Expand description
Model inspection and interpretation tools
This crate provides comprehensive tools for understanding and interpreting machine learning models, including feature importance, partial dependence plots, SHAP values, counterfactual explanations, anchors, model complexity analysis, and model-agnostic explanations.
Re-exports§
pub use types::explanation_methods;pub use types::explanation_states;pub use types::ExplanationConfig;pub use types::ExplanationConstraint;pub use types::ExplanationMethodValidator;pub use types::ExplanationProperties;pub use types::ExplanationValidator;pub use types::FeatureImportanceConstraint;pub use types::FixedSizeExplanation;pub use types::GlobalGradientConfig;pub use types::GlobalModelAgnosticConfig;pub use types::GradientCompatible;pub use types::LimeCompatible;pub use types::LocalGradientConfig;pub use types::LocalModelAgnosticConfig;pub use types::ModelIntrospectable;pub use types::ShapCompatible;pub use types::ShapConstraint;pub use types::TypedExplanation;pub use adversarial::analyze_explanation_stability;pub use adversarial::compute_certified_robustness;pub use adversarial::generate_adversarial_examples;pub use adversarial::test_explanation_robustness;pub use adversarial::AdversarialAttack;pub use adversarial::AdversarialConfig;pub use adversarial::AdversarialExampleResult;pub use adversarial::CertificationMethod;pub use adversarial::CertifiedRobustnessResult;pub use adversarial::ExplanationRobustnessResult;pub use adversarial::RobustnessMetric;pub use adversarial::StabilityAnalysisResult;pub use adversarial::StabilityTrend;pub use adversarial::VerificationStatus;pub use anchors::explain_with_anchors;pub use anchors::AnchorsConfig;pub use attention::analyze_attention;pub use attention::compute_gradcam;pub use attention::dissect_network;pub use attention::maximize_activation;pub use attention::visualize_features;pub use attention::ActivationMaximizationResult;pub use attention::AttentionAnalyzer;pub use attention::AttentionConfig;pub use attention::AttentionResult;pub use attention::AttentionType;pub use attention::FeatureVisualizationResult;pub use attention::GradCAMConfig;pub use attention::GradCAMResult as AttentionGradCAMResult;pub use attention::NetworkDissectionResult;pub use benchmarking::BenchmarkCategory;pub use benchmarking::BenchmarkConfig;pub use benchmarking::BenchmarkReport;pub use benchmarking::BenchmarkResult;pub use benchmarking::BenchmarkingSuite;pub use benchmarking::CategorySummary;pub use benchmarking::InsightSeverity;pub use benchmarking::InsightType;pub use benchmarking::MemoryStatistics;pub use benchmarking::PerformanceInsight;pub use benchmarking::ProblemType;pub use benchmarking::QualityMetrics;pub use benchmarking::ReferenceComparison;pub use benchmarking::TestConfiguration;pub use benchmarking::TimingStatistics;pub use builder::ComparisonResult;pub use builder::ComparisonResults;pub use builder::ComparisonStudy;pub use builder::ComparisonStudyBuilder;pub use builder::CounterfactualConfig as BuilderCounterfactualConfig;pub use builder::ExplanationBuilder;pub use builder::ExplanationPipelineExecutor;pub use builder::FeatureSelection;pub use builder::LimeConfig;pub use builder::OptimizationMethod;pub use builder::PermutationConfig as BuilderPermutationConfig;pub use builder::PipelineBuilder;pub use builder::PipelineExecutionResult;pub use builder::PipelineStep;pub use builder::ScoreFunction as BuilderScoreFunction;pub use builder::ShapConfig;pub use builder::StepMetadata;pub use causal::analyze_instrumental_variables;pub use causal::analyze_mediation;pub use causal::apply_do_calculus;pub use causal::discover_causal_structure;pub use causal::estimate_causal_effect;pub use causal::CausalConfig;pub use causal::CausalEffectMethod;pub use causal::CausalEffectResult;pub use causal::CausalGraph;pub use causal::InstrumentalVariableResult;pub use causal::MediationResult;pub use complexity::analyze_model_complexity;pub use complexity::ComplexityConfig;pub use computer_vision::explain_image_with_lime;pub use computer_vision::explain_object_detection;pub use computer_vision::explain_segmentation;pub use computer_vision::generate_gradcam;pub use computer_vision::generate_saliency_map;pub use computer_vision::ComputerVisionConfig;pub use computer_vision::DetectedObject;pub use computer_vision::GradCAMResult;pub use computer_vision::GradCAMStats;pub use computer_vision::Image;pub use computer_vision::ImageLimeResult;pub use computer_vision::KeyFeature;pub use computer_vision::ObjectDetectionExplanation;pub use computer_vision::SaliencyMapResult;pub use computer_vision::SaliencyMethod;pub use computer_vision::SegmentExplanation;pub use computer_vision::SegmentationExplanation;pub use computer_vision::Superpixel;pub use counterfactual::generate_actionable_counterfactual;pub use counterfactual::generate_causal_counterfactual;pub use counterfactual::generate_counterfactual;pub use counterfactual::generate_diverse_counterfactuals;pub use counterfactual::generate_feasible_counterfactual;pub use counterfactual::generate_nearest_counterfactual;pub use counterfactual::CounterfactualConfig;pub use counterfactual::FeasibilityConfig;pub use dashboard::Alert;pub use dashboard::AlertSeverity;pub use dashboard::AlertThresholds;pub use dashboard::AlertType;pub use dashboard::Dashboard;pub use dashboard::DashboardConfig;pub use dashboard::DashboardDataPoint;pub use dashboard::DashboardLayout;pub use dashboard::DashboardState;pub use dashboard::DashboardTheme;pub use dashboard::DashboardUpdate;pub use dashboard::WidgetConfig;pub use dashboard::WidgetType;pub use deep_learning::ConceptActivationVector;pub use deep_learning::ConceptDatabase;pub use deep_learning::ConceptDiscoveryMethod;pub use deep_learning::ConceptHierarchy;pub use deep_learning::DeepLearningAnalyzer;pub use deep_learning::DeepLearningConfig;pub use deep_learning::DetectedConcept;pub use deep_learning::DisentanglementMetrics;pub use deep_learning::NetworkDissectionResult as DeepNetworkDissectionResult;pub use deep_learning::TCAVResult;pub use distributed::ClusterConfig;pub use distributed::ClusterExplanationOrchestrator;pub use distributed::ClusterHealth;pub use distributed::ClusterStatistics;pub use distributed::DistributedCoordinator;pub use distributed::DistributedTask;pub use distributed::HealthStatus;pub use distributed::LoadBalancingStrategy;pub use distributed::TaskResult;pub use distributed::TaskStatus;pub use distributed::TaskType;pub use distributed::WorkerConfig;pub use distributed::WorkerNode;pub use enterprise::AccessControl;pub use enterprise::AccessControlConfig;pub use enterprise::AccessLevel;pub use enterprise::ActionItem;pub use enterprise::AlertRule;pub use enterprise::AuditEvent;pub use enterprise::AuditEventType;pub use enterprise::AuditLogger;pub use enterprise::AuditRecord;pub use enterprise::AuditSeverity;pub use enterprise::AuditTrail;pub use enterprise::ComplianceFramework;pub use enterprise::ComplianceReport;pub use enterprise::ComplianceReporter;pub use enterprise::ComplianceRule;pub use enterprise::ComplianceStatus;pub use enterprise::EnterpriseConfig;pub use enterprise::ExplanationLineage;pub use enterprise::ExplanationQualityMonitor;pub use enterprise::LineageNode;pub use enterprise::LineageRelation;pub use enterprise::LineageTracker;pub use enterprise::OperationType;pub use enterprise::Permission;pub use enterprise::PermissionSet;pub use enterprise::QualityAlert;pub use enterprise::QualityDataPoint;pub use enterprise::QualityLevel;pub use enterprise::QualityMetric;pub use enterprise::QualityMonitorConfig;pub use enterprise::QualityStatistics;pub use enterprise::QualityThreshold;pub use enterprise::QualityTrend;pub use enterprise::QualityTrendDirection;pub use enterprise::RegulatoryRequirement;pub use enterprise::RiskLevel;pub use enterprise::Role;pub use enterprise::RoleManager;pub use enterprise::SecureExplanationExecutor;pub use enterprise::SecurityContext;pub use enterprise::User;pub use enterprise::UserGroup;pub use external_visualizations::D3Backend;pub use external_visualizations::D3Config;pub use external_visualizations::PlotlyBackend;pub use external_visualizations::PlotlyConfig;pub use external_visualizations::PlotlyPlotConfig;pub use external_visualizations::VegaLiteBackend;pub use external_visualizations::VegaLiteConfig;pub use external_visualizations::VegaLiteDefaultConfig;pub use fairness::analyze_demographic_parity;pub use fairness::analyze_equalized_odds;pub use fairness::analyze_individual_fairness;pub use fairness::assess_fairness;pub use fairness::compute_group_fairness_metrics;pub use fairness::detect_bias;pub use fairness::BiasDetectionResult;pub use fairness::DemographicParityResult;pub use fairness::DistanceMetric;pub use fairness::EqualizedOddsResult;pub use fairness::FairnessConfig;pub use fairness::FairnessMetrics;pub use fairness::FairnessResult;pub use fairness::IndividualFairnessResult;pub use federated::AggregationStats;pub use federated::FederatedConfig;pub use federated::FederatedExplainer;pub use federated::FederatedExplanation;pub use federated::PrivacyMechanism;pub use framework::ChainedConfig;pub use framework::ChainedStrategy;pub use framework::CombinedConfig;pub use framework::CombinedOutput;pub use framework::CombinedStrategy;pub use framework::CounterfactualExplainer;pub use framework::Explainer;pub use framework::ExplanationMetadata;pub use framework::ExplanationPipeline;pub use framework::ExplanationPostProcessor;pub use framework::ExplanationStrategy;pub use framework::FeatureAttributor;pub use framework::FeatureExplainer;pub use framework::GlobalExplainer;pub use framework::GradientAttributor;pub use framework::LocalExplainer;pub use framework::PipelineResult;pub use framework::UncertainExplanation;pub use framework::UncertaintyAwareExplainer;pub use framework::ValidationResult;pub use framework::ValidationViolation;pub use framework::ViolationSeverity;pub use gnn::GNNExplainer;pub use gnn::GNNExplainerConfig;pub use gnn::GNNExplanation;pub use gnn::GNNTask;pub use gnn::Graph;pub use gnn::MessagePassingExplanation;pub use gpu::utils as gpu_utils;pub use gpu::GpuBackend;pub use gpu::GpuBuffer;pub use gpu::GpuConfig;pub use gpu::GpuContext;pub use gpu::GpuDevice;pub use gpu::GpuExplanationComputer;pub use gpu::GpuPerformanceStats;pub use hooks::CustomEvent;pub use hooks::ErrorInfo;pub use hooks::ExecutionMetrics;pub use hooks::ExplanationHook;pub use hooks::HookContext;pub use hooks::HookEvent;pub use hooks::HookRegistry;pub use hooks::HookRegistryStatistics;pub use hooks::HookResult;pub use hooks::HookedExplanationExecutor;pub use hooks::LogLevel;pub use hooks::LoggingHook;pub use hooks::MemoryInfo;pub use hooks::MetricsHook;pub use hooks::ProgressInfo;pub use hooks::TimingInfo;pub use information_theoretic::analyze_information_bottleneck;pub use information_theoretic::analyze_mutual_information;pub use information_theoretic::apply_minimum_description_length;pub use information_theoretic::compute_information_gain_attribution;pub use information_theoretic::generate_entropy_explanations;pub use information_theoretic::EntropyExplanationResult;pub use information_theoretic::EstimationMethod;pub use information_theoretic::InformationBottleneckResult;pub use information_theoretic::InformationGainResult;pub use information_theoretic::InformationTheoreticConfig;pub use information_theoretic::MDLResult;pub use information_theoretic::MutualInformationResult;pub use lazy::LazyComputationManager;pub use lazy::LazyConfig;pub use lazy::LazyExecutionStats;pub use lazy::LazyExplanation;pub use lazy::LazyExplanationPipeline;pub use lazy::LazyFeatureImportance;pub use lazy::LazyShapValues;pub use llm::CounterfactualText;pub use llm::LLMAttentionExplanation;pub use llm::LLMExplainer;pub use llm::LLMExplainerConfig;pub use llm::LLMExplanation;pub use llm::LLMTask;pub use llm::LayerImportance;pub use llm::LayerType;pub use llm::NeuronActivation;pub use llm::PromptSensitivity;pub use llm::PromptVariation;pub use llm::TokenizedInput;pub use llm::VariationType;pub use local_explanations::explain_locally;pub use local_explanations::LocalExplanationConfig;pub use local_explanations::LocalExplanationMethod;pub use memory::cache_friendly_permutation_importance;pub use memory::cache_friendly_shap_computation;pub use memory::CacheConfig;pub use memory::CacheKey;pub use memory::CacheStatistics;pub use memory::ExplanationCache;pub use memory::ExplanationDataLayout;pub use memory::MemoryLayoutManager;pub use metrics_registry::CompletenessMetric;pub use metrics_registry::ComputationMetadata;pub use metrics_registry::ComputationalComplexity;pub use metrics_registry::ExplanationData;pub use metrics_registry::ExplanationMetric;pub use metrics_registry::ExplanationType;pub use metrics_registry::FidelityMetric;pub use metrics_registry::MetricCategory;pub use metrics_registry::MetricInput;pub use metrics_registry::MetricMetadata;pub use metrics_registry::MetricOutput;pub use metrics_registry::MetricProperties;pub use metrics_registry::MetricRegistry;pub use metrics_registry::RegistryStatistics;pub use metrics_registry::StabilityMetric;pub use model_agnostic::explain_model_agnostic;pub use model_agnostic::ModelAgnosticConfig;pub use model_comparison::analyze_ensemble;pub use model_comparison::assess_prediction_stability;pub use model_comparison::compare_models;pub use model_comparison::compute_model_agreement;pub use model_comparison::BiasVarianceDecomposition;pub use model_comparison::DiversityMetrics;pub use model_comparison::EnsembleAnalysisResult;pub use model_comparison::EnsembleMethod;pub use model_comparison::ModelComparisonConfig;pub use model_comparison::ModelComparisonResult;pub use model_comparison::ModelMetrics;pub use model_comparison::StabilityMetrics;pub use multimodal::CrossModalAttention;pub use multimodal::FusionExplanation;pub use multimodal::FusionStrategy;pub use multimodal::InteractionType;pub use multimodal::ModalityContributions;pub use multimodal::ModalityInteraction;pub use multimodal::ModalityType;pub use multimodal::MultiModalConfig;pub use multimodal::MultiModalExplainer;pub use multimodal::MultiModalExplanation;pub use multimodal::MultiModalInput;pub use nlp::analyze_text_attention;pub use nlp::explain_semantic_similarity;pub use nlp::explain_syntax;pub use nlp::explain_text_with_lime;pub use nlp::visualize_word_importance;pub use nlp::AttentionExplanation;pub use nlp::AttentionPattern;pub use nlp::AttentionPatternType;pub use nlp::NLPConfig;pub use nlp::SemanticCluster;pub use nlp::SemanticExplanation;pub use nlp::SemanticRelation;pub use nlp::SyntacticExplanation;pub use nlp::SyntacticNode;pub use nlp::SyntacticPattern;pub use nlp::SyntacticTree;pub use nlp::Token;pub use nlp::WordImportanceResult;pub use occlusion::analyze_occlusion;pub use occlusion::OcclusionConfig;pub use occlusion::OcclusionMethod;pub use parallel::compute_shap_parallel;pub use parallel::process_batches_optimized;pub use parallel::process_batches_parallel;pub use parallel::AdaptiveBatchConfig;pub use parallel::BatchConfig;pub use parallel::BatchStats;pub use parallel::CacheAwareExplanationStore;pub use parallel::CompressedBatch;pub use parallel::HighPerformanceBatchProcessor;pub use parallel::MemoryPool;pub use parallel::ParallelConfig;pub use parallel::ParallelExplanation;pub use parallel::ParallelPermutationImportance;pub use parallel::PermutationInput;pub use parallel::ProgressCallback;pub use parallel::StreamingBatchProcessor;pub use partial_dependence::partial_dependence;pub use permutation::permutation_importance;pub use perturbation::analyze_robustness;pub use perturbation::generate_perturbations;pub use perturbation::PerturbationConfig;pub use perturbation::PerturbationStrategy;pub use plugins::ExampleCustomPlugin;pub use plugins::ExecutionMetadata;pub use plugins::ExecutionStatistics;pub use plugins::ExplanationPlugin;pub use plugins::InputType;pub use plugins::LogLevel as PluginLogLevel;pub use plugins::OutputType;pub use plugins::PluginCapabilities;pub use plugins::PluginCapabilityFilter;pub use plugins::PluginConfig;pub use plugins::PluginData;pub use plugins::PluginExecution;pub use plugins::PluginInput;pub use plugins::PluginManager;pub use plugins::PluginMetadata;pub use plugins::PluginOutput;pub use plugins::PluginOutputData;pub use plugins::PluginParameter;pub use plugins::PluginRegistry;pub use plugins::PluginRegistryStatistics;pub use probabilistic::bayesian_model_averaging;pub use probabilistic::generate_bayesian_explanation;pub use probabilistic::generate_probabilistic_counterfactuals;pub use probabilistic::quantify_explanation_uncertainty;pub use probabilistic::BayesianExplanationResult;pub use probabilistic::BayesianModelAveragingResult;pub use probabilistic::ProbabilisticConfig;pub use probabilistic::ProbabilisticCounterfactualResult;pub use probabilistic::UncertainExplanationResult;pub use profiling::BottleneckType;pub use profiling::HotPath;pub use profiling::MethodProfile;pub use profiling::OptimizationComplexity;pub use profiling::OptimizationConfig;pub use profiling::OptimizationOpportunity;pub use profiling::OptimizationType;pub use profiling::PerformanceBottleneck;pub use profiling::ProfileGuidedOptimizer;pub use profiling::RuntimeStatistics;pub use profiling::Severity;pub use quantum::CircuitComplexity;pub use quantum::GateInstance;pub use quantum::QuantumCircuit;pub use quantum::QuantumExplainer;pub use quantum::QuantumExplainerConfig;pub use quantum::QuantumExplanation;pub use quantum::QuantumGate;pub use reporting::export_report;pub use reporting::generate_quick_report;pub use reporting::CaveatsAndRecommendations;pub use reporting::DatasetInfo;pub use reporting::EthicalConsiderations;pub use reporting::EvaluationData;pub use reporting::ExplanationSummary;pub use reporting::Factor;pub use reporting::IntendedUse;pub use reporting::InterpretabilityReport;pub use reporting::InterpretabilityScorecard;pub use reporting::ModelCard;pub use reporting::ModelDetails;pub use reporting::OutputFormat;pub use reporting::QuantitativeAnalysis;pub use reporting::ReportConfig;pub use reporting::ReportGenerator;pub use reporting::ReportMetadata;pub use reporting::ReportModelMetrics;pub use reporting::TemplateStyle;pub use reporting::TrainingData;pub use rules::extract_rules_from_model;pub use rules::generate_decision_rules;pub use rules::generate_logical_explanations;pub use rules::mine_association_rules;pub use rules::simplify_rules;pub use rules::AssociationRule;pub use rules::ComparisonOperator;pub use rules::DecisionRule;pub use rules::RuleCondition;pub use rules::RuleExtractionConfig;pub use sensitivity::analyze_sensitivity;pub use sensitivity::SensitivityConfig;pub use sensitivity::SensitivityMethod;pub use serialization::BatchSummary;pub use serialization::CompressionType;pub use serialization::DataStatistics;pub use serialization::DatasetMetadata;pub use serialization::ExplanationBatch;pub use serialization::ExplanationConfiguration;pub use serialization::ModelMetadata;pub use serialization::SerializableExplanationResult;pub use serialization::SerializationConfig;pub use serialization::SerializationFormat;pub use serialization::SerializationSummary;pub use shapley::compute_deep_shap;pub use shapley::compute_kernel_shap;pub use shapley::compute_linear_shap;pub use shapley::compute_partition_shap;pub use shapley::compute_tree_shap;pub use shapley::FeaturePartition;pub use shapley::ShapleyConfig;pub use shapley::ShapleyMetadata;pub use shapley::ShapleyMethod;pub use shapley::ShapleyResult;pub use shapley::Tree;pub use shapley::TreeNode;pub use streaming::create_data_chunks;pub use streaming::BackgroundStatistics;pub use streaming::OnlineAggregator;pub use streaming::StreamingConfig;pub use streaming::StreamingDataIterator;pub use streaming::StreamingExplainer;pub use streaming::StreamingExplanationResult;pub use streaming::StreamingShapExplainer;pub use streaming::StreamingStatistics;pub use testing::validate_explanation_output;pub use testing::ConsistencyTestConfig;pub use testing::FidelityTestConfig;pub use testing::PropertyTestConfig;pub use testing::PropertyTestResult;pub use testing::PropertyViolation;pub use testing::RobustnessTestConfig;pub use testing::TestingSuite;pub use time_series::AlignmentSegment;pub use time_series::AlignmentType;pub use time_series::DTWExplanation;pub use time_series::DecompositionMethod;pub use time_series::LagImportance;pub use time_series::SeasonalDecomposition;pub use time_series::TemporalImportance;pub use time_series::TimeSeriesAnalyzer;pub use time_series::TimeSeriesConfig;pub use time_series::TrendAnalysis;pub use time_series::TrendDirection;pub use time_series::TrendSegment;pub use uncertainty::analyze_prediction_uncertainty;pub use uncertainty::calibrate_predictions;pub use uncertainty::compute_calibration_metrics;pub use uncertainty::quantify_uncertainty;pub use uncertainty::CalibratedModel;pub use uncertainty::CalibrationMethod;pub use uncertainty::CalibrationMetrics;pub use uncertainty::UncertaintyAnalysis;pub use uncertainty::UncertaintyConfig;pub use uncertainty::UncertaintyEstimator;pub use uncertainty::UncertaintyResult;pub use uncertainty::UncertaintyType;pub use validation::AutomatedTestingResult;pub use validation::CaseStudyMetadata;pub use validation::CaseStudyValidationResult;pub use validation::ConsistencyValidationResult;pub use validation::DatasetValidationResult;pub use validation::FeedbackSeverity;pub use validation::HumanEvaluationResult;pub use validation::MethodAgreement;pub use validation::PerformanceBenchmark;pub use validation::QualitativeFeedback;pub use validation::StatisticalTest;pub use validation::SyntheticValidationResult;pub use validation::TestResult;pub use validation::ValidationConfig;pub use validation::ValidationFramework;pub use visualization::create_3d_plot;pub use visualization::create_3d_shap_plot;pub use visualization::create_3d_surface_plot;pub use visualization::create_comparative_plot;pub use visualization::create_feature_importance_plot;pub use visualization::create_partial_dependence_plot;pub use visualization::create_shap_visualization;pub use visualization::Animation3D;pub use visualization::ColorScheme;pub use visualization::ComparativePlot;pub use visualization::ComparisonType;pub use visualization::EasingType;pub use visualization::FeatureImportancePlot;pub use visualization::FeatureImportanceType;pub use visualization::MobileConfig;pub use visualization::PartialDependencePlot;pub use visualization::Plot3D;pub use visualization::Plot3DType;pub use visualization::PlotConfig;pub use visualization::ShapPlot;pub use visualization::ShapPlotType;pub use visualization::Surface3D;pub use visualization_backend::AsciiBackend;pub use visualization_backend::BackendCapabilities;pub use visualization_backend::BackendConfig;pub use visualization_backend::BackendRegistry;pub use visualization_backend::ComparativeData;pub use visualization_backend::CustomPlotData;pub use visualization_backend::FeatureImportanceData;pub use visualization_backend::HtmlBackend;pub use visualization_backend::JsonBackend;pub use visualization_backend::PartialDependenceData;pub use visualization_backend::PlotType;pub use visualization_backend::RenderedVisualization;pub use visualization_backend::ShapData;pub use visualization_backend::Theme;pub use visualization_backend::VisualizationBackend;pub use visualization_backend::VisualizationMetadata;pub use visualization_backend::VisualizationRenderer;pub use permutation::compute_score;pub use types::*;
Modules§
- adversarial
- Adversarial and Robustness Analysis Methods
- anchors
- Anchors explanations
- attention
- Attention and Activation Analysis
- benchmarking
- Benchmarking and Performance Analysis
- builder
- Builder pattern and fluent API for complex explanations
- causal
- Causal Analysis
- complexity
- Model complexity analysis
- computer_
vision - Computer Vision Interpretability Methods
- counterfactual
- Counterfactual explanations
- dashboard
- Dashboard Integration
- deep_
learning - Deep Learning Interpretability
- distributed
- Distributed computation infrastructure for enterprise-scale explanation tasks
- enterprise
- Enterprise features for model explanation and inspection
- external_
visualizations - External Visualization Library Integrations
- fairness
- Fairness and bias detection tools
- federated
- Federated Learning explanation methods with privacy preservation
- framework
- Trait-based explanation framework for composable strategies
- gnn
- Graph Neural Network (GNN) interpretability methods
- gpu
- GPU acceleration infrastructure for explanation methods
- hooks
- Explanation Hooks and Event Handling System
- information_
theoretic - Information-Theoretic Methods for Model Interpretability
- lazy
- Lazy evaluation system for expensive explanation computations
- llm
- Large Language Model (LLM) interpretability methods
- local_
explanations - Local Explanations for Model Inspection
- memory
- Memory management and caching for explanation algorithms
- metrics_
registry - Custom Explanation Metric Registration System
- model_
agnostic - Model-agnostic explanation methods
- model_
comparison - Model comparison and analysis tools
- multimodal
- Multi-modal model explanations for text, vision, and audio
- nlp
- Natural Language Processing Interpretability Methods
- occlusion
- Occlusion and Masking Methods
- parallel
- Parallel computation utilities for explanation methods
- partial_
dependence - Partial dependence plots
- permutation
- Permutation importance calculation
- perturbation
- Perturbation Strategies for Model Analysis
- plugins
- Plugin Architecture for Custom Explanation Methods
- probabilistic
- Probabilistic Explanations Module
- profiling
- Profile-guided optimization for explanation algorithms
- quantum
- Quantum Machine Learning interpretability methods
- reporting
- Report Generation Module
- rules
- Rule-based explanations and rule extraction
- sensitivity
- Sensitivity Analysis Methods
- serialization
- Serialization support for explanation results
- shapley
- Advanced Shapley value methods for model explanation
- streaming
- Streaming explanation computation for large datasets
- testing
- Comprehensive Testing Framework
- time_
series - Time Series Interpretability Module
- types
- Common types and enums for model inspection
- uncertainty
- Uncertainty Quantification
- validation
- Validation Framework for Explanation Quality Assessment
- visualization
- Comprehensive Visualization Framework for Machine Learning Model Inspection
- visualization_
backend - Extensible Visualization Backend System
Enums§
- Sklears
Error - Main error type for sklears
Functions§
- compute_
feature_ statistics - Utility function to compute feature statistics
- create_
feature_ importance_ data - Feature Importance Data
- generate_
feature_ names - Utility function to generate feature names if not provided
- validate_
input_ dimensions - Utility function to validate input dimensions