1use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
7
8#[derive(Debug, Clone)]
10pub struct BayesianLinearImputer {
11 pub max_iter: usize,
13 pub tol: f64,
15 pub alpha: f64,
17 pub beta: f64,
19}
20
21impl Default for BayesianLinearImputer {
22 fn default() -> Self {
23 Self {
24 max_iter: 1000,
25 tol: 1e-6,
26 alpha: 1.0,
27 beta: 1.0,
28 }
29 }
30}
31
32impl BayesianLinearImputer {
33 pub fn new() -> Self {
34 Self::default()
35 }
36
37 pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
38 Err("BayesianLinearImputer not fully implemented yet".to_string())
39 }
40}
41
42#[derive(Debug, Clone)]
44pub struct BayesianLogisticImputer {
45 pub max_iter: usize,
47 pub tol: f64,
49}
50
51impl Default for BayesianLogisticImputer {
52 fn default() -> Self {
53 Self {
54 max_iter: 1000,
55 tol: 1e-6,
56 }
57 }
58}
59
60impl BayesianLogisticImputer {
61 pub fn new() -> Self {
62 Self::default()
63 }
64
65 pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
66 Err("BayesianLogisticImputer not fully implemented yet".to_string())
67 }
68}
69
70#[derive(Debug, Clone)]
72pub struct BayesianMultipleImputer {
73 pub n_imputations: usize,
75 pub max_iter: usize,
77}
78
79impl Default for BayesianMultipleImputer {
80 fn default() -> Self {
81 Self {
82 n_imputations: 5,
83 max_iter: 1000,
84 }
85 }
86}
87
88impl BayesianMultipleImputer {
89 pub fn new() -> Self {
90 Self::default()
91 }
92
93 pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
94 Err("BayesianMultipleImputer not fully implemented yet".to_string())
95 }
96}
97
98#[derive(Debug, Clone)]
100pub struct HierarchicalBayesianImputer {
101 pub n_levels: usize,
103 pub max_iter: usize,
105}
106
107impl Default for HierarchicalBayesianImputer {
108 fn default() -> Self {
109 Self {
110 n_levels: 2,
111 max_iter: 1000,
112 }
113 }
114}
115
116impl HierarchicalBayesianImputer {
117 pub fn new() -> Self {
118 Self::default()
119 }
120}
121
122#[derive(Debug, Clone)]
124pub struct VariationalBayesImputer {
125 pub max_iter: usize,
127 pub tol: f64,
129}
130
131impl Default for VariationalBayesImputer {
132 fn default() -> Self {
133 Self {
134 max_iter: 1000,
135 tol: 1e-6,
136 }
137 }
138}
139
140impl VariationalBayesImputer {
141 pub fn new() -> Self {
142 Self::default()
143 }
144}
145
146pub trait BayesianModel: Send + Sync {
150 fn log_likelihood(&self, X: &ArrayView2<f64>) -> f64;
151 fn sample_posterior(&mut self, X: &ArrayView2<f64>) -> Result<(), String>;
152}
153
154#[derive(Debug, Clone, Default)]
156pub struct BayesianModelAveraging {
157 pub models: Vec<String>,
159 pub weights: Vec<f64>,
161}
162
163impl BayesianModelAveraging {
164 pub fn new() -> Self {
165 Self::default()
166 }
167}
168
169#[derive(Debug, Clone)]
171pub struct BayesianModelAveragingResults {
172 pub predictions: Array2<f64>,
174 pub weights: Array1<f64>,
176 pub model_probabilities: Array1<f64>,
178}
179
180#[derive(Debug, Clone, Default)]
182pub struct ConvergenceDiagnostics {
183 pub rhat: Vec<f64>,
185 pub ess: Vec<f64>,
187 pub converged: bool,
189}
190
191impl ConvergenceDiagnostics {
192 pub fn new() -> Self {
193 Self::default()
194 }
195}
196
197#[derive(Debug, Clone)]
199pub struct PooledResults {
200 pub estimates: Array1<f64>,
202 pub standard_errors: Array1<f64>,
204 pub degrees_of_freedom: f64,
206}
207
208impl PooledResults {
209 pub fn new(estimates: Array1<f64>) -> Self {
210 let n = estimates.len();
211 Self {
212 estimates,
213 standard_errors: Array1::zeros(n),
214 degrees_of_freedom: 0.0,
215 }
216 }
217}
218
219#[derive(Debug, Clone)]
221pub struct HierarchicalBayesianSample {
222 pub global_parameters: Array1<f64>,
224 pub local_parameters: Array2<f64>,
226 pub hyperparameters: Array1<f64>,
228}
229
230#[derive(Debug, Clone)]
232pub struct BayesianRegressionSample {
233 pub coefficients: Array1<f64>,
235 pub intercept: f64,
237 pub sigma: f64,
239}
240
241#[derive(Debug, Clone)]
245pub struct MCMCsampler {
246 pub n_samples: usize,
248 pub burn_in: usize,
250}
251
252#[derive(Debug, Clone)]
254pub struct GibbsSampler {
255 pub n_samples: usize,
257}
258
259#[derive(Debug, Clone)]
261pub struct MetropolisHastingsSampler {
262 pub n_samples: usize,
264}
265
266#[derive(Debug, Clone)]
268pub struct PriorSpecification {
269 pub prior_type: String,
271 pub parameters: Vec<f64>,
273}
274
275#[derive(Debug, Clone)]
277pub struct ConjugatePrior {
278 pub alpha: f64,
280 pub beta: f64,
282}
283
284#[derive(Debug, Clone)]
286pub struct NonConjugatePrior {
287 pub distribution: String,
289 pub parameters: Vec<f64>,
291}
292
293#[derive(Debug, Clone)]
295pub struct VariationalParameters {
296 pub mean: Array1<f64>,
298 pub variance: Array1<f64>,
300}
301
302#[derive(Debug, Clone)]
304pub struct ELBOComponents {
305 pub log_likelihood: f64,
307 pub kl_divergence: f64,
309}
310
311pub type BayesianLinearImputerTrained = BayesianLinearImputer;
313pub type BayesianLogisticImputerTrained = BayesianLogisticImputer;
314pub type BayesianMultipleImputerTrained = BayesianMultipleImputer;
315pub type HierarchicalBayesianImputerTrained = HierarchicalBayesianImputer;
316pub type VariationalBayesImputerTrained = VariationalBayesImputer;