Expand description
Missing value imputation strategies
This module provides various strategies for handling missing values in datasets. It includes simple imputation methods as well as more sophisticated approaches like iterative imputation, KNN-based imputation, matrix factorization, and Bayesian methods.
Re-exports§
pub use advanced::analyze_breakdown_point;pub use advanced::BreakdownPointAnalysis;pub use advanced::CopulaImputer;pub use advanced::CopulaParameters;pub use advanced::EmpiricalCDF;pub use advanced::EmpiricalQuantile;pub use advanced::FactorAnalysisImputer;pub use advanced::KDEImputer;pub use advanced::LocalLinearImputer;pub use advanced::LowessImputer;pub use advanced::MultivariateNormalImputer;pub use advanced::RobustRegressionImputer;pub use advanced::TrimmedMeanImputer;pub use bayesian::BayesianLinearImputer;pub use bayesian::BayesianLogisticImputer;pub use bayesian::BayesianModel;pub use bayesian::BayesianModelAveraging;pub use bayesian::BayesianModelAveragingResults;pub use bayesian::BayesianMultipleImputer;pub use bayesian::ConvergenceDiagnostics;pub use bayesian::HierarchicalBayesianImputer;pub use bayesian::HierarchicalBayesianSample;pub use bayesian::PooledResults;pub use bayesian::VariationalBayesImputer;pub use benchmarks::AccuracyMetrics;pub use benchmarks::BenchmarkDatasetGenerator;pub use benchmarks::BenchmarkSuite;pub use benchmarks::ImputationBenchmark;pub use benchmarks::ImputationComparison;pub use benchmarks::MissingPattern;pub use benchmarks::MissingPatternGenerator;pub use categorical::AssociationRule;pub use categorical::AssociationRuleImputer;pub use categorical::CategoricalClusteringImputer;pub use categorical::CategoricalRandomForestImputer;pub use categorical::HotDeckImputer;pub use categorical::Item;pub use categorical::Itemset;pub use core::utils;pub use core::ConvergenceInfo;pub use core::ImputationError;pub use core::ImputationMetadata;pub use core::ImputationOutputWithMetadata;pub use core::ImputationResult;pub use core::Imputer;pub use core::ImputerConfig;pub use core::MissingPatternHandler;pub use core::QualityAssessment;pub use core::StatisticalValidator;pub use core::TrainableImputer;pub use core::TransformableImputer;pub use dimensionality::CompressedSensingImputer;pub use dimensionality::ICAImputer;pub use dimensionality::ManifoldLearningImputer;pub use dimensionality::PCAImputer;pub use dimensionality::SparseImputer;pub use domain_specific::CreditScoringImputer;pub use domain_specific::DemographicDataImputer;pub use domain_specific::EconomicIndicatorImputer;pub use domain_specific::FinancialTimeSeriesImputer;pub use domain_specific::GenomicImputer;pub use domain_specific::LongitudinalStudyImputer;pub use domain_specific::MetabolomicsImputer;pub use domain_specific::MissingResponseHandler;pub use domain_specific::PhylogeneticImputer;pub use domain_specific::PortfolioDataImputer;pub use domain_specific::ProteinExpressionImputer;pub use domain_specific::RiskFactorImputer;pub use domain_specific::SingleCellRNASeqImputer;pub use domain_specific::SocialNetworkImputer;pub use domain_specific::SurveyDataImputer;pub use ensemble::ExtraTreesImputer;pub use ensemble::GradientBoostingImputer;pub use ensemble::RandomForestImputer;pub use fluent_api::pluggable::ComposedPipeline;pub use fluent_api::pluggable::DataCharacteristics;pub use fluent_api::pluggable::DataType;pub use fluent_api::pluggable::ImputationInstance;pub use fluent_api::pluggable::ImputationMiddleware;pub use fluent_api::pluggable::ImputationModule;pub use fluent_api::pluggable::LogLevel;pub use fluent_api::pluggable::LoggingMiddleware;pub use fluent_api::pluggable::MissingPatternType;pub use fluent_api::pluggable::ModuleConfig;pub use fluent_api::pluggable::ModuleConfigSchema;pub use fluent_api::pluggable::ModuleRegistry;pub use fluent_api::pluggable::ParameterGroup;pub use fluent_api::pluggable::ParameterRange;pub use fluent_api::pluggable::ParameterSchema;pub use fluent_api::pluggable::ParameterType;pub use fluent_api::pluggable::PipelineComposer;pub use fluent_api::pluggable::PipelineStage;pub use fluent_api::pluggable::StageCondition;pub use fluent_api::pluggable::ValidationMiddleware;pub use fluent_api::quick;pub use fluent_api::DeepLearningBuilder;pub use fluent_api::EnsembleImputationBuilder;pub use fluent_api::GaussianProcessBuilder;pub use fluent_api::ImputationBuilder;pub use fluent_api::ImputationMethod;pub use fluent_api::ImputationPipeline;pub use fluent_api::ImputationPreset;pub use fluent_api::IterativeImputationBuilder;pub use fluent_api::KNNImputationBuilder;pub use fluent_api::PostprocessingConfig;pub use fluent_api::PreprocessingConfig;pub use fluent_api::SimpleImputationBuilder;pub use fluent_api::ValidationConfig;pub use independence::chi_square_independence_test;pub use independence::cramers_v_association_test;pub use independence::fisher_exact_independence_test;pub use independence::kolmogorov_smirnov_independence_test;pub use independence::pattern_sensitivity_analysis;pub use independence::run_independence_test_suite;pub use independence::sensitivity_analysis;pub use independence::ChiSquareTestResult;pub use independence::CramersVTestResult;pub use independence::FisherExactTestResult;pub use independence::IndependenceTestSuite;pub use independence::KolmogorovSmirnovTestResult;pub use independence::MARSensitivityCase;pub use independence::MNARSensitivityCase;pub use independence::MissingDataAssessment;pub use independence::PatternSensitivityResult;pub use independence::RobustnessSummary;pub use independence::SensitivityAnalysisResult;pub use information_theoretic::EntropyImputer;pub use information_theoretic::InformationGainImputer;pub use information_theoretic::MDLImputer;pub use information_theoretic::MaxEntropyImputer;pub use information_theoretic::MutualInformationImputer;pub use kernel::GPPredictionResult;pub use kernel::GaussianProcessImputer;pub use kernel::KernelRidgeImputer;pub use kernel::ReproducingKernelImputer;pub use kernel::SVRImputer;pub use memory_profiler::ImputationMemoryBenchmark;pub use memory_profiler::MemoryProfiler;pub use memory_profiler::MemoryProfilingResult;pub use memory_profiler::MemoryStats;pub use mixed_type::HeterogeneousImputer;pub use mixed_type::MixedTypeMICEImputer;pub use mixed_type::MixedTypeMultipleImputationResults;pub use mixed_type::OrdinalImputer;pub use mixed_type::VariableMetadata;pub use mixed_type::VariableParameters;pub use mixed_type::VariableType;pub use multivariate::CanonicalCorrelationImputer;pub use neural::AutoencoderImputer;pub use neural::DiffusionImputer;pub use neural::GANImputer;pub use neural::MLPImputer;pub use neural::NeuralODEImputer;pub use neural::NormalizingFlowImputer;pub use neural::VAEImputer;pub use parallel::AdaptiveStreamingImputer;pub use parallel::MemoryEfficientImputer;pub use parallel::MemoryMappedData;pub use parallel::MemoryOptimizedImputer;pub use parallel::MemoryStrategy;pub use parallel::OnlineStatistics;pub use parallel::ParallelConfig;pub use parallel::ParallelIterativeImputer;pub use parallel::ParallelKNNImputer;pub use parallel::SparseMatrix;pub use parallel::StreamingImputer;pub use simd_ops::SimdDistanceCalculator;pub use simd_ops::SimdImputationOps;pub use simd_ops::SimdKMeans;pub use simd_ops::SimdMatrixOps;pub use simd_ops::SimdStatistics;pub use simple::MissingIndicator;pub use simple::SimpleImputer;pub use timeseries::ARIMAImputer;pub use timeseries::KalmanFilterImputer;pub use timeseries::SeasonalDecompositionImputer;pub use timeseries::StateSpaceImputer;pub use type_safe::ClassifiedArray;pub use type_safe::Complete;pub use type_safe::CompleteArray;pub use type_safe::FixedSizeArray;pub use type_safe::FixedSizeValidation;pub use type_safe::ImputationQualityMetrics;pub use type_safe::MARArray;pub use type_safe::MCARArray;pub use type_safe::MNARArray;pub use type_safe::MissingMechanism;pub use type_safe::MissingPatternValidator;pub use type_safe::MissingValueDetector;pub use type_safe::NaNDetector;pub use type_safe::SentinelDetector;pub use type_safe::TypeSafeImputation;pub use type_safe::TypeSafeMeanImputer;pub use type_safe::TypeSafeMissingOps;pub use type_safe::TypedArray;pub use type_safe::UnknownMechanism;pub use type_safe::WithMissing;pub use type_safe::MAR;pub use type_safe::MCAR;pub use type_safe::MNAR;pub use visualization::create_completeness_matrix;pub use visualization::create_missing_correlation_heatmap;pub use visualization::create_missing_distribution_plot;pub use visualization::create_missing_pattern_plot;pub use visualization::export_correlation_csv;pub use visualization::export_missing_pattern_csv;pub use visualization::generate_missing_summary_stats;pub use visualization::CompletenessMatrix;pub use visualization::MissingCorrelationHeatmap;pub use visualization::MissingDistributionPlot;pub use visualization::MissingPatternPlot;pub use approximate::ApproximateConfig;pub use approximate::ApproximateKNNImputer;pub use approximate::ApproximateSimpleImputer;pub use approximate::ApproximationStrategy;pub use approximate::LocalityHashTable;pub use approximate::SketchingImputer;pub use distributed::CommunicationStrategy;pub use distributed::DistributedConfig;pub use distributed::DistributedKNNImputer;pub use distributed::DistributedSimpleImputer;pub use distributed::DistributedWorker;pub use distributed::ImputationCoordinator;pub use out_of_core::IndexType;pub use out_of_core::MemoryManager;pub use out_of_core::NeighborIndex;pub use out_of_core::OutOfCoreConfig;pub use out_of_core::OutOfCoreKNNImputer;pub use out_of_core::OutOfCoreSimpleImputer;pub use out_of_core::PrefetchStrategy;pub use sampling::AdaptiveSamplingImputer;pub use sampling::ImportanceSamplingImputer;pub use sampling::ParametricDistribution;pub use sampling::ProposalDistribution;pub use sampling::QuasiSequenceType;pub use sampling::SampleDistribution;pub use sampling::SamplingConfig;pub use sampling::SamplingSimpleImputer;pub use sampling::SamplingStrategy;pub use sampling::StratifiedSamplingImputer;pub use sampling::WeightFunction;
Modules§
- advanced
- Advanced imputation methods
- approximate
- Approximate imputation algorithms for fast processing
- bayesian
- Bayesian imputation methods
- benchmarks
- Benchmarking and comparison utilities for imputation methods
- categorical
- Categorical data imputation methods
- core
- Core types and traits for imputation operations
- dimensionality
- Dimensionality reduction-based imputation methods
- distributed
- Distributed imputation algorithms for large-scale missing data processing
- domain_
specific - Domain-specific imputation methods
- ensemble
- Ensemble-based imputation methods
- fluent_
api - Fluent API and builder patterns for easy imputation configuration
- independence
- Independence tests for missing data mechanisms
- information_
theoretic - Information-theoretic imputation methods
- kernel
- Kernel-based imputation methods
- memory_
profiler - Memory profiling and monitoring for imputation operations
- mixed_
type - Mixed-type data imputation methods
- multivariate
- Multivariate imputation methods
- neural
- Neural network-based imputation methods
- out_
of_ core - Out-of-core imputation algorithms for datasets larger than memory
- parallel
- Parallel imputation algorithms for high-performance missing data processing
- sampling
- Sampling-based imputation methods
- simd_
ops - Optimized numerical operations for high-performance imputation
- simple
- Simple imputation methods
- timeseries
- Time series imputation methods
- type_
safe - Type-safe missing data operations with phantom types for compile-time validation
- visualization
- Missing data visualization utilities
Macros§
- profile_
memory - Convenience macro for profiling memory usage
Structs§
- KNNImputer
- K-Nearest Neighbors Imputer
- KNNImputer
Trained - Trained state for KNNImputer
Functions§
- analyze_
missing_ patterns - Analysis functions for missing data patterns
- missing_
completeness_ matrix - Compute missing completeness matrix
- missing_
correlation_ matrix - Compute missing correlation matrix
- missing_
data_ summary - Generate comprehensive missing data summary