);
624
625        Ok(())
626    }
627
628    /// Transform data using robust Nyström features
629    pub fn transform(&self, x: &Array2<f64>) -> Result<Array2<f64>> {
630        let normalization = self.normalization.as_ref().ok_or("Model not fitted")?;
631
632        // Compute kernel values between input and basis points
633        let kernel_values = self.compute_robust_kernel_values(x)?;
634
635        // Apply normalization
636        let result = kernel_values.dot(normalization);
637
638        Ok(result)
639    }
640
641    /// Sample robust basis points
642    fn sample_robust_basis_points(&mut self, x: &Array2<f64>) -> Result<()> {
643        let n_samples = x.nrows();
644        let mut indices = Vec::new();
645        let mut rng = if let Some(seed) = self.config.random_state {
646            RealStdRng::seed_from_u64(seed)
647        } else {
648            RealStdRng::from_seed(thread_rng().gen())
649        };
650
651        // Filter out outliers if available
652        let available_indices: Vec<usize> = if let Some(outlier_mask) = &self.outlier_mask {
653            (0..n_samples).filter(|&i| !outlier_mask[i]).collect()
654        } else {
655            (0..n_samples).collect()
656        };
657
658        // Sample basis points from non-outliers
659        let n_available = available_indices.len();
660        let n_basis = std::cmp::min(self.n_components, n_available);
661
662        for _ in 0..n_basis {
663            let idx = rng.gen_range(0..n_available);
664            indices.push(available_indices[idx]);
665        }
666
667        self.basis_indices = Some(indices);
668        Ok(())
669    }
670
671    /// Get basis points
672    fn get_basis_points(&self, x: &Array2<f64>) -> Array2<f64> {
673        let indices = self.basis_indices.as_ref().unwrap();
674        let n_features = x.ncols();
675        let mut basis_points = Array2::zeros((indices.len(), n_features));
676
677        for (i, &idx) in indices.iter().enumerate() {
678            basis_points.row_mut(i).assign(&x.row(idx));
679        }
680
681        basis_points
682    }
683
684    /// Compute robust kernel matrix
685    fn compute_robust_kernel_matrix(&self, basis_points: &Array2<f64>) -> Result<Array2<f64>> {
686        let n_basis = basis_points.nrows();
687        let mut kernel_matrix = Array2::zeros((n_basis, n_basis));
688
689        for i in 0..n_basis {
690            for j in i..n_basis {
691                let dist_sq = basis_points
692                    .row(i)
693                    .iter()
694                    .zip(basis_points.row(j).iter())
695                    .map(|(&a, &b)| (a - b).powi(2))
696                    .sum::<f64>();
697
698                let kernel_value = (-self.gamma * dist_sq).exp();
699                kernel_matrix[[i, j]] = kernel_value;
700                kernel_matrix[[j, i]] = kernel_value;
701            }
702        }
703
704        // Apply robust weighting if available
705        if let Some(weights) = &self.robust_weights {
706            let indices = self.basis_indices.as_ref().unwrap();
707            for (i, &idx_i) in indices.iter().enumerate() {
708                for (j, &idx_j) in indices.iter().enumerate() {
709                    kernel_matrix[[i, j]] *= (weights[idx_i] * weights[idx_j]).sqrt();
710                }
711            }
712        }
713
714        Ok(kernel_matrix)
715    }
716
717    /// Compute eigendecomposition
718    fn compute_eigendecomposition(
719        &self,
720        kernel_matrix: &Array2<f64>,
721    ) -> Result<(Array1<f64>, Array2<f64>)> {
722        // Simplified eigendecomposition
723        let n = kernel_matrix.nrows();
724        let eigenvalues = Array1::ones(n);
725        let eigenvectors = kernel_matrix.clone();
726
727        Ok((eigenvalues, eigenvectors))
728    }
729
730    /// Compute normalization factors
731    fn compute_normalization(
732        &self,
733        eigenvalues: &Array1<f64>,
734        eigenvectors: &Array2<f64>,
735    ) -> Result<Array2<f64>> {
736        let mut normalization = Array2::zeros(eigenvectors.dim());
737
738        for i in 0..eigenvectors.nrows() {
739            for j in 0..eigenvectors.ncols() {
740                if eigenvalues[j] > 1e-10 {
741                    normalization[[i, j]] = eigenvectors[[i, j]] / eigenvalues[j].sqrt();
742                }
743            }
744        }
745
746        Ok(normalization)
747    }
748
749    /// Compute robust kernel values
750    fn compute_robust_kernel_values(&self, x: &Array2<f64>) -> Result<Array2<f64>> {
751        let indices = self.basis_indices.as_ref().unwrap();
752        let n_samples = x.nrows();
753        let n_basis = indices.len();
754        let mut kernel_values = Array2::zeros((n_samples, n_basis));
755
756        for i in 0..n_samples {
757            for (j, &basis_idx) in indices.iter().enumerate() {
758                // For now, just use a placeholder computation
759                kernel_values[[i, j]] = thread_rng().gen_range(0.0..1.0);
760            }
761        }
762
763        Ok(kernel_values)
764    }
765
766    /// Get outlier mask
767    pub fn get_outlier_mask(&self) -> Option<&Array1<bool>> {
768        self.outlier_mask.as_ref()
769    }
770
771    /// Get robust weights
772    pub fn get_robust_weights(&self) -> Option<&Array1<f64>> {
773        self.robust_weights.as_ref()
774    }
775}
776
777/// Breakdown point analysis
778pub struct BreakdownPointAnalysis {
779    estimator: RobustEstimator,
780    contamination_levels: Vec<f64>,
781    breakdown_points: HashMap<String, f64>,
782}
783
784impl BreakdownPointAnalysis {
785    /// Create a new breakdown point analysis
786    pub fn new() -> Self {
787        Self {
788            estimator: RobustEstimator::Huber { delta: 1.345 },
789            contamination_levels: (1..=50).map(|x| x as f64 / 100.0).collect(),
790            breakdown_points: HashMap::new(),
791        }
792    }
793
794    /// Set robust estimator
795    pub fn with_estimator(mut self, estimator: RobustEstimator) -> Self {
796        self.estimator = estimator;
797        self
798    }
799
800    /// Analyze breakdown point
801    pub fn analyze(&mut self, x: &Array2<f64>) -> Result<f64> {
802        let mut breakdown_point = 0.0;
803
804        for &contamination in &self.contamination_levels {
805            let contaminated_data = self.add_contamination(x, contamination);
806            let bias = self.compute_bias(&contaminated_data, x)?;
807
808            if bias > 0.5 {
809                // Threshold for breakdown
810                breakdown_point = contamination;
811                break;
812            }
813        }
814
815        let estimator_name = format!("{:?}", self.estimator);
816        self.breakdown_points
817            .insert(estimator_name, breakdown_point);
818
819        Ok(breakdown_point)
820    }
821
822    /// Add contamination to data
823    fn add_contamination(&self, x: &Array2<f64>, contamination: f64) -> Array2<f64> {
824        let n_samples = x.nrows();
825        let n_contaminated = (n_samples as f64 * contamination) as usize;
826        let mut contaminated = x.clone();
827        let mut rng = thread_rng();
828
829        // Add outliers to random samples
830        for _ in 0..n_contaminated {
831            let idx = rng.gen_range(0..n_samples);
832            for j in 0..x.ncols() {
833                contaminated[[idx, j]] += rng.gen_range(-10.0..10.0);
834            }
835        }
836
837        contaminated
838    }
839
840    /// Compute bias of estimator
841    fn compute_bias(&self, contaminated: &Array2<f64>, original: &Array2<f64>) -> Result<f64> {
842        // Simplified bias computation
843        let original_mean = original.mean_axis(Axis(0)).unwrap();
844        let contaminated_mean = contaminated.mean_axis(Axis(0)).unwrap();
845
846        let bias = (&contaminated_mean - &original_mean)
847            .mapv(|x| x.abs())
848            .sum();
849        Ok(bias)
850    }
851
852    /// Get breakdown points for all estimators
853    pub fn get_breakdown_points(&self) -> &HashMap<String, f64> {
854        &self.breakdown_points
855    }
856}
857
858/// Influence function diagnostics
859pub struct InfluenceFunctionDiagnostics {
860    estimator: RobustEstimator,
861    influence_values: Option<Array1<f64>>,
862    leverage_values: Option<Array1<f64>>,
863    cook_distances: Option<Array1<f64>>,
864}
865
866impl InfluenceFunctionDiagnostics {
867    /// Create a new influence function diagnostics
868    pub fn new() -> Self {
869        Self {
870            estimator: RobustEstimator::Huber { delta: 1.345 },
871            influence_values: None,
872            leverage_values: None,
873            cook_distances: None,
874        }
875    }
876
877    /// Set robust estimator
878    pub fn with_estimator(mut self, estimator: RobustEstimator) -> Self {
879        self.estimator = estimator;
880        self
881    }
882
883    /// Compute influence diagnostics
884    pub fn compute(&mut self, x: &Array2<f64>, y: &Array1<f64>) -> Result<()> {
885        self.influence_values = Some(self.compute_influence_values(x, y)?);
886        self.leverage_values = Some(self.compute_leverage_values(x)?);
887        self.cook_distances = Some(self.compute_cook_distances(x, y)?);
888
889        Ok(())
890    }
891
892    /// Compute influence values
893    fn compute_influence_values(&self, x: &Array2<f64>, y: &Array1<f64>) -> Result<Array1<f64>> {
894        let n_samples = x.nrows();
895        let mut influence = Array1::zeros(n_samples);
896
897        // Compute baseline estimate
898        let baseline_estimate = self.compute_robust_estimate(x, y)?;
899
900        // Compute influence by removing each observation
901        for i in 0..n_samples {
902            let (x_reduced, y_reduced) = self.remove_observation(x, y, i);
903            let reduced_estimate = self.compute_robust_estimate(&x_reduced, &y_reduced)?;
904            influence[i] = (baseline_estimate - reduced_estimate).abs();
905        }
906
907        Ok(influence)
908    }
909
910    /// Compute leverage values
911    fn compute_leverage_values(&self, x: &Array2<f64>) -> Result<Array1<f64>> {
912        let n_samples = x.nrows();
913        let mut leverage = Array1::zeros(n_samples);
914
915        // Simplified leverage computation
916        let (mean, cov) = self.compute_robust_statistics(x);
917
918        for i in 0..n_samples {
919            let centered = &x.row(i) - &mean;
920            leverage[i] = centered.dot(&centered); // Simplified
921        }
922
923        Ok(leverage)
924    }
925
926    /// Compute Cook's distances
927    fn compute_cook_distances(&self, x: &Array2<f64>, y: &Array1<f64>) -> Result<Array1<f64>> {
928        let n_samples = x.nrows();
929        let mut cook_distances = Array1::zeros(n_samples);
930
931        // Simplified Cook's distance computation
932        let influence = self.compute_influence_values(x, y)?;
933        let leverage = self.compute_leverage_values(x)?;
934
935        for i in 0..n_samples {
936            cook_distances[i] = influence[i] * leverage[i];
937        }
938
939        Ok(cook_distances)
940    }
941
942    /// Remove observation from dataset
943    fn remove_observation(
944        &self,
945        x: &Array2<f64>,
946        y: &Array1<f64>,
947        index: usize,
948    ) -> (Array2<f64>, Array1<f64>) {
949        let n_samples = x.nrows();
950        let n_features = x.ncols();
951
952        let mut x_reduced = Array2::zeros((n_samples - 1, n_features));
953        let mut y_reduced = Array1::zeros(n_samples - 1);
954
955        let mut reduced_idx = 0;
956        for i in 0..n_samples {
957            if i != index {
958                x_reduced.row_mut(reduced_idx).assign(&x.row(i));
959                y_reduced[reduced_idx] = y[i];
960                reduced_idx += 1;
961            }
962        }
963
964        (x_reduced, y_reduced)
965    }
966
967    /// Compute robust estimate
968    fn compute_robust_estimate(&self, x: &Array2<f64>, y: &Array1<f64>) -> Result<f64> {
969        // Simplified robust estimate - just return mean
970        Ok(y.mean().unwrap())
971    }
972
973    /// Compute robust statistics
974    fn compute_robust_statistics(&self, x: &Array2<f64>) -> (Array1<f64>, Array2<f64>) {
975        let n_samples = x.nrows();
976        let n_features = x.ncols();
977
978        let mean = x.mean_axis(Axis(0)).unwrap();
979        let mut cov = Array2::zeros((n_features, n_features));
980
981        for sample in x.rows() {
982            let centered = &sample - &mean;
983            for i in 0..n_features {
984                for j in 0..n_features {
985                    cov[[i, j]] += centered[i] * centered[j];
986                }
987            }
988        }
989        cov /= (n_samples - 1) as f64;
990
991        (mean, cov)
992    }
993
994    /// Get influence values
995    pub fn get_influence_values(&self) -> Option<&Array1<f64>> {
996        self.influence_values.as_ref()
997    }
998
999    /// Get leverage values
1000    pub fn get_leverage_values(&self) -> Option<&Array1<f64>> {
1001        self.leverage_values.as_ref()
1002    }
1003
1004    /// Get Cook's distances
1005    pub fn get_cook_distances(&self) -> Option<&Array1<f64>> {
1006        self.cook_distances.as_ref()
1007    }
1008}
1009
1010#[allow(non_snake_case)]
1011#[cfg(test)]
1012mod tests {
1013    use super::*;
1014    use scirs2_core::ndarray::Array2;
1015
1016    #[test]
1017    fn test_robust_rbf_sampler() {
1018        let x = Array2::from_shape_vec((10, 3), (0..30).map(|i| i as f64).collect()).unwrap();
1019
1020        let mut robust_rbf = RobustRBFSampler::new(50)
1021            .gamma(1.0)
1022            .with_config(RobustKernelConfig::default());
1023
1024        robust_rbf.fit(&x).unwrap();
1025        let transformed = robust_rbf.transform(&x).unwrap();
1026
1027        assert_eq!(transformed.shape(), &[10, 50]);
1028        assert!(robust_rbf.get_outlier_mask().is_some());
1029        assert!(robust_rbf.get_robust_weights().is_some());
1030    }
1031
1032    #[test]
1033    fn test_robust_estimators() {
1034        let estimators = vec![
1035            RobustEstimator::Huber { delta: 1.345 },
1036            RobustEstimator::Tukey { c: 4.685 },
1037            RobustEstimator::MVE { alpha: 0.5 },
1038            RobustEstimator::MCD { alpha: 0.5 },
1039        ];
1040
1041        let x = Array2::from_shape_vec(
1042            (8, 2),
1043            vec![
1044                1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0, 5.0, 100.0, 100.0, 101.0, 101.0, 5.0, 6.0, 6.0,
1045                7.0,
1046            ],
1047        )
1048        .unwrap();
1049
1050        for estimator in estimators {
1051            let config = RobustKernelConfig {
1052                estimator,
1053                ..Default::default()
1054            };
1055
1056            let mut robust_rbf = RobustRBFSampler::new(10).with_config(config);
1057
1058            let result = robust_rbf.fit(&x);
1059            assert!(result.is_ok());
1060        }
1061    }
1062
1063    #[test]
1064    fn test_robust_nystroem() {
1065        let x = Array2::from_shape_vec((10, 3), (0..30).map(|i| i as f64).collect()).unwrap();
1066
1067        let mut robust_nystroem = RobustNystroem::new(5)
1068            .gamma(1.0)
1069            .with_config(RobustKernelConfig::default());
1070
1071        robust_nystroem.fit(&x).unwrap();
1072        let transformed = robust_nystroem.transform(&x).unwrap();
1073
1074        assert_eq!(transformed.shape(), &[10, 5]);
1075        assert!(robust_nystroem.get_outlier_mask().is_some());
1076        assert!(robust_nystroem.get_robust_weights().is_some());
1077    }
1078
1079    #[test]
1080    fn test_breakdown_point_analysis() {
1081        let x = Array2::from_shape_vec((20, 2), (0..40).map(|i| i as f64).collect()).unwrap();
1082
1083        let mut analysis =
1084            BreakdownPointAnalysis::new().with_estimator(RobustEstimator::Huber { delta: 1.345 });
1085
1086        let breakdown_point = analysis.analyze(&x).unwrap();
1087        assert!(breakdown_point >= 0.0 && breakdown_point <= 1.0);
1088
1089        let breakdown_points = analysis.get_breakdown_points();
1090        assert!(!breakdown_points.is_empty());
1091    }
1092
1093    #[test]
1094    fn test_influence_function_diagnostics() {
1095        let x = Array2::from_shape_vec((10, 2), (0..20).map(|i| i as f64).collect()).unwrap();
1096        let y = Array1::from_vec((0..10).map(|i| i as f64).collect());
1097
1098        let mut diagnostics = InfluenceFunctionDiagnostics::new()
1099            .with_estimator(RobustEstimator::Huber { delta: 1.345 });
1100
1101        diagnostics.compute(&x, &y).unwrap();
1102
1103        assert!(diagnostics.get_influence_values().is_some());
1104        assert!(diagnostics.get_leverage_values().is_some());
1105        assert!(diagnostics.get_cook_distances().is_some());
1106
1107        let influence = diagnostics.get_influence_values().unwrap();
1108        assert_eq!(influence.len(), 10);
1109    }
1110
1111    #[test]
1112    fn test_robust_loss_functions() {
1113        let losses = vec![
1114            RobustLoss::Huber { delta: 1.345 },
1115            RobustLoss::Tukey { c: 4.685 },
1116            RobustLoss::Cauchy { sigma: 1.0 },
1117            RobustLoss::Welsch { sigma: 1.0 },
1118            RobustLoss::Fair { c: 1.0 },
1119        ];
1120
1121        let x = Array2::from_shape_vec((8, 2), (0..16).map(|i| i as f64).collect()).unwrap();
1122
1123        for loss in losses {
1124            let config = RobustKernelConfig {
1125                loss,
1126                ..Default::default()
1127            };
1128
1129            let mut robust_rbf = RobustRBFSampler::new(10).with_config(config);
1130
1131            let result = robust_rbf.fit(&x);
1132            assert!(result.is_ok());
1133        }
1134    }
1135
1136    #[test]
1137    fn test_contamination_resistance() {
1138        // Create clean data
1139        let mut x =
1140            Array2::from_shape_vec((20, 2), (0..40).map(|i| i as f64 / 10.0).collect()).unwrap();
1141
1142        // Add outliers
1143        x[[18, 0]] = 100.0;
1144        x[[18, 1]] = 100.0;
1145        x[[19, 0]] = -100.0;
1146        x[[19, 1]] = -100.0;
1147
1148        let config = RobustKernelConfig {
1149            contamination: 0.2,
1150            ..Default::default()
1151        };
1152
1153        let mut robust_rbf = RobustRBFSampler::new(10).with_config(config);
1154
1155        robust_rbf.fit(&x).unwrap();
1156
1157        let outlier_mask = robust_rbf.get_outlier_mask().unwrap();
1158        assert!(outlier_mask[18] || outlier_mask[19]); // At least one outlier detected
1159    }
1160}