Expand description
Multi-Layer Stacking Ensemble Implementation
This module provides advanced multi-layer stacking ensemble methods that combine multiple layers of base estimators with sophisticated meta-learning strategies and feature engineering. The implementation supports:
- Deep stacking with multiple layers
- Advanced meta-feature engineering strategies
- Ensemble pruning and diversity analysis
- Confidence-based weighting
- Multiple meta-learning strategies
- SIMD-accelerated operations for performance
§Features
§Multi-Layer Architecture
- Configurable number of stacking layers
- Layer-wise meta-feature generation
- Hierarchical feature transformation
§Advanced Meta-Feature Engineering
- Statistical features (mean, std, skewness, etc.)
- Interaction features (pairwise products)
- Confidence-based features (entropy, agreement)
- Diversity-based features (coefficient of variation)
- Comprehensive features (combination of all strategies)
- Temporal features for time-series data
- Spectral features using FFT analysis
- Information-theoretic features (mutual information, entropy)
- Neural embedding features
- Kernel-based features (RBF, polynomial, cosine)
- Basis expansion features (Legendre polynomials)
- Meta-learning features (complexity, stability, agreement)
§Ensemble Optimization
- Diversity-based ensemble pruning
- Layer-wise feature importance analysis
- Confidence weighting
- Multiple regularization strategies
§Example
ⓘ
use sklears_ensemble::stacking::multi_layer::MultiLayerStackingClassifier;
use sklears_ensemble::stacking::config::MultiLayerStackingConfig;
use sklears_core::traits::Fit;
use scirs2_core::ndarray::array;
// Create a deep stacking classifier with 3 layers
let config = MultiLayerStackingConfig::deep_stacking(3, 5);
let classifier = MultiLayerStackingClassifier::new(config);
// Training data
let x = array![[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]];
let y = array![0, 1, 0];
// Fit the model
let fitted = classifier.fit(&x, &y).unwrap();
// Make predictions
let predictions = fitted.predict(&x).unwrap();
let probabilities = fitted.predict_proba(&x).unwrap();Structs§
- Multi
Layer Stacking Classifier - Multi-Layer Stacking Classifier
- Stacking
Layer - Represents a single layer in the multi-layer stacking ensemble