Crate sklears_feature_selection

Crate sklears_feature_selection 

Source
Expand description

Feature selection algorithms

This module provides algorithms for selecting relevant features from data, compatible with scikit-learn’s feature_selection module.

Re-exports§

pub use automl::analyze_and_recommend;
pub use automl::comprehensive_automl;
pub use automl::quick_automl;
pub use automl::AdvancedHyperparameterOptimizer;
pub use automl::AutoMLBenchmark;
pub use automl::AutoMLError;
pub use automl::AutoMLFactory;
pub use automl::AutoMLFactoryConfig;
pub use automl::AutoMLMethod;
pub use automl::AutoMLResults;
pub use automl::AutoMLSummary;
pub use automl::AutomatedFeatureSelectionPipeline;
pub use automl::ComputationalBudget;
pub use automl::DataAnalyzer;
pub use automl::DataCharacteristics;
pub use automl::HyperparameterOptimizer;
pub use automl::MethodSelector;
pub use automl::PipelineConfig;
pub use automl::PipelineOptimizer;
pub use automl::PreprocessingIntegration;
pub use automl::TargetType;
pub use automl::ValidationStrategy;
pub use benchmark::BenchmarkConfig;
pub use benchmark::BenchmarkDataset;
pub use benchmark::BenchmarkSuiteResults;
pub use benchmark::BenchmarkableMethod;
pub use benchmark::FeatureSelectionBenchmark;
pub use benchmark::RandomSelectionMethod;
pub use benchmark::UnivariateFilterMethod;
pub use crate::filter::CompressedSensingAlgorithm;
pub use crate::filter::CompressedSensingSelector;
pub use crate::filter::CorrelationThreshold;
pub use crate::filter::GenericUnivariateSelect;
pub use crate::filter::HighDimensionalInference;
pub use crate::filter::ImbalancedDataSelector;
pub use crate::filter::ImbalancedStrategy;
pub use crate::filter::InferenceMethod;
pub use crate::filter::KnockoffSelector;
pub use crate::filter::KnockoffType;
pub use crate::filter::RReliefF;
pub use crate::filter::Relief;
pub use crate::filter::ReliefF;
pub use crate::filter::SelectFdr;
pub use crate::filter::SelectFpr;
pub use crate::filter::SelectFwe;
pub use crate::filter::SelectKBest;
pub use crate::filter::SelectKBestParallel;
pub use crate::filter::SelectPercentile;
pub use crate::filter::SureIndependenceScreening;
pub use crate::filter::VarianceThreshold;
pub use crate::regularization_selectors::ElasticNetSelector;
pub use crate::regularization_selectors::LassoSelector;
pub use crate::regularization_selectors::RidgeSelector;
pub use crate::domain_specific::AdvancedNLPFeatureSelector;
pub use crate::domain_specific::BioinformaticsFeatureSelector;
pub use crate::domain_specific::FinanceFeatureSelector;
pub use crate::domain_specific::GraphFeatureSelector;
pub use crate::domain_specific::ImageFeatureSelector;
pub use crate::domain_specific::MultiModalFeatureSelector;
pub use crate::domain_specific::TextFeatureSelector;
pub use crate::domain_specific::TimeSeriesSelector;
pub use crate::domain_benchmark::run_quick_benchmark;
pub use crate::domain_benchmark::BenchmarkConfig as DomainBenchmarkConfig;
pub use crate::domain_benchmark::BenchmarkResult;
pub use crate::domain_benchmark::BenchmarkSuite;
pub use crate::domain_benchmark::BenchmarkSummary;
pub use crate::domain_benchmark::DomainBenchmarkFramework;
pub use crate::ml_based::AttentionFeatureSelector;
pub use crate::ml_based::MetaLearningFeatureSelector;
pub use crate::ml_based::NeuralFeatureSelector;
pub use crate::ml_based::RLFeatureSelector;
pub use crate::evaluation::ComparativeAnalysis;
pub use crate::evaluation::FeatureInteractionAnalysis;
pub use crate::evaluation::FeatureSetDiversityMeasures;
pub use crate::evaluation::FeatureSetVisualization;
pub use crate::evaluation::NestedCVResults;
pub use crate::evaluation::NestedCrossValidation;
pub use crate::evaluation::PowerAnalysis;
pub use crate::evaluation::QualityAssessment;
pub use crate::evaluation::RedundancyMeasures;
pub use crate::evaluation::RelevanceScoring;
pub use crate::evaluation::StabilityMeasures;
pub use crate::evaluation::StratifiedKFold;
pub use crate::statistical_tests::chi2;
pub use crate::statistical_tests::f_classif;
pub use crate::statistical_tests::f_oneway;
pub use crate::statistical_tests::f_regression;
pub use crate::statistical_tests::kruskal_wallis;
pub use crate::statistical_tests::mann_whitney_u;
pub use crate::statistical_tests::mutual_info_classif;
pub use crate::statistical_tests::mutual_info_regression;
pub use crate::statistical_tests::r_regression;
pub use crate::multi_label::AggregateMethod;
pub use crate::multi_label::LabelSpecificSelector;
pub use crate::multi_label::MultiLabelFeatureSelector;
pub use crate::multi_label::MultiLabelStrategy;
pub use crate::multi_label::MultiLabelTarget;
pub use crate::bayesian::BayesianInferenceMethod;
pub use crate::bayesian::BayesianModelAveraging;
pub use crate::bayesian::BayesianVariableSelector;
pub use crate::bayesian::PriorType;
pub use crate::spectral::GraphConstructionMethod;
pub use crate::spectral::KernelFeatureSelector;
pub use crate::spectral::KernelType;
pub use crate::spectral::LaplacianScoreSelector;
pub use crate::spectral::ManifoldFeatureSelector;
pub use crate::spectral::ManifoldMethod;
pub use crate::spectral::SpectralFeatureSelector;
pub use crate::optimization::ADMMFeatureSelector;
pub use crate::optimization::ConvexFeatureSelector;
pub use crate::optimization::IntegerProgrammingFeatureSelector;
pub use crate::optimization::ProximalGradientSelector;
pub use crate::optimization::SemidefiniteFeatureSelector;
pub use crate::parallel::ParallelCorrelationComputer;
pub use crate::parallel::ParallelFeatureEvaluator;
pub use crate::parallel::ParallelFeatureRanker;
pub use crate::parallel::ParallelSelectionUtils;
pub use crate::parallel::ParallelUnivariateRegressionScorer;
pub use crate::parallel::ParallelUnivariateScorer;
pub use crate::parallel::ParallelVarianceComputer;
pub use crate::plugin::ComputationalComplexity;
pub use crate::plugin::FeatureSelectionPlugin;
pub use crate::plugin::LoggingMiddleware;
pub use crate::plugin::MemoryComplexity;
pub use crate::plugin::PerformanceMetrics;
pub use crate::plugin::PerformanceMiddleware;
pub use crate::plugin::PipelineResult;
pub use crate::plugin::PluginContext;
pub use crate::plugin::PluginMetadata;
pub use crate::plugin::PluginPipeline;
pub use crate::plugin::PluginRegistry;
pub use crate::plugin::PluginResult;
pub use crate::plugin::StepResult as PluginStepResult;
pub use crate::pipeline::BinningStrategy;
pub use crate::pipeline::FeatureSelectionPipeline;
pub use crate::pipeline::OptimizationConfiguration;
pub use crate::pipeline::PipelineConfiguration;
pub use crate::pipeline::PreprocessingStep;
pub use crate::pipeline::SelectionMethod;
pub use crate::pipeline::Trained;
pub use crate::pipeline::Untrained;
pub use crate::type_safe::data_states;
pub use crate::type_safe::selection_types;
pub use crate::type_safe::FeatureIndex;
pub use crate::type_safe::FeatureMask;
pub use crate::performance::SIMDStats;
pub use crate::fluent_api::presets;
pub use crate::fluent_api::FeatureSelectionBuilder;
pub use crate::fluent_api::FluentConfig;
pub use crate::fluent_api::FluentSelectionResult;
pub use crate::fluent_api::SelectionStep;
pub use crate::fluent_api::StepResult;
pub use crate::comprehensive_benchmark::quick_benchmark;
pub use crate::comprehensive_benchmark::BenchmarkConfiguration;
pub use crate::comprehensive_benchmark::BenchmarkDataset as ComprehensiveBenchmarkDataset;
pub use crate::comprehensive_benchmark::BenchmarkMethod;
pub use crate::comprehensive_benchmark::BenchmarkMetric;
pub use crate::comprehensive_benchmark::ComprehensiveBenchmarkResults;
pub use crate::comprehensive_benchmark::ComprehensiveBenchmarkSuite;
pub use crate::comprehensive_benchmark::DatasetDomain;
pub use crate::comprehensive_benchmark::DatasetMetadata;
pub use crate::comprehensive_benchmark::DetailedMethodResult;
pub use crate::comprehensive_benchmark::MethodCategory;
pub use crate::comprehensive_benchmark::TaskType;
pub use base::*;
pub use filter::*;

Modules§

automl
AutoML Feature Selection Module
base
Base classes for feature selection
bayesian
Bayesian feature selection algorithms
benchmark
Benchmarking framework for feature selection methods
comprehensive_benchmark
Comprehensive Benchmarking Framework for Feature Selection
domain_benchmark
Benchmarking framework for domain-specific feature selection methods
domain_specific
Domain-specific feature selection modules.
evaluation
Evaluation metrics for feature selection quality assessment
filter
Filter-based feature selection methods
fluent_api
Fluent API for Feature Selection Configuration
group_selection
Group-based feature selection methods
hierarchical
Hierarchical feature selection methods
ml_based
Machine learning-based feature selection methods
multi_label
Multi-label feature selection algorithms
optimization
Optimization-based feature selection algorithms
parallel
Parallel feature evaluation utilities
performance
Performance Optimizations for Feature Selection
pipeline
Pipeline Integration Framework
plugin
Modular Plugin Architecture for Feature Selection
regularization_selectors
Regularization-based feature selection methods
spectral
Spectral feature selection algorithms
statistical_tests
Statistical tests for feature selection
streaming
Streaming and online feature selection methods
type_safe
Type-Safe Feature Selection Framework

Macros§

impl_type_safe_selector
Implementation macro for type-safe selectors
plugin_pipeline
Helper macro for creating plugin pipelines
register_plugin
Helper macro for easy plugin registration