Crate sklears_inspection

Crate sklears_inspection 

Source
Expand description

Model inspection and interpretation tools

This crate provides comprehensive tools for understanding and interpreting machine learning models, including feature importance, partial dependence plots, SHAP values, counterfactual explanations, anchors, model complexity analysis, and model-agnostic explanations.

Re-exports§

pub use types::explanation_methods;
pub use types::explanation_states;
pub use types::ExplanationConfig;
pub use types::ExplanationConstraint;
pub use types::ExplanationMethodValidator;
pub use types::ExplanationProperties;
pub use types::ExplanationValidator;
pub use types::FeatureImportanceConstraint;
pub use types::FixedSizeExplanation;
pub use types::GlobalGradientConfig;
pub use types::GlobalModelAgnosticConfig;
pub use types::GradientCompatible;
pub use types::LimeCompatible;
pub use types::LocalGradientConfig;
pub use types::LocalModelAgnosticConfig;
pub use types::ModelIntrospectable;
pub use types::ShapCompatible;
pub use types::ShapConstraint;
pub use types::TypedExplanation;
pub use adversarial::analyze_explanation_stability;
pub use adversarial::compute_certified_robustness;
pub use adversarial::generate_adversarial_examples;
pub use adversarial::test_explanation_robustness;
pub use adversarial::AdversarialAttack;
pub use adversarial::AdversarialConfig;
pub use adversarial::AdversarialExampleResult;
pub use adversarial::CertificationMethod;
pub use adversarial::CertifiedRobustnessResult;
pub use adversarial::ExplanationRobustnessResult;
pub use adversarial::RobustnessMetric;
pub use adversarial::StabilityAnalysisResult;
pub use adversarial::StabilityTrend;
pub use adversarial::VerificationStatus;
pub use anchors::explain_with_anchors;
pub use anchors::AnchorsConfig;
pub use attention::analyze_attention;
pub use attention::compute_gradcam;
pub use attention::dissect_network;
pub use attention::maximize_activation;
pub use attention::visualize_features;
pub use attention::ActivationMaximizationResult;
pub use attention::AttentionAnalyzer;
pub use attention::AttentionConfig;
pub use attention::AttentionResult;
pub use attention::AttentionType;
pub use attention::FeatureVisualizationResult;
pub use attention::GradCAMConfig;
pub use attention::GradCAMResult as AttentionGradCAMResult;
pub use attention::NetworkDissectionResult;
pub use benchmarking::BenchmarkCategory;
pub use benchmarking::BenchmarkConfig;
pub use benchmarking::BenchmarkReport;
pub use benchmarking::BenchmarkResult;
pub use benchmarking::BenchmarkingSuite;
pub use benchmarking::CategorySummary;
pub use benchmarking::InsightSeverity;
pub use benchmarking::InsightType;
pub use benchmarking::MemoryStatistics;
pub use benchmarking::PerformanceInsight;
pub use benchmarking::ProblemType;
pub use benchmarking::QualityMetrics;
pub use benchmarking::ReferenceComparison;
pub use benchmarking::TestConfiguration;
pub use benchmarking::TimingStatistics;
pub use builder::ComparisonResult;
pub use builder::ComparisonResults;
pub use builder::ComparisonStudy;
pub use builder::ComparisonStudyBuilder;
pub use builder::CounterfactualConfig as BuilderCounterfactualConfig;
pub use builder::ExplanationBuilder;
pub use builder::ExplanationPipelineExecutor;
pub use builder::FeatureSelection;
pub use builder::LimeConfig;
pub use builder::OptimizationMethod;
pub use builder::PermutationConfig as BuilderPermutationConfig;
pub use builder::PipelineBuilder;
pub use builder::PipelineExecutionResult;
pub use builder::PipelineStep;
pub use builder::ScoreFunction as BuilderScoreFunction;
pub use builder::ShapConfig;
pub use builder::StepMetadata;
pub use causal::analyze_instrumental_variables;
pub use causal::analyze_mediation;
pub use causal::apply_do_calculus;
pub use causal::discover_causal_structure;
pub use causal::estimate_causal_effect;
pub use causal::CausalConfig;
pub use causal::CausalEffectMethod;
pub use causal::CausalEffectResult;
pub use causal::CausalGraph;
pub use causal::InstrumentalVariableResult;
pub use causal::MediationResult;
pub use complexity::analyze_model_complexity;
pub use complexity::ComplexityConfig;
pub use computer_vision::explain_image_with_lime;
pub use computer_vision::explain_object_detection;
pub use computer_vision::explain_segmentation;
pub use computer_vision::generate_gradcam;
pub use computer_vision::generate_saliency_map;
pub use computer_vision::ComputerVisionConfig;
pub use computer_vision::DetectedObject;
pub use computer_vision::GradCAMResult;
pub use computer_vision::GradCAMStats;
pub use computer_vision::Image;
pub use computer_vision::ImageLimeResult;
pub use computer_vision::KeyFeature;
pub use computer_vision::ObjectDetectionExplanation;
pub use computer_vision::SaliencyMapResult;
pub use computer_vision::SaliencyMethod;
pub use computer_vision::SegmentExplanation;
pub use computer_vision::SegmentationExplanation;
pub use computer_vision::Superpixel;
pub use counterfactual::generate_actionable_counterfactual;
pub use counterfactual::generate_causal_counterfactual;
pub use counterfactual::generate_counterfactual;
pub use counterfactual::generate_diverse_counterfactuals;
pub use counterfactual::generate_feasible_counterfactual;
pub use counterfactual::generate_nearest_counterfactual;
pub use counterfactual::CounterfactualConfig;
pub use counterfactual::FeasibilityConfig;
pub use dashboard::Alert;
pub use dashboard::AlertSeverity;
pub use dashboard::AlertThresholds;
pub use dashboard::AlertType;
pub use dashboard::Dashboard;
pub use dashboard::DashboardConfig;
pub use dashboard::DashboardDataPoint;
pub use dashboard::DashboardLayout;
pub use dashboard::DashboardState;
pub use dashboard::DashboardTheme;
pub use dashboard::DashboardUpdate;
pub use dashboard::WidgetConfig;
pub use dashboard::WidgetType;
pub use deep_learning::ConceptActivationVector;
pub use deep_learning::ConceptDatabase;
pub use deep_learning::ConceptDiscoveryMethod;
pub use deep_learning::ConceptHierarchy;
pub use deep_learning::DeepLearningAnalyzer;
pub use deep_learning::DeepLearningConfig;
pub use deep_learning::DetectedConcept;
pub use deep_learning::DisentanglementMetrics;
pub use deep_learning::NetworkDissectionResult as DeepNetworkDissectionResult;
pub use deep_learning::TCAVResult;
pub use distributed::ClusterConfig;
pub use distributed::ClusterExplanationOrchestrator;
pub use distributed::ClusterHealth;
pub use distributed::ClusterStatistics;
pub use distributed::DistributedCoordinator;
pub use distributed::DistributedTask;
pub use distributed::HealthStatus;
pub use distributed::LoadBalancingStrategy;
pub use distributed::TaskResult;
pub use distributed::TaskStatus;
pub use distributed::TaskType;
pub use distributed::WorkerConfig;
pub use distributed::WorkerNode;
pub use enterprise::AccessControl;
pub use enterprise::AccessControlConfig;
pub use enterprise::AccessLevel;
pub use enterprise::ActionItem;
pub use enterprise::AlertRule;
pub use enterprise::AuditEvent;
pub use enterprise::AuditEventType;
pub use enterprise::AuditLogger;
pub use enterprise::AuditRecord;
pub use enterprise::AuditSeverity;
pub use enterprise::AuditTrail;
pub use enterprise::ComplianceFramework;
pub use enterprise::ComplianceReport;
pub use enterprise::ComplianceReporter;
pub use enterprise::ComplianceRule;
pub use enterprise::ComplianceStatus;
pub use enterprise::EnterpriseConfig;
pub use enterprise::ExplanationLineage;
pub use enterprise::ExplanationQualityMonitor;
pub use enterprise::LineageNode;
pub use enterprise::LineageRelation;
pub use enterprise::LineageTracker;
pub use enterprise::OperationType;
pub use enterprise::Permission;
pub use enterprise::PermissionSet;
pub use enterprise::QualityAlert;
pub use enterprise::QualityDataPoint;
pub use enterprise::QualityLevel;
pub use enterprise::QualityMetric;
pub use enterprise::QualityMonitorConfig;
pub use enterprise::QualityStatistics;
pub use enterprise::QualityThreshold;
pub use enterprise::QualityTrend;
pub use enterprise::QualityTrendDirection;
pub use enterprise::RegulatoryRequirement;
pub use enterprise::RiskLevel;
pub use enterprise::Role;
pub use enterprise::RoleManager;
pub use enterprise::SecureExplanationExecutor;
pub use enterprise::SecurityContext;
pub use enterprise::User;
pub use enterprise::UserGroup;
pub use external_visualizations::D3Backend;
pub use external_visualizations::D3Config;
pub use external_visualizations::PlotlyBackend;
pub use external_visualizations::PlotlyConfig;
pub use external_visualizations::PlotlyPlotConfig;
pub use external_visualizations::VegaLiteBackend;
pub use external_visualizations::VegaLiteConfig;
pub use external_visualizations::VegaLiteDefaultConfig;
pub use fairness::analyze_demographic_parity;
pub use fairness::analyze_equalized_odds;
pub use fairness::analyze_individual_fairness;
pub use fairness::assess_fairness;
pub use fairness::compute_group_fairness_metrics;
pub use fairness::detect_bias;
pub use fairness::BiasDetectionResult;
pub use fairness::DemographicParityResult;
pub use fairness::DistanceMetric;
pub use fairness::EqualizedOddsResult;
pub use fairness::FairnessConfig;
pub use fairness::FairnessMetrics;
pub use fairness::FairnessResult;
pub use fairness::IndividualFairnessResult;
pub use federated::AggregationStats;
pub use federated::FederatedConfig;
pub use federated::FederatedExplainer;
pub use federated::FederatedExplanation;
pub use federated::PrivacyMechanism;
pub use framework::ChainedConfig;
pub use framework::ChainedStrategy;
pub use framework::CombinedConfig;
pub use framework::CombinedOutput;
pub use framework::CombinedStrategy;
pub use framework::CounterfactualExplainer;
pub use framework::Explainer;
pub use framework::ExplanationMetadata;
pub use framework::ExplanationPipeline;
pub use framework::ExplanationPostProcessor;
pub use framework::ExplanationStrategy;
pub use framework::FeatureAttributor;
pub use framework::FeatureExplainer;
pub use framework::GlobalExplainer;
pub use framework::GradientAttributor;
pub use framework::LocalExplainer;
pub use framework::PipelineResult;
pub use framework::UncertainExplanation;
pub use framework::UncertaintyAwareExplainer;
pub use framework::ValidationResult;
pub use framework::ValidationViolation;
pub use framework::ViolationSeverity;
pub use gnn::GNNExplainer;
pub use gnn::GNNExplainerConfig;
pub use gnn::GNNExplanation;
pub use gnn::GNNTask;
pub use gnn::Graph;
pub use gnn::MessagePassingExplanation;
pub use gpu::utils as gpu_utils;
pub use gpu::GpuBackend;
pub use gpu::GpuBuffer;
pub use gpu::GpuConfig;
pub use gpu::GpuContext;
pub use gpu::GpuDevice;
pub use gpu::GpuExplanationComputer;
pub use gpu::GpuPerformanceStats;
pub use hooks::CustomEvent;
pub use hooks::ErrorInfo;
pub use hooks::ExecutionMetrics;
pub use hooks::ExplanationHook;
pub use hooks::HookContext;
pub use hooks::HookEvent;
pub use hooks::HookRegistry;
pub use hooks::HookRegistryStatistics;
pub use hooks::HookResult;
pub use hooks::HookedExplanationExecutor;
pub use hooks::LogLevel;
pub use hooks::LoggingHook;
pub use hooks::MemoryInfo;
pub use hooks::MetricsHook;
pub use hooks::ProgressInfo;
pub use hooks::TimingInfo;
pub use information_theoretic::analyze_information_bottleneck;
pub use information_theoretic::analyze_mutual_information;
pub use information_theoretic::apply_minimum_description_length;
pub use information_theoretic::compute_information_gain_attribution;
pub use information_theoretic::generate_entropy_explanations;
pub use information_theoretic::EntropyExplanationResult;
pub use information_theoretic::EstimationMethod;
pub use information_theoretic::InformationBottleneckResult;
pub use information_theoretic::InformationGainResult;
pub use information_theoretic::InformationTheoreticConfig;
pub use information_theoretic::MDLResult;
pub use information_theoretic::MutualInformationResult;
pub use lazy::LazyComputationManager;
pub use lazy::LazyConfig;
pub use lazy::LazyExecutionStats;
pub use lazy::LazyExplanation;
pub use lazy::LazyExplanationPipeline;
pub use lazy::LazyFeatureImportance;
pub use lazy::LazyShapValues;
pub use llm::CounterfactualText;
pub use llm::LLMAttentionExplanation;
pub use llm::LLMExplainer;
pub use llm::LLMExplainerConfig;
pub use llm::LLMExplanation;
pub use llm::LLMTask;
pub use llm::LayerImportance;
pub use llm::LayerType;
pub use llm::NeuronActivation;
pub use llm::PromptSensitivity;
pub use llm::PromptVariation;
pub use llm::TokenizedInput;
pub use llm::VariationType;
pub use local_explanations::explain_locally;
pub use local_explanations::LocalExplanationConfig;
pub use local_explanations::LocalExplanationMethod;
pub use memory::cache_friendly_permutation_importance;
pub use memory::cache_friendly_shap_computation;
pub use memory::CacheConfig;
pub use memory::CacheKey;
pub use memory::CacheStatistics;
pub use memory::ExplanationCache;
pub use memory::ExplanationDataLayout;
pub use memory::MemoryLayoutManager;
pub use metrics_registry::CompletenessMetric;
pub use metrics_registry::ComputationMetadata;
pub use metrics_registry::ComputationalComplexity;
pub use metrics_registry::ExplanationData;
pub use metrics_registry::ExplanationMetric;
pub use metrics_registry::ExplanationType;
pub use metrics_registry::FidelityMetric;
pub use metrics_registry::MetricCategory;
pub use metrics_registry::MetricInput;
pub use metrics_registry::MetricMetadata;
pub use metrics_registry::MetricOutput;
pub use metrics_registry::MetricProperties;
pub use metrics_registry::MetricRegistry;
pub use metrics_registry::RegistryStatistics;
pub use metrics_registry::StabilityMetric;
pub use model_agnostic::explain_model_agnostic;
pub use model_agnostic::ModelAgnosticConfig;
pub use model_comparison::analyze_ensemble;
pub use model_comparison::assess_prediction_stability;
pub use model_comparison::compare_models;
pub use model_comparison::compute_model_agreement;
pub use model_comparison::BiasVarianceDecomposition;
pub use model_comparison::DiversityMetrics;
pub use model_comparison::EnsembleAnalysisResult;
pub use model_comparison::EnsembleMethod;
pub use model_comparison::ModelComparisonConfig;
pub use model_comparison::ModelComparisonResult;
pub use model_comparison::ModelMetrics;
pub use model_comparison::StabilityMetrics;
pub use multimodal::CrossModalAttention;
pub use multimodal::FusionExplanation;
pub use multimodal::FusionStrategy;
pub use multimodal::InteractionType;
pub use multimodal::ModalityContributions;
pub use multimodal::ModalityInteraction;
pub use multimodal::ModalityType;
pub use multimodal::MultiModalConfig;
pub use multimodal::MultiModalExplainer;
pub use multimodal::MultiModalExplanation;
pub use multimodal::MultiModalInput;
pub use nlp::analyze_text_attention;
pub use nlp::explain_semantic_similarity;
pub use nlp::explain_syntax;
pub use nlp::explain_text_with_lime;
pub use nlp::visualize_word_importance;
pub use nlp::AttentionExplanation;
pub use nlp::AttentionPattern;
pub use nlp::AttentionPatternType;
pub use nlp::NLPConfig;
pub use nlp::SemanticCluster;
pub use nlp::SemanticExplanation;
pub use nlp::SemanticRelation;
pub use nlp::SyntacticExplanation;
pub use nlp::SyntacticNode;
pub use nlp::SyntacticPattern;
pub use nlp::SyntacticTree;
pub use nlp::Token;
pub use nlp::WordImportanceResult;
pub use occlusion::analyze_occlusion;
pub use occlusion::OcclusionConfig;
pub use occlusion::OcclusionMethod;
pub use parallel::compute_shap_parallel;
pub use parallel::process_batches_optimized;
pub use parallel::process_batches_parallel;
pub use parallel::AdaptiveBatchConfig;
pub use parallel::BatchConfig;
pub use parallel::BatchStats;
pub use parallel::CacheAwareExplanationStore;
pub use parallel::CompressedBatch;
pub use parallel::HighPerformanceBatchProcessor;
pub use parallel::MemoryPool;
pub use parallel::ParallelConfig;
pub use parallel::ParallelExplanation;
pub use parallel::ParallelPermutationImportance;
pub use parallel::PermutationInput;
pub use parallel::ProgressCallback;
pub use parallel::StreamingBatchProcessor;
pub use partial_dependence::partial_dependence;
pub use permutation::permutation_importance;
pub use perturbation::analyze_robustness;
pub use perturbation::generate_perturbations;
pub use perturbation::PerturbationConfig;
pub use perturbation::PerturbationStrategy;
pub use plugins::ExampleCustomPlugin;
pub use plugins::ExecutionMetadata;
pub use plugins::ExecutionStatistics;
pub use plugins::ExplanationPlugin;
pub use plugins::InputType;
pub use plugins::LogLevel as PluginLogLevel;
pub use plugins::OutputType;
pub use plugins::PluginCapabilities;
pub use plugins::PluginCapabilityFilter;
pub use plugins::PluginConfig;
pub use plugins::PluginData;
pub use plugins::PluginExecution;
pub use plugins::PluginInput;
pub use plugins::PluginManager;
pub use plugins::PluginMetadata;
pub use plugins::PluginOutput;
pub use plugins::PluginOutputData;
pub use plugins::PluginParameter;
pub use plugins::PluginRegistry;
pub use plugins::PluginRegistryStatistics;
pub use probabilistic::bayesian_model_averaging;
pub use probabilistic::generate_bayesian_explanation;
pub use probabilistic::generate_probabilistic_counterfactuals;
pub use probabilistic::quantify_explanation_uncertainty;
pub use probabilistic::BayesianExplanationResult;
pub use probabilistic::BayesianModelAveragingResult;
pub use probabilistic::ProbabilisticConfig;
pub use probabilistic::ProbabilisticCounterfactualResult;
pub use probabilistic::UncertainExplanationResult;
pub use profiling::BottleneckType;
pub use profiling::HotPath;
pub use profiling::MethodProfile;
pub use profiling::OptimizationComplexity;
pub use profiling::OptimizationConfig;
pub use profiling::OptimizationOpportunity;
pub use profiling::OptimizationType;
pub use profiling::PerformanceBottleneck;
pub use profiling::ProfileGuidedOptimizer;
pub use profiling::RuntimeStatistics;
pub use profiling::Severity;
pub use quantum::CircuitComplexity;
pub use quantum::GateInstance;
pub use quantum::QuantumCircuit;
pub use quantum::QuantumExplainer;
pub use quantum::QuantumExplainerConfig;
pub use quantum::QuantumExplanation;
pub use quantum::QuantumGate;
pub use reporting::export_report;
pub use reporting::generate_quick_report;
pub use reporting::CaveatsAndRecommendations;
pub use reporting::DatasetInfo;
pub use reporting::EthicalConsiderations;
pub use reporting::EvaluationData;
pub use reporting::ExplanationSummary;
pub use reporting::Factor;
pub use reporting::IntendedUse;
pub use reporting::InterpretabilityReport;
pub use reporting::InterpretabilityScorecard;
pub use reporting::ModelCard;
pub use reporting::ModelDetails;
pub use reporting::OutputFormat;
pub use reporting::QuantitativeAnalysis;
pub use reporting::ReportConfig;
pub use reporting::ReportGenerator;
pub use reporting::ReportMetadata;
pub use reporting::ReportModelMetrics;
pub use reporting::TemplateStyle;
pub use reporting::TrainingData;
pub use rules::extract_rules_from_model;
pub use rules::generate_decision_rules;
pub use rules::generate_logical_explanations;
pub use rules::mine_association_rules;
pub use rules::simplify_rules;
pub use rules::AssociationRule;
pub use rules::ComparisonOperator;
pub use rules::DecisionRule;
pub use rules::RuleCondition;
pub use rules::RuleExtractionConfig;
pub use sensitivity::analyze_sensitivity;
pub use sensitivity::SensitivityConfig;
pub use sensitivity::SensitivityMethod;
pub use serialization::BatchSummary;
pub use serialization::CompressionType;
pub use serialization::DataStatistics;
pub use serialization::DatasetMetadata;
pub use serialization::ExplanationBatch;
pub use serialization::ExplanationConfiguration;
pub use serialization::ModelMetadata;
pub use serialization::SerializableExplanationResult;
pub use serialization::SerializationConfig;
pub use serialization::SerializationFormat;
pub use serialization::SerializationSummary;
pub use shapley::compute_deep_shap;
pub use shapley::compute_kernel_shap;
pub use shapley::compute_linear_shap;
pub use shapley::compute_partition_shap;
pub use shapley::compute_tree_shap;
pub use shapley::FeaturePartition;
pub use shapley::ShapleyConfig;
pub use shapley::ShapleyMetadata;
pub use shapley::ShapleyMethod;
pub use shapley::ShapleyResult;
pub use shapley::Tree;
pub use shapley::TreeNode;
pub use streaming::create_data_chunks;
pub use streaming::BackgroundStatistics;
pub use streaming::OnlineAggregator;
pub use streaming::StreamingConfig;
pub use streaming::StreamingDataIterator;
pub use streaming::StreamingExplainer;
pub use streaming::StreamingExplanationResult;
pub use streaming::StreamingShapExplainer;
pub use streaming::StreamingStatistics;
pub use testing::validate_explanation_output;
pub use testing::ConsistencyTestConfig;
pub use testing::FidelityTestConfig;
pub use testing::PropertyTestConfig;
pub use testing::PropertyTestResult;
pub use testing::PropertyViolation;
pub use testing::RobustnessTestConfig;
pub use testing::TestingSuite;
pub use time_series::AlignmentSegment;
pub use time_series::AlignmentType;
pub use time_series::DTWExplanation;
pub use time_series::DecompositionMethod;
pub use time_series::LagImportance;
pub use time_series::SeasonalDecomposition;
pub use time_series::TemporalImportance;
pub use time_series::TimeSeriesAnalyzer;
pub use time_series::TimeSeriesConfig;
pub use time_series::TrendAnalysis;
pub use time_series::TrendDirection;
pub use time_series::TrendSegment;
pub use uncertainty::analyze_prediction_uncertainty;
pub use uncertainty::calibrate_predictions;
pub use uncertainty::compute_calibration_metrics;
pub use uncertainty::quantify_uncertainty;
pub use uncertainty::CalibratedModel;
pub use uncertainty::CalibrationMethod;
pub use uncertainty::CalibrationMetrics;
pub use uncertainty::UncertaintyAnalysis;
pub use uncertainty::UncertaintyConfig;
pub use uncertainty::UncertaintyEstimator;
pub use uncertainty::UncertaintyResult;
pub use uncertainty::UncertaintyType;
pub use validation::AutomatedTestingResult;
pub use validation::CaseStudyMetadata;
pub use validation::CaseStudyValidationResult;
pub use validation::ConsistencyValidationResult;
pub use validation::DatasetValidationResult;
pub use validation::FeedbackSeverity;
pub use validation::HumanEvaluationResult;
pub use validation::MethodAgreement;
pub use validation::PerformanceBenchmark;
pub use validation::QualitativeFeedback;
pub use validation::StatisticalTest;
pub use validation::SyntheticValidationResult;
pub use validation::TestResult;
pub use validation::ValidationConfig;
pub use validation::ValidationFramework;
pub use visualization::create_3d_plot;
pub use visualization::create_3d_shap_plot;
pub use visualization::create_3d_surface_plot;
pub use visualization::create_comparative_plot;
pub use visualization::create_feature_importance_plot;
pub use visualization::create_partial_dependence_plot;
pub use visualization::create_shap_visualization;
pub use visualization::Animation3D;
pub use visualization::ColorScheme;
pub use visualization::ComparativePlot;
pub use visualization::ComparisonType;
pub use visualization::EasingType;
pub use visualization::FeatureImportancePlot;
pub use visualization::FeatureImportanceType;
pub use visualization::MobileConfig;
pub use visualization::PartialDependencePlot;
pub use visualization::Plot3D;
pub use visualization::Plot3DType;
pub use visualization::PlotConfig;
pub use visualization::ShapPlot;
pub use visualization::ShapPlotType;
pub use visualization::Surface3D;
pub use visualization_backend::AsciiBackend;
pub use visualization_backend::BackendCapabilities;
pub use visualization_backend::BackendConfig;
pub use visualization_backend::BackendRegistry;
pub use visualization_backend::ComparativeData;
pub use visualization_backend::CustomPlotData;
pub use visualization_backend::FeatureImportanceData;
pub use visualization_backend::HtmlBackend;
pub use visualization_backend::JsonBackend;
pub use visualization_backend::PartialDependenceData;
pub use visualization_backend::PlotType;
pub use visualization_backend::RenderedVisualization;
pub use visualization_backend::ShapData;
pub use visualization_backend::Theme;
pub use visualization_backend::VisualizationBackend;
pub use visualization_backend::VisualizationMetadata;
pub use visualization_backend::VisualizationRenderer;
pub use permutation::compute_score;
pub use types::*;

Modules§

adversarial
Adversarial and Robustness Analysis Methods
anchors
Anchors explanations
attention
Attention and Activation Analysis
benchmarking
Benchmarking and Performance Analysis
builder
Builder pattern and fluent API for complex explanations
causal
Causal Analysis
complexity
Model complexity analysis
computer_vision
Computer Vision Interpretability Methods
counterfactual
Counterfactual explanations
dashboard
Dashboard Integration
deep_learning
Deep Learning Interpretability
distributed
Distributed computation infrastructure for enterprise-scale explanation tasks
enterprise
Enterprise features for model explanation and inspection
external_visualizations
External Visualization Library Integrations
fairness
Fairness and bias detection tools
federated
Federated Learning explanation methods with privacy preservation
framework
Trait-based explanation framework for composable strategies
gnn
Graph Neural Network (GNN) interpretability methods
gpu
GPU acceleration infrastructure for explanation methods
hooks
Explanation Hooks and Event Handling System
information_theoretic
Information-Theoretic Methods for Model Interpretability
lazy
Lazy evaluation system for expensive explanation computations
llm
Large Language Model (LLM) interpretability methods
local_explanations
Local Explanations for Model Inspection
memory
Memory management and caching for explanation algorithms
metrics_registry
Custom Explanation Metric Registration System
model_agnostic
Model-agnostic explanation methods
model_comparison
Model comparison and analysis tools
multimodal
Multi-modal model explanations for text, vision, and audio
nlp
Natural Language Processing Interpretability Methods
occlusion
Occlusion and Masking Methods
parallel
Parallel computation utilities for explanation methods
partial_dependence
Partial dependence plots
permutation
Permutation importance calculation
perturbation
Perturbation Strategies for Model Analysis
plugins
Plugin Architecture for Custom Explanation Methods
probabilistic
Probabilistic Explanations Module
profiling
Profile-guided optimization for explanation algorithms
quantum
Quantum Machine Learning interpretability methods
reporting
Report Generation Module
rules
Rule-based explanations and rule extraction
sensitivity
Sensitivity Analysis Methods
serialization
Serialization support for explanation results
shapley
Advanced Shapley value methods for model explanation
streaming
Streaming explanation computation for large datasets
testing
Comprehensive Testing Framework
time_series
Time Series Interpretability Module
types
Common types and enums for model inspection
uncertainty
Uncertainty Quantification
validation
Validation Framework for Explanation Quality Assessment
visualization
Comprehensive Visualization Framework for Machine Learning Model Inspection
visualization_backend
Extensible Visualization Backend System

Enums§

SklearsError
Main error type for sklears

Functions§

compute_feature_statistics
Utility function to compute feature statistics
create_feature_importance_data
Feature Importance Data
generate_feature_names
Utility function to generate feature names if not provided
validate_input_dimensions
Utility function to validate input dimensions

Type Aliases§

Float
Default floating point type for the library
SklResult
Result type alias for sklears operations