sklears_impute/
neural.rs

1//! Neural network-based imputation methods
2//!
3//! This module provides deep learning approaches to missing data imputation.
4//! Note: Many advanced neural methods are currently stub implementations.
5
6use scirs2_core::ndarray::{Array2, ArrayView2};
7
8/// Autoencoder Imputer
9#[derive(Debug, Clone)]
10pub struct AutoencoderImputer {
11    /// hidden_layers
12    pub hidden_layers: Vec<usize>,
13    /// activation
14    pub activation: String,
15    /// epochs
16    pub epochs: usize,
17    /// learning_rate
18    pub learning_rate: f64,
19}
20
21impl Default for AutoencoderImputer {
22    fn default() -> Self {
23        Self {
24            hidden_layers: vec![64, 32, 64],
25            activation: "relu".to_string(),
26            epochs: 100,
27            learning_rate: 0.001,
28        }
29    }
30}
31
32impl AutoencoderImputer {
33    pub fn new() -> Self {
34        Self::default()
35    }
36
37    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
38        Err("AutoencoderImputer not fully implemented yet".to_string())
39    }
40}
41
42/// Multi-Layer Perceptron Imputer
43#[derive(Debug, Clone)]
44pub struct MLPImputer {
45    /// hidden_layers
46    pub hidden_layers: Vec<usize>,
47    /// activation
48    pub activation: String,
49    /// epochs
50    pub epochs: usize,
51    /// learning_rate
52    pub learning_rate: f64,
53}
54
55impl Default for MLPImputer {
56    fn default() -> Self {
57        Self {
58            hidden_layers: vec![100, 50],
59            activation: "relu".to_string(),
60            epochs: 100,
61            learning_rate: 0.001,
62        }
63    }
64}
65
66impl MLPImputer {
67    pub fn new() -> Self {
68        Self::default()
69    }
70
71    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
72        Err("MLPImputer not fully implemented yet".to_string())
73    }
74}
75
76/// Variational Autoencoder Imputer
77#[derive(Debug, Clone)]
78pub struct VAEImputer {
79    /// latent_dim
80    pub latent_dim: usize,
81    /// hidden_layers
82    pub hidden_layers: Vec<usize>,
83    /// epochs
84    pub epochs: usize,
85    /// learning_rate
86    pub learning_rate: f64,
87    /// kl_weight
88    pub kl_weight: f64,
89}
90
91impl Default for VAEImputer {
92    fn default() -> Self {
93        Self {
94            latent_dim: 10,
95            hidden_layers: vec![64, 32],
96            epochs: 100,
97            learning_rate: 0.001,
98            kl_weight: 1.0,
99        }
100    }
101}
102
103impl VAEImputer {
104    pub fn new() -> Self {
105        Self::default()
106    }
107
108    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
109        Err("VAEImputer not fully implemented yet".to_string())
110    }
111
112    pub fn predict_with_uncertainty(
113        &self,
114        _X: &ArrayView2<f64>,
115    ) -> Result<(Array2<f64>, Array2<f64>), String> {
116        Err("VAEImputer uncertainty prediction not implemented yet".to_string())
117    }
118}
119
120/// Generative Adversarial Network Imputer
121#[derive(Debug, Clone)]
122pub struct GANImputer {
123    /// generator_layers
124    pub generator_layers: Vec<usize>,
125    /// discriminator_layers
126    pub discriminator_layers: Vec<usize>,
127    /// epochs
128    pub epochs: usize,
129    /// learning_rate
130    pub learning_rate: f64,
131    /// noise_dim
132    pub noise_dim: usize,
133}
134
135impl Default for GANImputer {
136    fn default() -> Self {
137        Self {
138            generator_layers: vec![64, 128, 64],
139            discriminator_layers: vec![64, 32, 1],
140            epochs: 100,
141            learning_rate: 0.001,
142            noise_dim: 10,
143        }
144    }
145}
146
147impl GANImputer {
148    pub fn new() -> Self {
149        Self::default()
150    }
151
152    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
153        Err("GANImputer not fully implemented yet".to_string())
154    }
155}
156
157/// Normalizing Flow Imputer
158#[derive(Debug, Clone)]
159pub struct NormalizingFlowImputer {
160    /// n_flows
161    pub n_flows: usize,
162    /// hidden_dim
163    pub hidden_dim: usize,
164    /// epochs
165    pub epochs: usize,
166    /// learning_rate
167    pub learning_rate: f64,
168}
169
170impl Default for NormalizingFlowImputer {
171    fn default() -> Self {
172        Self {
173            n_flows: 8,
174            hidden_dim: 64,
175            epochs: 100,
176            learning_rate: 0.001,
177        }
178    }
179}
180
181impl NormalizingFlowImputer {
182    pub fn new() -> Self {
183        Self::default()
184    }
185
186    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
187        Err("NormalizingFlowImputer not fully implemented yet".to_string())
188    }
189}
190
191/// Diffusion Model Imputer
192#[derive(Debug, Clone)]
193pub struct DiffusionImputer {
194    /// n_timesteps
195    pub n_timesteps: usize,
196    /// hidden_dim
197    pub hidden_dim: usize,
198    /// epochs
199    pub epochs: usize,
200    /// learning_rate
201    pub learning_rate: f64,
202}
203
204impl Default for DiffusionImputer {
205    fn default() -> Self {
206        Self {
207            n_timesteps: 1000,
208            hidden_dim: 128,
209            epochs: 100,
210            learning_rate: 0.001,
211        }
212    }
213}
214
215impl DiffusionImputer {
216    pub fn new() -> Self {
217        Self::default()
218    }
219
220    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
221        Err("DiffusionImputer not fully implemented yet".to_string())
222    }
223}
224
225/// Neural ODE Imputer
226#[derive(Debug, Clone)]
227pub struct NeuralODEImputer {
228    /// hidden_dim
229    pub hidden_dim: usize,
230    /// n_layers
231    pub n_layers: usize,
232    /// time_steps
233    pub time_steps: Vec<f64>,
234    /// solver
235    pub solver: String,
236}
237
238impl Default for NeuralODEImputer {
239    fn default() -> Self {
240        Self {
241            hidden_dim: 64,
242            n_layers: 3,
243            time_steps: vec![0.0, 1.0],
244            solver: "dopri5".to_string(),
245        }
246    }
247}
248
249impl NeuralODEImputer {
250    pub fn new() -> Self {
251        Self::default()
252    }
253
254    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
255        Err("NeuralODEImputer not fully implemented yet".to_string())
256    }
257}
258
259// Additional stub types that may be referenced
260
261/// Transformer Imputer stub
262#[derive(Debug, Clone)]
263pub struct TransformerImputer {
264    /// n_heads
265    pub n_heads: usize,
266    /// n_layers
267    pub n_layers: usize,
268    /// hidden_dim
269    pub hidden_dim: usize,
270}
271
272impl Default for TransformerImputer {
273    fn default() -> Self {
274        Self {
275            n_heads: 8,
276            n_layers: 6,
277            hidden_dim: 512,
278        }
279    }
280}
281
282/// RNN Imputer stub
283#[derive(Debug, Clone)]
284pub struct RNNImputer {
285    /// hidden_dim
286    pub hidden_dim: usize,
287    /// n_layers
288    pub n_layers: usize,
289    /// cell_type
290    pub cell_type: String,
291}
292
293impl Default for RNNImputer {
294    fn default() -> Self {
295        Self {
296            hidden_dim: 64,
297            n_layers: 2,
298            cell_type: "lstm".to_string(),
299        }
300    }
301}
302
303/// LSTM Imputer stub
304#[derive(Debug, Clone)]
305pub struct LSTMImputer {
306    /// hidden_dim
307    pub hidden_dim: usize,
308    /// n_layers
309    pub n_layers: usize,
310    /// bidirectional
311    pub bidirectional: bool,
312}
313
314impl Default for LSTMImputer {
315    fn default() -> Self {
316        Self {
317            hidden_dim: 64,
318            n_layers: 2,
319            bidirectional: false,
320        }
321    }
322}
323
324/// Attention Mechanism stub
325#[derive(Debug, Clone)]
326pub struct AttentionMechanism {
327    /// attention_type
328    pub attention_type: String,
329    /// n_heads
330    pub n_heads: usize,
331}
332
333/// Sequential Imputation stub
334#[derive(Debug, Clone)]
335pub struct SequentialImputation {
336    /// sequence_length
337    pub sequence_length: usize,
338    /// overlap
339    pub overlap: usize,
340}
341
342// Trained states (type aliases for simplicity)
343pub type AutoencoderImputerTrained = AutoencoderImputer;
344pub type MLPImputerTrained = MLPImputer;
345pub type VAEImputerTrained = VAEImputer;
346pub type GANImputerTrained = GANImputer;
347pub type NormalizingFlowImputerTrained = NormalizingFlowImputer;
348pub type DiffusionImputerTrained = DiffusionImputer;
349pub type NeuralODEImputerTrained = NeuralODEImputer;