Expand description
Gaussian Process models for regression and classification
This module is part of sklears, providing scikit-learn compatible machine learning algorithms in Rust.
Re-exports§
pub use automatic_kernel::AutomaticKernelConstructor;pub use automatic_kernel::DataCharacteristics;pub use automatic_kernel::KernelConstructionResult;pub use bayesian_optimization::AcquisitionFunction;pub use bayesian_optimization::BayesianOptimizer;pub use bayesian_optimization::BayesianOptimizerFitted;pub use classification::sigmoid;pub use classification::sigmoid_derivative;pub use classification::EpGpcTrained;pub use classification::ExpectationPropagationGaussianProcessClassifier;pub use classification::GaussianProcessClassifier;pub use classification::GpcConfig;pub use classification::GpcTrained;pub use classification::McGpcTrained;pub use classification::MultiClassGaussianProcessClassifier;pub use features::RandomFourierFeatures;pub use features::RandomFourierFeaturesGPR;pub use features::RffGprTrained;pub use gpr::GaussianProcessRegressor;pub use gpr::GprTrained;pub use heteroscedastic::ConstantNoise;pub use heteroscedastic::HeteroscedasticGaussianProcessRegressor;pub use heteroscedastic::LearnableNoiseFunction;pub use heteroscedastic::LinearNoise;pub use heteroscedastic::NeuralNetworkNoise;pub use heteroscedastic::NoiseFunction;pub use heteroscedastic::PolynomialNoise;pub use heteroscedastic::Trained as HeteroscedasticGprTrained;pub use hierarchical::HierarchicalGPConfig;pub use hierarchical::HierarchicalGaussianProcessRegressor;pub use intrinsic_coregionalization::IcmTrained;pub use intrinsic_coregionalization::IntrinsicCoregionalizationModel;pub use kernel_optimization::OptimizationResult as KernelOptimizationResult;pub use kernel_optimization::optimize_kernel_parameters;pub use kernel_optimization::KernelOptimizer;pub use linear_model_coregionalization::LinearModelCoregionalization;pub use linear_model_coregionalization::LmcTrained;pub use kernel_structure_learning::ConvergenceInfo;pub use kernel_structure_learning::KernelGrammar;pub use kernel_structure_learning::KernelStructureLearner;pub use kernel_structure_learning::NonTerminalOperation;pub use kernel_structure_learning::SearchStrategy;pub use kernel_structure_learning::StructureLearningResult;pub use kernel_structure_learning::TerminalKernel;pub use marginal_likelihood::OptimizationResult as MarginalLikelihoodOptimizationResult;pub use marginal_likelihood::cross_validate_hyperparameters;pub use marginal_likelihood::log_marginal_likelihood;pub use marginal_likelihood::log_marginal_likelihood_stable;pub use marginal_likelihood::optimize_hyperparameters;pub use marginal_likelihood::MarginalLikelihoodOptimizer;pub use multi_task::MtgpTrained;pub use multi_task::MultiTaskGaussianProcessRegressor;pub use noise_function_learning::AdaptiveRegularization;pub use noise_function_learning::AutomaticNoiseFunctionSelector;pub use noise_function_learning::CombinationMethod;pub use noise_function_learning::EnsembleNoiseFunction;pub use noise_function_learning::InformationCriterion;pub use noise_function_learning::NoiseFunctionEvaluation;pub use nystrom::LandmarkSelection;pub use nystrom::NystromGaussianProcessRegressor;pub use nystrom::NystromGprTrained;pub use regression::MogprTrained;pub use regression::MultiOutputGaussianProcessRegressor;pub use regression::VariationalOptimizer;pub use regression::VariationalSparseGaussianProcessRegressor;pub use regression::VsgprTrained;pub use robust::OutlierDetectionMethod;pub use robust::RobustGPConfig;pub use robust::RobustGaussianProcessRegressor;pub use robust::RobustLikelihood;pub use robust::RobustnessMetrics;pub use robust::Trained as RobustGprTrained;pub use sparse_gpr::InducingPointInit;pub use sparse_gpr::SgprTrained;pub use sparse_gpr::SparseGaussianProcessRegressor;pub use sparse_spectrum::SparseSpectrumGaussianProcessRegressor;pub use sparse_spectrum::SparseSpectrumGprTrained;pub use sparse_spectrum::SpectralApproximationInfo;pub use sparse_spectrum::SpectralSelectionMethod;pub use spatial::KrigingType;pub use spatial::SpatialGPConfig;pub use spatial::SpatialGaussianProcessRegressor;pub use spatial::SpatialKernel;pub use spatial::Trained as SpatialGprTrained;pub use spatial::Variogram;pub use structured_kernel_interpolation::GridBoundsMethod;pub use structured_kernel_interpolation::InterpolationMethod;pub use structured_kernel_interpolation::SkiApproximationInfo;pub use structured_kernel_interpolation::SkiGprTrained;pub use structured_kernel_interpolation::StructuredKernelInterpolationGPR;pub use variational_deep_gp::VariationalDeepGPBuilder;pub use variational_deep_gp::VariationalDeepGPConfig;pub use variational_deep_gp::VariationalDeepGaussianProcess;pub use variational_deep_gp::VariationalLayerConfig;pub use variational_deep_gp::VariationalLayerParameters;pub use variational_deep_gp::VariationalLikelihood;pub use kernels::Kernel;pub use kernels::ARDRBF;pub use kernels::RBF;
Modules§
- automatic_
kernel - Automatic kernel construction and selection
- bayesian_
optimization - Bayesian Optimization framework for hyperparameter tuning and global optimization
- classification
- Gaussian Process Classification Models
- convolution_
processes - Convolution Processes for multi-output Gaussian processes
- deep_gp
- Deep Gaussian Processes
- features
- Random Fourier Features for approximating RBF kernels
- fitc
- Fully Independent Training Conditionals (FITC) approximation for Gaussian Processes
- gpr
- Gaussian Process Regression implementations
- heteroscedastic
- Heteroscedastic Gaussian Process Regression
- hierarchical
- Hierarchical Gaussian Processes
- intrinsic_
coregionalization - Intrinsic Coregionalization Model (ICM) for multi-output Gaussian processes
- kernel_
optimization - Kernel parameter optimization
- kernel_
selection - Kernel selection methods for Gaussian Processes
- kernel_
structure_ learning - Advanced kernel structure learning using grammar-based search
- kernel_
trait - Core kernel trait for Gaussian Process models
- kernels
- Kernel functions for Gaussian Process models
- linear_
model_ coregionalization - Linear Model of Coregionalization (LMC) for multi-output Gaussian Process regression
- marginal_
likelihood - Marginal likelihood optimization for Gaussian Process hyperparameters
- multi_
task - Multi-Task Gaussian Process for learning multiple related tasks
- noise_
function_ learning - Advanced Noise Function Learning for Heteroscedastic Gaussian Processes
- nystrom
- Nyström approximation for scalable Gaussian Process regression
- regression
- Gaussian Process Regression Models
- robust
- Robust Gaussian Processes and Outlier-Resistant Methods
- sparse_
gpr - Sparse Gaussian Process Regression implementations
- sparse_
spectrum - Sparse spectrum Gaussian processes for large-scale approximation
- spatial
- Spatial Gaussian Processes and Kriging Methods
- structured_
kernel_ interpolation - Structured Kernel Interpolation (SKI) for scalable Gaussian processes
- utils
- Utility functions for Gaussian Process computations
- variational
- Variational Gaussian Process models
- variational_
deep_ gp - Variational Deep Gaussian Processes