sklears_gaussian_process/
lib.rs1#![allow(dead_code)]
2#![allow(non_snake_case)]
3#![allow(missing_docs)]
4#![allow(deprecated)]
5#![allow(clippy::all)]
6#![allow(clippy::pedantic)]
7#![allow(clippy::nursery)]
8pub mod automatic_kernel;
17pub mod bayesian_optimization;
19pub mod classification;
20pub mod convolution_processes;
22pub mod deep_gp;
23pub mod features;
24pub mod fitc;
25pub mod gpr;
26pub mod heteroscedastic;
27pub mod hierarchical;
28pub mod intrinsic_coregionalization;
29pub mod kernel_optimization;
30pub mod kernel_selection;
31pub mod kernel_structure_learning;
32pub mod kernel_trait;
33pub mod kernels;
34pub mod linear_model_coregionalization;
35pub mod marginal_likelihood;
36pub mod multi_task;
38pub mod noise_function_learning;
39pub mod nystrom;
40pub mod regression;
41pub mod robust;
42pub mod sparse_gpr;
43pub mod sparse_spectrum;
44pub mod spatial;
45pub mod structured_kernel_interpolation;
46pub mod utils;
48pub mod variational;
49pub mod variational_deep_gp;
50
51pub use automatic_kernel::{
53 AutomaticKernelConstructor, DataCharacteristics, KernelConstructionResult,
54};
55pub use bayesian_optimization::{AcquisitionFunction, BayesianOptimizer, BayesianOptimizerFitted};
60pub use classification::{
61 sigmoid, sigmoid_derivative, EpGpcTrained, ExpectationPropagationGaussianProcessClassifier,
62 GaussianProcessClassifier, GpcConfig, GpcTrained, McGpcTrained,
63 MultiClassGaussianProcessClassifier,
64};
65pub use features::{RandomFourierFeatures, RandomFourierFeaturesGPR, RffGprTrained};
74pub use gpr::{GaussianProcessRegressor, GprTrained};
80pub use heteroscedastic::{
81 ConstantNoise, HeteroscedasticGaussianProcessRegressor, LearnableNoiseFunction, LinearNoise,
82 NeuralNetworkNoise, NoiseFunction, PolynomialNoise, Trained as HeteroscedasticGprTrained,
83};
84pub use hierarchical::{HierarchicalGPConfig, HierarchicalGaussianProcessRegressor};
85pub use intrinsic_coregionalization::{IcmTrained, IntrinsicCoregionalizationModel};
86pub use kernel_optimization::OptimizationResult as KernelOptimizationResult;
87pub use kernel_optimization::{optimize_kernel_parameters, KernelOptimizer};
88pub use linear_model_coregionalization::{LinearModelCoregionalization, LmcTrained};
89pub use kernel_structure_learning::{
95 ConvergenceInfo, KernelGrammar, KernelStructureLearner, NonTerminalOperation, SearchStrategy,
96 StructureLearningResult, TerminalKernel,
97};
98pub use marginal_likelihood::OptimizationResult as MarginalLikelihoodOptimizationResult;
99pub use marginal_likelihood::{
100 cross_validate_hyperparameters, log_marginal_likelihood, log_marginal_likelihood_stable,
101 optimize_hyperparameters, MarginalLikelihoodOptimizer,
102};
103pub use multi_task::{MtgpTrained, MultiTaskGaussianProcessRegressor};
108pub use noise_function_learning::{
109 AdaptiveRegularization, AutomaticNoiseFunctionSelector, CombinationMethod,
110 EnsembleNoiseFunction, InformationCriterion, NoiseFunctionEvaluation,
111};
112pub use nystrom::{LandmarkSelection, NystromGaussianProcessRegressor, NystromGprTrained};
113pub use regression::{
114 MogprTrained, MultiOutputGaussianProcessRegressor, VariationalOptimizer,
115 VariationalSparseGaussianProcessRegressor, VsgprTrained,
116};
117pub use robust::{
118 OutlierDetectionMethod, RobustGPConfig, RobustGaussianProcessRegressor, RobustLikelihood,
119 RobustnessMetrics, Trained as RobustGprTrained,
120};
121pub use sparse_gpr::{InducingPointInit, SgprTrained, SparseGaussianProcessRegressor};
122pub use sparse_spectrum::{
123 SparseSpectrumGaussianProcessRegressor, SparseSpectrumGprTrained, SpectralApproximationInfo,
124 SpectralSelectionMethod,
125};
126pub use spatial::{
127 KrigingType, SpatialGPConfig, SpatialGaussianProcessRegressor, SpatialKernel,
128 Trained as SpatialGprTrained, Variogram,
129};
130pub use structured_kernel_interpolation::{
131 GridBoundsMethod, InterpolationMethod, SkiApproximationInfo, SkiGprTrained,
132 StructuredKernelInterpolationGPR,
133};
134pub use variational_deep_gp::{
144 VariationalDeepGPBuilder, VariationalDeepGPConfig, VariationalDeepGaussianProcess,
145 VariationalLayerConfig, VariationalLayerParameters, VariationalLikelihood,
146};
147
148pub use kernels::{Kernel, ARDRBF, RBF};