Crate sklears_ensemble

Crate sklears_ensemble 

Source
Expand description

Ensemble methods for sklears

This crate provides implementations of ensemble machine learning algorithms including:

  • Bagging (Bootstrap Aggregating)
  • Gradient Boosting
  • AdaBoost (Adaptive Boosting)
  • Voting Classifiers/Regressors
  • Stacking and Blending

Re-exports§

pub use adaboost::AdaBoostAlgorithm;
pub use adaboost::AdaBoostClassifier;
pub use adaboost::AdaBoostConfig;
pub use adversarial::AdversarialEnsembleClassifier;
pub use adversarial::AdversarialEnsembleConfig;
pub use adversarial::AdversarialPredictionResults;
pub use adversarial::AdversarialStrategy;
pub use adversarial::AttackMethod;
pub use adversarial::DefensiveStrategy;
pub use adversarial::InputPreprocessing;
pub use adversarial::RobustnessMetrics;
pub use analysis::CalibrationMetrics;
pub use analysis::ConfidenceMetrics;
pub use analysis::EnsembleAnalyzer;
pub use analysis::FeatureImportanceAnalysis;
pub use analysis::ImportanceAggregationMethod;
pub use analysis::ReliabilityDiagram;
pub use analysis::UncertaintyDecomposition;
pub use analysis::UncertaintyQuantification;
pub use bagging::BaggingClassifier;
pub use bagging::BaggingConfig;
pub use bagging::BaggingRegressor;
pub use compression::AcquisitionFunction;
pub use compression::BayesianEnsembleOptimizer;
pub use compression::CompressedEnsemble;
pub use compression::CompressionConfig;
pub use compression::CompressionMetadata;
pub use compression::CompressionStats;
pub use compression::CompressionStrategy;
pub use compression::EnsembleCompressor;
pub use compression::EnsemblePruner;
pub use compression::KnowledgeDistillationTrainer;
pub use compression::QuantizationParams;
pub use compression::SparsityInfo;
pub use cpu_optimization::CacheOptimizedMatrixOps;
pub use cpu_optimization::CpuOptimizationConfig;
pub use cpu_optimization::CpuOptimizer;
pub use cpu_optimization::LoopOptimizedAlgorithms;
pub use cpu_optimization::PerformanceCounters;
pub use cpu_optimization::VectorizedEnsembleOps;
pub use gpu_acceleration::detect_available_backends;
pub use gpu_acceleration::GpuBackend;
pub use gpu_acceleration::GpuConfig;
pub use gpu_acceleration::GpuContext;
pub use gpu_acceleration::GpuDeviceInfo;
pub use gpu_acceleration::GpuEnsembleTrainer;
pub use gpu_acceleration::GpuTensorOps;
pub use gpu_acceleration::ProfilingResults;
pub use gradient_boosting::FeatureImportanceMetrics;
pub use gradient_boosting::GradientBoostingClassifier;
pub use gradient_boosting::GradientBoostingConfig;
pub use gradient_boosting::GradientBoostingRegressor;
pub use gradient_boosting::GradientBoostingTree;
pub use gradient_boosting::LossFunction;
pub use imbalanced::CombinationStrategy;
pub use imbalanced::CostSensitiveConfig;
pub use imbalanced::ImbalancedEnsembleClassifier;
pub use imbalanced::ImbalancedEnsembleConfig;
pub use imbalanced::SMOTEConfig;
pub use imbalanced::SMOTESampler;
pub use imbalanced::SamplingQualityMetrics;
pub use imbalanced::SamplingResult;
pub use imbalanced::SamplingStrategy;
pub use imbalanced::ThresholdMovingStrategy;
pub use memory_efficient::IncrementalLinearRegression;
pub use memory_efficient::IncrementalModel;
pub use memory_efficient::MemoryEfficientConfig;
pub use memory_efficient::MemoryEfficientEnsemble;
pub use mixed_precision::AMPContext;
pub use mixed_precision::GradientScaler;
pub use mixed_precision::Half;
pub use mixed_precision::MixedPrecisionArray;
pub use mixed_precision::MixedPrecisionConfig;
pub use mixed_precision::MixedPrecisionGradientAccumulator;
pub use mixed_precision::MixedPrecisionTrainer;
pub use mixed_precision::ScalerState;
pub use monitoring::DegradationIndicators;
pub use monitoring::DriftDetectionResult;
pub use monitoring::DriftType;
pub use monitoring::EnsembleMonitor;
pub use monitoring::ModelHealth;
pub use monitoring::MonitoringConfig;
pub use monitoring::MonitoringResults;
pub use monitoring::PerformanceDataPoint;
pub use monitoring::PerformanceMetric;
pub use monitoring::PerformanceTrend;
pub use monitoring::RecommendedAction;
pub use multi_label::LabelCorrelationMethod;
pub use multi_label::LabelTransformationStrategy;
pub use multi_label::MultiLabelAggregationMethod;
pub use multi_label::MultiLabelEnsembleClassifier;
pub use multi_label::MultiLabelEnsembleConfig;
pub use multi_label::MultiLabelPredictionResults;
pub use multi_label::MultiLabelTrainingResults;
pub use multi_task::CrossTaskValidation;
pub use multi_task::MultiTaskEnsembleClassifier;
pub use multi_task::MultiTaskEnsembleConfig;
pub use multi_task::MultiTaskEnsembleRegressor;
pub use multi_task::MultiTaskFeatureSelector;
pub use multi_task::MultiTaskTrainingResults;
pub use multi_task::TaskData;
pub use multi_task::TaskHierarchy;
pub use multi_task::TaskMetrics;
pub use multi_task::TaskSharingStrategy;
pub use multi_task::TaskSimilarityMetric;
pub use multi_task::TaskWeightingStrategy;
pub use parallel::AsyncEnsembleCoordinator;
pub use parallel::DataPartition;
pub use parallel::FederatedEnsembleCoordinator;
pub use parallel::ParallelConfig;
pub use parallel::ParallelEnsembleTrainer;
pub use parallel::ParallelPerformanceMetrics;
pub use parallel::ParallelStrategy;
pub use parallel::ParallelTrainable;
pub use regularized::DropoutEnsemble;
pub use regularized::OptimizerState;
pub use regularized::RegularizationStep;
pub use regularized::RegularizedEnsembleClassifier;
pub use regularized::RegularizedEnsembleConfig;
pub use regularized::RegularizedEnsembleRegressor;
pub use regularized::WeightOptimizer;
pub use simd_ops::SimdOps;
pub use simd_stacking::simd_aggregate_predictions;
pub use simd_stacking::simd_batch_linear_predictions;
pub use simd_stacking::simd_compute_ensemble_diversity;
pub use simd_stacking::simd_compute_gradients;
pub use simd_stacking::simd_dot_product;
pub use simd_stacking::simd_generate_meta_features;
pub use simd_stacking::simd_linear_prediction;
pub use simd_stacking::simd_train_stacking_ensemble;
pub use simd_stacking::StackingEnsembleModel;
pub use stacking::BaseEstimator;
pub use stacking::BlendingClassifier;
pub use stacking::MetaEstimator;
pub use stacking::MetaFeatureStrategy;
pub use stacking::MetaLearningStrategy;
pub use stacking::MultiLayerStackingClassifier;
pub use stacking::MultiLayerStackingConfig;
pub use stacking::SimpleStackingClassifier;
pub use stacking::StackingClassifier;
pub use stacking::StackingConfig;
pub use stacking::StackingLayerConfig;
pub use streaming::AdaptiveStreamingEnsemble;
pub use streaming::ConceptDriftDetector;
pub use streaming::StreamingConfig;
pub use streaming::StreamingEnsemble;
pub use tensor_ops::ActivationType;
pub use tensor_ops::AggregationType;
pub use tensor_ops::ComputationGraph;
pub use tensor_ops::EnsembleTensorOps;
pub use tensor_ops::GraphNode;
pub use tensor_ops::MemoryLayout;
pub use tensor_ops::ReductionType;
pub use tensor_ops::Tensor;
pub use tensor_ops::TensorConfig;
pub use tensor_ops::TensorDevice;
pub use tensor_ops::TensorOperation;
pub use tensor_ops::TensorOpsContext;
pub use tensor_ops::TensorShape;
pub use time_series::AdwinDriftDetector;
pub use time_series::DriftAdaptationStrategy;
pub use time_series::DriftStatistics;
pub use time_series::SeasonalComponents;
pub use time_series::TemporalAggregationMethod;
pub use time_series::TimeSeriesCVStrategy;
pub use time_series::TimeSeriesEnsembleClassifier;
pub use time_series::TimeSeriesEnsembleConfig;
pub use time_series::TimeSeriesEnsembleRegressor;
pub use voting::EnsembleMember;
pub use voting::EnsembleSizeAnalysis;
pub use voting::EnsembleSizeRecommendations;
pub use voting::VotingClassifier;
pub use voting::VotingClassifierConfig;
pub use voting::VotingStrategy;

Modules§

adaboost
AdaBoost ensemble methods
adversarial
Adversarial Training for Ensemble Methods
analysis
Advanced ensemble analysis and interpretation tools
bagging
Bagging ensemble methods
compression
Model compression techniques for large ensembles
cpu_optimization
Specialized CPU optimizations for ensemble methods
gpu_acceleration
GPU acceleration for ensemble methods
gradient_boosting
Gradient Boosting implementation
imbalanced
Imbalanced Learning Ensemble Methods
memory_efficient
Memory-efficient ensemble methods for large-scale machine learning
mixed_precision
Mixed-precision training support for ensemble methods
monitoring
Performance monitoring and tracking system for ensemble methods
multi_label
Multi-Label Ensemble Methods
multi_task
Multi-Task Ensemble Methods
parallel
Data-parallel ensemble training framework
prelude
Prelude module for convenient imports
regularized
Regularized Ensemble Methods
simd_ops
SIMD optimizations for ensemble operations
simd_stacking
SIMD-accelerated stacking ensemble operations (scalar implementations)
stacking
Stacking ensemble methods
streaming
Streaming ensemble methods for online machine learning
tensor_ops
Tensor operations for ensemble methods
time_series
Time Series Ensemble Methods
voting
Modular voting ensemble methods with high-performance SIMD implementations

Macros§

tensor_op