Crate sklears_gaussian_process

Crate sklears_gaussian_process 

Source
Expand description

Gaussian Process models for regression and classification

This module is part of sklears, providing scikit-learn compatible machine learning algorithms in Rust.

Re-exports§

pub use automatic_kernel::AutomaticKernelConstructor;
pub use automatic_kernel::DataCharacteristics;
pub use automatic_kernel::KernelConstructionResult;
pub use bayesian_optimization::AcquisitionFunction;
pub use bayesian_optimization::BayesianOptimizer;
pub use bayesian_optimization::BayesianOptimizerFitted;
pub use classification::sigmoid;
pub use classification::sigmoid_derivative;
pub use classification::EpGpcTrained;
pub use classification::ExpectationPropagationGaussianProcessClassifier;
pub use classification::GaussianProcessClassifier;
pub use classification::GpcConfig;
pub use classification::GpcTrained;
pub use classification::McGpcTrained;
pub use classification::MultiClassGaussianProcessClassifier;
pub use features::RandomFourierFeatures;
pub use features::RandomFourierFeaturesGPR;
pub use features::RffGprTrained;
pub use gpr::GaussianProcessRegressor;
pub use gpr::GprTrained;
pub use heteroscedastic::ConstantNoise;
pub use heteroscedastic::HeteroscedasticGaussianProcessRegressor;
pub use heteroscedastic::LearnableNoiseFunction;
pub use heteroscedastic::LinearNoise;
pub use heteroscedastic::NeuralNetworkNoise;
pub use heteroscedastic::NoiseFunction;
pub use heteroscedastic::PolynomialNoise;
pub use heteroscedastic::Trained as HeteroscedasticGprTrained;
pub use hierarchical::HierarchicalGPConfig;
pub use hierarchical::HierarchicalGaussianProcessRegressor;
pub use intrinsic_coregionalization::IcmTrained;
pub use intrinsic_coregionalization::IntrinsicCoregionalizationModel;
pub use kernel_optimization::OptimizationResult as KernelOptimizationResult;
pub use kernel_optimization::optimize_kernel_parameters;
pub use kernel_optimization::KernelOptimizer;
pub use linear_model_coregionalization::LinearModelCoregionalization;
pub use linear_model_coregionalization::LmcTrained;
pub use kernel_structure_learning::ConvergenceInfo;
pub use kernel_structure_learning::KernelGrammar;
pub use kernel_structure_learning::KernelStructureLearner;
pub use kernel_structure_learning::NonTerminalOperation;
pub use kernel_structure_learning::SearchStrategy;
pub use kernel_structure_learning::StructureLearningResult;
pub use kernel_structure_learning::TerminalKernel;
pub use marginal_likelihood::OptimizationResult as MarginalLikelihoodOptimizationResult;
pub use marginal_likelihood::cross_validate_hyperparameters;
pub use marginal_likelihood::log_marginal_likelihood;
pub use marginal_likelihood::log_marginal_likelihood_stable;
pub use marginal_likelihood::optimize_hyperparameters;
pub use marginal_likelihood::MarginalLikelihoodOptimizer;
pub use multi_task::MtgpTrained;
pub use multi_task::MultiTaskGaussianProcessRegressor;
pub use noise_function_learning::AdaptiveRegularization;
pub use noise_function_learning::AutomaticNoiseFunctionSelector;
pub use noise_function_learning::CombinationMethod;
pub use noise_function_learning::EnsembleNoiseFunction;
pub use noise_function_learning::InformationCriterion;
pub use noise_function_learning::NoiseFunctionEvaluation;
pub use nystrom::LandmarkSelection;
pub use nystrom::NystromGaussianProcessRegressor;
pub use nystrom::NystromGprTrained;
pub use regression::MogprTrained;
pub use regression::MultiOutputGaussianProcessRegressor;
pub use regression::VariationalOptimizer;
pub use regression::VariationalSparseGaussianProcessRegressor;
pub use regression::VsgprTrained;
pub use robust::OutlierDetectionMethod;
pub use robust::RobustGPConfig;
pub use robust::RobustGaussianProcessRegressor;
pub use robust::RobustLikelihood;
pub use robust::RobustnessMetrics;
pub use robust::Trained as RobustGprTrained;
pub use sparse_gpr::InducingPointInit;
pub use sparse_gpr::SgprTrained;
pub use sparse_gpr::SparseGaussianProcessRegressor;
pub use sparse_spectrum::SparseSpectrumGaussianProcessRegressor;
pub use sparse_spectrum::SparseSpectrumGprTrained;
pub use sparse_spectrum::SpectralApproximationInfo;
pub use sparse_spectrum::SpectralSelectionMethod;
pub use spatial::KrigingType;
pub use spatial::SpatialGPConfig;
pub use spatial::SpatialGaussianProcessRegressor;
pub use spatial::SpatialKernel;
pub use spatial::Trained as SpatialGprTrained;
pub use spatial::Variogram;
pub use structured_kernel_interpolation::GridBoundsMethod;
pub use structured_kernel_interpolation::InterpolationMethod;
pub use structured_kernel_interpolation::SkiApproximationInfo;
pub use structured_kernel_interpolation::SkiGprTrained;
pub use structured_kernel_interpolation::StructuredKernelInterpolationGPR;
pub use variational_deep_gp::VariationalDeepGPBuilder;
pub use variational_deep_gp::VariationalDeepGPConfig;
pub use variational_deep_gp::VariationalDeepGaussianProcess;
pub use variational_deep_gp::VariationalLayerConfig;
pub use variational_deep_gp::VariationalLayerParameters;
pub use variational_deep_gp::VariationalLikelihood;
pub use kernels::Kernel;
pub use kernels::ARDRBF;
pub use kernels::RBF;

Modules§

automatic_kernel
Automatic kernel construction and selection
bayesian_optimization
Bayesian Optimization framework for hyperparameter tuning and global optimization
classification
Gaussian Process Classification Models
convolution_processes
Convolution Processes for multi-output Gaussian processes
deep_gp
Deep Gaussian Processes
features
Random Fourier Features for approximating RBF kernels
fitc
Fully Independent Training Conditionals (FITC) approximation for Gaussian Processes
gpr
Gaussian Process Regression implementations
heteroscedastic
Heteroscedastic Gaussian Process Regression
hierarchical
Hierarchical Gaussian Processes
intrinsic_coregionalization
Intrinsic Coregionalization Model (ICM) for multi-output Gaussian processes
kernel_optimization
Kernel parameter optimization
kernel_selection
Kernel selection methods for Gaussian Processes
kernel_structure_learning
Advanced kernel structure learning using grammar-based search
kernel_trait
Core kernel trait for Gaussian Process models
kernels
Kernel functions for Gaussian Process models
linear_model_coregionalization
Linear Model of Coregionalization (LMC) for multi-output Gaussian Process regression
marginal_likelihood
Marginal likelihood optimization for Gaussian Process hyperparameters
multi_task
Multi-Task Gaussian Process for learning multiple related tasks
noise_function_learning
Advanced Noise Function Learning for Heteroscedastic Gaussian Processes
nystrom
Nyström approximation for scalable Gaussian Process regression
regression
Gaussian Process Regression Models
robust
Robust Gaussian Processes and Outlier-Resistant Methods
sparse_gpr
Sparse Gaussian Process Regression implementations
sparse_spectrum
Sparse spectrum Gaussian processes for large-scale approximation
spatial
Spatial Gaussian Processes and Kriging Methods
structured_kernel_interpolation
Structured Kernel Interpolation (SKI) for scalable Gaussian processes
utils
Utility functions for Gaussian Process computations
variational
Variational Gaussian Process models
variational_deep_gp
Variational Deep Gaussian Processes