Expand description
Feature selection algorithms
This module provides algorithms for selecting relevant features from data, compatible with scikit-learn’s feature_selection module.
Re-exports§
pub use automl::analyze_and_recommend;pub use automl::comprehensive_automl;pub use automl::quick_automl;pub use automl::AdvancedHyperparameterOptimizer;pub use automl::AutoMLBenchmark;pub use automl::AutoMLError;pub use automl::AutoMLFactory;pub use automl::AutoMLFactoryConfig;pub use automl::AutoMLMethod;pub use automl::AutoMLResults;pub use automl::AutoMLSummary;pub use automl::AutomatedFeatureSelectionPipeline;pub use automl::ComputationalBudget;pub use automl::DataAnalyzer;pub use automl::DataCharacteristics;pub use automl::HyperparameterOptimizer;pub use automl::MethodSelector;pub use automl::PipelineConfig;pub use automl::PipelineOptimizer;pub use automl::PreprocessingIntegration;pub use automl::TargetType;pub use automl::ValidationStrategy;pub use benchmark::BenchmarkConfig;pub use benchmark::BenchmarkDataset;pub use benchmark::BenchmarkSuiteResults;pub use benchmark::BenchmarkableMethod;pub use benchmark::FeatureSelectionBenchmark;pub use benchmark::RandomSelectionMethod;pub use benchmark::UnivariateFilterMethod;pub use crate::filter::CompressedSensingAlgorithm;pub use crate::filter::CompressedSensingSelector;pub use crate::filter::CorrelationThreshold;pub use crate::filter::GenericUnivariateSelect;pub use crate::filter::HighDimensionalInference;pub use crate::filter::ImbalancedDataSelector;pub use crate::filter::ImbalancedStrategy;pub use crate::filter::InferenceMethod;pub use crate::filter::KnockoffSelector;pub use crate::filter::KnockoffType;pub use crate::filter::RReliefF;pub use crate::filter::Relief;pub use crate::filter::ReliefF;pub use crate::filter::SelectFdr;pub use crate::filter::SelectFpr;pub use crate::filter::SelectFwe;pub use crate::filter::SelectKBest;pub use crate::filter::SelectKBestParallel;pub use crate::filter::SelectPercentile;pub use crate::filter::SureIndependenceScreening;pub use crate::filter::VarianceThreshold;pub use crate::regularization_selectors::ElasticNetSelector;pub use crate::regularization_selectors::LassoSelector;pub use crate::regularization_selectors::RidgeSelector;pub use crate::domain_specific::AdvancedNLPFeatureSelector;pub use crate::domain_specific::BioinformaticsFeatureSelector;pub use crate::domain_specific::FinanceFeatureSelector;pub use crate::domain_specific::GraphFeatureSelector;pub use crate::domain_specific::ImageFeatureSelector;pub use crate::domain_specific::MultiModalFeatureSelector;pub use crate::domain_specific::TextFeatureSelector;pub use crate::domain_specific::TimeSeriesSelector;pub use crate::domain_benchmark::run_quick_benchmark;pub use crate::domain_benchmark::BenchmarkConfig as DomainBenchmarkConfig;pub use crate::domain_benchmark::BenchmarkResult;pub use crate::domain_benchmark::BenchmarkSuite;pub use crate::domain_benchmark::BenchmarkSummary;pub use crate::domain_benchmark::DomainBenchmarkFramework;pub use crate::ml_based::AttentionFeatureSelector;pub use crate::ml_based::MetaLearningFeatureSelector;pub use crate::ml_based::NeuralFeatureSelector;pub use crate::ml_based::RLFeatureSelector;pub use crate::evaluation::ComparativeAnalysis;pub use crate::evaluation::FeatureInteractionAnalysis;pub use crate::evaluation::FeatureSetDiversityMeasures;pub use crate::evaluation::FeatureSetVisualization;pub use crate::evaluation::NestedCVResults;pub use crate::evaluation::NestedCrossValidation;pub use crate::evaluation::PowerAnalysis;pub use crate::evaluation::QualityAssessment;pub use crate::evaluation::RedundancyMeasures;pub use crate::evaluation::RelevanceScoring;pub use crate::evaluation::StabilityMeasures;pub use crate::evaluation::StratifiedKFold;pub use crate::statistical_tests::chi2;pub use crate::statistical_tests::f_classif;pub use crate::statistical_tests::f_oneway;pub use crate::statistical_tests::f_regression;pub use crate::statistical_tests::kruskal_wallis;pub use crate::statistical_tests::mann_whitney_u;pub use crate::statistical_tests::mutual_info_classif;pub use crate::statistical_tests::mutual_info_regression;pub use crate::statistical_tests::r_regression;pub use crate::multi_label::AggregateMethod;pub use crate::multi_label::LabelSpecificSelector;pub use crate::multi_label::MultiLabelFeatureSelector;pub use crate::multi_label::MultiLabelStrategy;pub use crate::multi_label::MultiLabelTarget;pub use crate::bayesian::BayesianInferenceMethod;pub use crate::bayesian::BayesianModelAveraging;pub use crate::bayesian::BayesianVariableSelector;pub use crate::bayesian::PriorType;pub use crate::spectral::GraphConstructionMethod;pub use crate::spectral::KernelFeatureSelector;pub use crate::spectral::KernelType;pub use crate::spectral::LaplacianScoreSelector;pub use crate::spectral::ManifoldFeatureSelector;pub use crate::spectral::ManifoldMethod;pub use crate::spectral::SpectralFeatureSelector;pub use crate::optimization::ADMMFeatureSelector;pub use crate::optimization::ConvexFeatureSelector;pub use crate::optimization::IntegerProgrammingFeatureSelector;pub use crate::optimization::ProximalGradientSelector;pub use crate::optimization::SemidefiniteFeatureSelector;pub use crate::parallel::ParallelCorrelationComputer;pub use crate::parallel::ParallelFeatureEvaluator;pub use crate::parallel::ParallelFeatureRanker;pub use crate::parallel::ParallelSelectionUtils;pub use crate::parallel::ParallelUnivariateRegressionScorer;pub use crate::parallel::ParallelUnivariateScorer;pub use crate::parallel::ParallelVarianceComputer;pub use crate::plugin::ComputationalComplexity;pub use crate::plugin::FeatureSelectionPlugin;pub use crate::plugin::LoggingMiddleware;pub use crate::plugin::MemoryComplexity;pub use crate::plugin::PerformanceMetrics;pub use crate::plugin::PerformanceMiddleware;pub use crate::plugin::PipelineResult;pub use crate::plugin::PluginContext;pub use crate::plugin::PluginMetadata;pub use crate::plugin::PluginPipeline;pub use crate::plugin::PluginRegistry;pub use crate::plugin::PluginResult;pub use crate::plugin::StepResult as PluginStepResult;pub use crate::pipeline::BinningStrategy;pub use crate::pipeline::FeatureSelectionPipeline;pub use crate::pipeline::OptimizationConfiguration;pub use crate::pipeline::PipelineConfiguration;pub use crate::pipeline::PreprocessingStep;pub use crate::pipeline::SelectionMethod;pub use crate::pipeline::Trained;pub use crate::pipeline::Untrained;pub use crate::type_safe::data_states;pub use crate::type_safe::selection_types;pub use crate::type_safe::FeatureIndex;pub use crate::type_safe::FeatureMask;pub use crate::performance::SIMDStats;pub use crate::fluent_api::presets;pub use crate::fluent_api::FeatureSelectionBuilder;pub use crate::fluent_api::FluentConfig;pub use crate::fluent_api::FluentSelectionResult;pub use crate::fluent_api::SelectionStep;pub use crate::fluent_api::StepResult;pub use crate::comprehensive_benchmark::quick_benchmark;pub use crate::comprehensive_benchmark::BenchmarkConfiguration;pub use crate::comprehensive_benchmark::BenchmarkDataset as ComprehensiveBenchmarkDataset;pub use crate::comprehensive_benchmark::BenchmarkMethod;pub use crate::comprehensive_benchmark::BenchmarkMetric;pub use crate::comprehensive_benchmark::ComprehensiveBenchmarkResults;pub use crate::comprehensive_benchmark::ComprehensiveBenchmarkSuite;pub use crate::comprehensive_benchmark::DatasetDomain;pub use crate::comprehensive_benchmark::DatasetMetadata;pub use crate::comprehensive_benchmark::DetailedMethodResult;pub use crate::comprehensive_benchmark::MethodCategory;pub use crate::comprehensive_benchmark::TaskType;pub use base::*;pub use filter::*;
Modules§
- automl
- AutoML Feature Selection Module
- base
- Base classes for feature selection
- bayesian
- Bayesian feature selection algorithms
- benchmark
- Benchmarking framework for feature selection methods
- comprehensive_
benchmark - Comprehensive Benchmarking Framework for Feature Selection
- domain_
benchmark - Benchmarking framework for domain-specific feature selection methods
- domain_
specific - Domain-specific feature selection modules.
- evaluation
- Evaluation metrics for feature selection quality assessment
- filter
- Filter-based feature selection methods
- fluent_
api - Fluent API for Feature Selection Configuration
- group_
selection - Group-based feature selection methods
- hierarchical
- Hierarchical feature selection methods
- ml_
based - Machine learning-based feature selection methods
- multi_
label - Multi-label feature selection algorithms
- optimization
- Optimization-based feature selection algorithms
- parallel
- Parallel feature evaluation utilities
- performance
- Performance Optimizations for Feature Selection
- pipeline
- Pipeline Integration Framework
- plugin
- Modular Plugin Architecture for Feature Selection
- regularization_
selectors - Regularization-based feature selection methods
- spectral
- Spectral feature selection algorithms
- statistical_
tests - Statistical tests for feature selection
- streaming
- Streaming and online feature selection methods
- type_
safe - Type-Safe Feature Selection Framework
Macros§
- impl_
type_ safe_ selector - Implementation macro for type-safe selectors
- plugin_
pipeline - Helper macro for creating plugin pipelines
- register_
plugin - Helper macro for easy plugin registration