sklears_impute/
bayesian.rs

1//! Bayesian imputation methods
2//!
3//! This module provides comprehensive Bayesian approaches to missing data imputation.
4//! Note: Many advanced Bayesian methods are currently stub implementations.
5
6use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
7
8/// Bayesian Linear Imputer
9#[derive(Debug, Clone)]
10pub struct BayesianLinearImputer {
11    /// max_iter
12    pub max_iter: usize,
13    /// tol
14    pub tol: f64,
15    /// alpha
16    pub alpha: f64,
17    /// beta
18    pub beta: f64,
19}
20
21impl Default for BayesianLinearImputer {
22    fn default() -> Self {
23        Self {
24            max_iter: 1000,
25            tol: 1e-6,
26            alpha: 1.0,
27            beta: 1.0,
28        }
29    }
30}
31
32impl BayesianLinearImputer {
33    pub fn new() -> Self {
34        Self::default()
35    }
36
37    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
38        Err("BayesianLinearImputer not fully implemented yet".to_string())
39    }
40}
41
42/// Bayesian Logistic Imputer
43#[derive(Debug, Clone)]
44pub struct BayesianLogisticImputer {
45    /// max_iter
46    pub max_iter: usize,
47    /// tol
48    pub tol: f64,
49}
50
51impl Default for BayesianLogisticImputer {
52    fn default() -> Self {
53        Self {
54            max_iter: 1000,
55            tol: 1e-6,
56        }
57    }
58}
59
60impl BayesianLogisticImputer {
61    pub fn new() -> Self {
62        Self::default()
63    }
64
65    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
66        Err("BayesianLogisticImputer not fully implemented yet".to_string())
67    }
68}
69
70/// Bayesian Multiple Imputer
71#[derive(Debug, Clone)]
72pub struct BayesianMultipleImputer {
73    /// n_imputations
74    pub n_imputations: usize,
75    /// max_iter
76    pub max_iter: usize,
77}
78
79impl Default for BayesianMultipleImputer {
80    fn default() -> Self {
81        Self {
82            n_imputations: 5,
83            max_iter: 1000,
84        }
85    }
86}
87
88impl BayesianMultipleImputer {
89    pub fn new() -> Self {
90        Self::default()
91    }
92
93    pub fn fit_transform(&self, _X: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
94        Err("BayesianMultipleImputer not fully implemented yet".to_string())
95    }
96}
97
98/// Hierarchical Bayesian Imputer
99#[derive(Debug, Clone)]
100pub struct HierarchicalBayesianImputer {
101    /// n_levels
102    pub n_levels: usize,
103    /// max_iter
104    pub max_iter: usize,
105}
106
107impl Default for HierarchicalBayesianImputer {
108    fn default() -> Self {
109        Self {
110            n_levels: 2,
111            max_iter: 1000,
112        }
113    }
114}
115
116impl HierarchicalBayesianImputer {
117    pub fn new() -> Self {
118        Self::default()
119    }
120}
121
122/// Variational Bayes Imputer
123#[derive(Debug, Clone)]
124pub struct VariationalBayesImputer {
125    /// max_iter
126    pub max_iter: usize,
127    /// tol
128    pub tol: f64,
129}
130
131impl Default for VariationalBayesImputer {
132    fn default() -> Self {
133        Self {
134            max_iter: 1000,
135            tol: 1e-6,
136        }
137    }
138}
139
140impl VariationalBayesImputer {
141    pub fn new() -> Self {
142        Self::default()
143    }
144}
145
146// Stub types for compatibility
147
148/// Bayesian Model trait
149pub trait BayesianModel: Send + Sync {
150    fn log_likelihood(&self, X: &ArrayView2<f64>) -> f64;
151    fn sample_posterior(&mut self, X: &ArrayView2<f64>) -> Result<(), String>;
152}
153
154/// Bayesian Model Averaging
155#[derive(Debug, Clone, Default)]
156pub struct BayesianModelAveraging {
157    /// models
158    pub models: Vec<String>,
159    /// weights
160    pub weights: Vec<f64>,
161}
162
163impl BayesianModelAveraging {
164    pub fn new() -> Self {
165        Self::default()
166    }
167}
168
169/// Bayesian Model Averaging Results
170#[derive(Debug, Clone)]
171pub struct BayesianModelAveragingResults {
172    /// predictions
173    pub predictions: Array2<f64>,
174    /// weights
175    pub weights: Array1<f64>,
176    /// model_probabilities
177    pub model_probabilities: Array1<f64>,
178}
179
180/// Convergence Diagnostics
181#[derive(Debug, Clone, Default)]
182pub struct ConvergenceDiagnostics {
183    /// rhat
184    pub rhat: Vec<f64>,
185    /// ess
186    pub ess: Vec<f64>,
187    /// converged
188    pub converged: bool,
189}
190
191impl ConvergenceDiagnostics {
192    pub fn new() -> Self {
193        Self::default()
194    }
195}
196
197/// Pooled Results for multiple imputation
198#[derive(Debug, Clone)]
199pub struct PooledResults {
200    /// estimates
201    pub estimates: Array1<f64>,
202    /// standard_errors
203    pub standard_errors: Array1<f64>,
204    /// degrees_of_freedom
205    pub degrees_of_freedom: f64,
206}
207
208impl PooledResults {
209    pub fn new(estimates: Array1<f64>) -> Self {
210        let n = estimates.len();
211        Self {
212            estimates,
213            standard_errors: Array1::zeros(n),
214            degrees_of_freedom: 0.0,
215        }
216    }
217}
218
219/// Hierarchical Bayesian Sample
220#[derive(Debug, Clone)]
221pub struct HierarchicalBayesianSample {
222    /// global_parameters
223    pub global_parameters: Array1<f64>,
224    /// local_parameters
225    pub local_parameters: Array2<f64>,
226    /// hyperparameters
227    pub hyperparameters: Array1<f64>,
228}
229
230/// Bayesian Regression Sample
231#[derive(Debug, Clone)]
232pub struct BayesianRegressionSample {
233    /// coefficients
234    pub coefficients: Array1<f64>,
235    /// intercept
236    pub intercept: f64,
237    /// sigma
238    pub sigma: f64,
239}
240
241// Additional stub types that may be referenced in lib.rs
242
243/// MCMC Sampler stub
244#[derive(Debug, Clone)]
245pub struct MCMCsampler {
246    /// n_samples
247    pub n_samples: usize,
248    /// burn_in
249    pub burn_in: usize,
250}
251
252/// Gibbs Sampler stub
253#[derive(Debug, Clone)]
254pub struct GibbsSampler {
255    /// n_samples
256    pub n_samples: usize,
257}
258
259/// Metropolis-Hastings Sampler stub
260#[derive(Debug, Clone)]
261pub struct MetropolisHastingsSampler {
262    /// n_samples
263    pub n_samples: usize,
264}
265
266/// Prior Specification stub
267#[derive(Debug, Clone)]
268pub struct PriorSpecification {
269    /// prior_type
270    pub prior_type: String,
271    /// parameters
272    pub parameters: Vec<f64>,
273}
274
275/// Conjugate Prior stub
276#[derive(Debug, Clone)]
277pub struct ConjugatePrior {
278    /// alpha
279    pub alpha: f64,
280    /// beta
281    pub beta: f64,
282}
283
284/// Non-conjugate Prior stub
285#[derive(Debug, Clone)]
286pub struct NonConjugatePrior {
287    /// distribution
288    pub distribution: String,
289    /// parameters
290    pub parameters: Vec<f64>,
291}
292
293/// Variational Parameters stub
294#[derive(Debug, Clone)]
295pub struct VariationalParameters {
296    /// mean
297    pub mean: Array1<f64>,
298    /// variance
299    pub variance: Array1<f64>,
300}
301
302/// ELBO Components stub
303#[derive(Debug, Clone)]
304pub struct ELBOComponents {
305    /// log_likelihood
306    pub log_likelihood: f64,
307    /// kl_divergence
308    pub kl_divergence: f64,
309}
310
311// Trained states (stubs)
312pub type BayesianLinearImputerTrained = BayesianLinearImputer;
313pub type BayesianLogisticImputerTrained = BayesianLogisticImputer;
314pub type BayesianMultipleImputerTrained = BayesianMultipleImputer;
315pub type HierarchicalBayesianImputerTrained = HierarchicalBayesianImputer;
316pub type VariationalBayesImputerTrained = VariationalBayesImputer;