sklears_ensemble/
simd_stacking.rs

1//! SIMD-accelerated stacking ensemble operations (scalar implementations)
2//!
3//! This module provides high-performance implementations of stacking ensemble
4//! algorithms. Currently uses scalar operations with plans for future SIMD optimization.
5
6use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
7use sklears_core::{
8    error::{Result, SklearsError},
9    types::Float,
10};
11
12/// Dot product computation for stacking ensembles
13pub fn simd_dot_product(x: &ArrayView1<Float>, weights: &ArrayView1<Float>) -> Float {
14    if x.len() != weights.len() {
15        return 0.0;
16    }
17    x.iter().zip(weights.iter()).map(|(&xi, &wi)| xi * wi).sum()
18}
19
20/// Linear prediction for base estimators
21pub fn simd_linear_prediction(
22    x: &ArrayView1<Float>,
23    weights: &ArrayView1<Float>,
24    intercept: Float,
25) -> Float {
26    simd_dot_product(x, weights) + intercept
27}
28
29/// Batch linear predictions
30pub fn simd_batch_linear_predictions(
31    X: &ArrayView2<Float>,
32    weights: &ArrayView1<Float>,
33    intercept: Float,
34) -> Result<Array1<Float>> {
35    let (n_samples, n_features) = X.dim();
36
37    if weights.len() != n_features {
38        return Err(SklearsError::FeatureMismatch {
39            expected: n_features,
40            actual: weights.len(),
41        });
42    }
43
44    let mut predictions = Array1::<Float>::zeros(n_samples);
45
46    for i in 0..n_samples {
47        let x_sample = X.row(i);
48        predictions[i] = simd_linear_prediction(&x_sample, weights, intercept);
49    }
50
51    Ok(predictions)
52}
53
54/// Meta-feature generation
55pub fn simd_generate_meta_features(
56    X: &ArrayView2<Float>,
57    base_weights: &ArrayView2<Float>,
58    base_intercepts: &ArrayView1<Float>,
59) -> Result<Array2<Float>> {
60    let (n_samples, n_features) = X.dim();
61    let (n_estimators, weight_features) = base_weights.dim();
62
63    if weight_features != n_features {
64        return Err(SklearsError::FeatureMismatch {
65            expected: n_features,
66            actual: weight_features,
67        });
68    }
69
70    if base_intercepts.len() != n_estimators {
71        return Err(SklearsError::InvalidInput(
72            "Number of intercepts must match number of estimators".to_string(),
73        ));
74    }
75
76    let mut meta_features = Array2::<Float>::zeros((n_samples, n_estimators));
77
78    for est_idx in 0..n_estimators {
79        let weights = base_weights.row(est_idx);
80        let intercept = base_intercepts[est_idx];
81
82        for sample_idx in 0..n_samples {
83            let x_sample = X.row(sample_idx);
84            meta_features[[sample_idx, est_idx]] =
85                simd_linear_prediction(&x_sample, &weights, intercept);
86        }
87    }
88
89    Ok(meta_features)
90}
91
92/// Gradient computation for meta-learner
93pub fn simd_compute_gradients(
94    X: &ArrayView2<Float>,
95    y: &ArrayView1<Float>,
96    weights: &ArrayView1<Float>,
97    intercept: Float,
98    l2_reg: Float,
99) -> Result<(Array1<Float>, Float)> {
100    let (n_samples, n_features) = X.dim();
101
102    if y.len() != n_samples {
103        return Err(SklearsError::ShapeMismatch {
104            expected: format!("{} samples", n_samples),
105            actual: format!("{} samples", y.len()),
106        });
107    }
108
109    if weights.len() != n_features {
110        return Err(SklearsError::FeatureMismatch {
111            expected: n_features,
112            actual: weights.len(),
113        });
114    }
115
116    let mut grad_weights = Array1::<Float>::zeros(n_features);
117    let mut grad_intercept = 0.0;
118
119    for i in 0..n_samples {
120        let x_i = X.row(i);
121        let y_i = y[i];
122
123        let pred = simd_linear_prediction(&x_i, weights, intercept);
124        let error = pred - y_i;
125
126        grad_intercept += error;
127
128        for j in 0..n_features {
129            grad_weights[j] += error * x_i[j];
130        }
131    }
132
133    // Normalize gradients and add L2 regularization
134    let n_samples_f = n_samples as Float;
135    grad_intercept /= n_samples_f;
136
137    for i in 0..n_features {
138        grad_weights[i] = grad_weights[i] / n_samples_f + l2_reg * weights[i];
139    }
140
141    Ok((grad_weights, grad_intercept))
142}
143
144/// Ensemble prediction aggregation
145pub fn simd_aggregate_predictions(
146    base_predictions: &ArrayView2<Float>,
147    meta_weights: &ArrayView1<Float>,
148    meta_intercept: Float,
149) -> Result<Array1<Float>> {
150    let (n_samples, n_estimators) = base_predictions.dim();
151
152    if meta_weights.len() != n_estimators {
153        return Err(SklearsError::FeatureMismatch {
154            expected: n_estimators,
155            actual: meta_weights.len(),
156        });
157    }
158
159    let mut final_predictions = Array1::<Float>::zeros(n_samples);
160
161    for i in 0..n_samples {
162        let base_preds = base_predictions.row(i);
163        final_predictions[i] = simd_dot_product(&base_preds, meta_weights) + meta_intercept;
164    }
165
166    Ok(final_predictions)
167}
168
169/// Trained stacking ensemble model structure
170#[derive(Debug, Clone)]
171pub struct StackingEnsembleModel {
172    pub base_weights: Array2<Float>,
173    pub base_intercepts: Array1<Float>,
174    pub meta_weights: Array1<Float>,
175    pub meta_intercept: Float,
176    pub n_features: usize,
177    pub n_estimators: usize,
178}
179
180impl StackingEnsembleModel {
181    /// Prediction using trained stacking ensemble
182    pub fn predict(&self, X: &ArrayView2<Float>) -> Result<Array1<Float>> {
183        let meta_features = simd_generate_meta_features(
184            X,
185            &self.base_weights.view(),
186            &self.base_intercepts.view(),
187        )?;
188
189        simd_aggregate_predictions(
190            &meta_features.view(),
191            &self.meta_weights.view(),
192            self.meta_intercept,
193        )
194    }
195}
196
197/// Simplified stacking ensemble training
198pub fn simd_train_stacking_ensemble(
199    X: &ArrayView2<Float>,
200    y: &ArrayView1<Float>,
201    n_base_estimators: usize,
202    learning_rate: Float,
203    l2_reg: Float,
204    n_iterations: usize,
205) -> Result<StackingEnsembleModel> {
206    let (n_samples, n_features) = X.dim();
207
208    if y.len() != n_samples {
209        return Err(SklearsError::ShapeMismatch {
210            expected: format!("{} samples", n_samples),
211            actual: format!("{} samples", y.len()),
212        });
213    }
214
215    // Initialize parameters
216    let base_weights = Array2::<Float>::zeros((n_base_estimators, n_features));
217    let base_intercepts = Array1::<Float>::zeros(n_base_estimators);
218    let mut meta_weights = Array1::<Float>::zeros(n_base_estimators);
219    let mut meta_intercept = 0.0;
220
221    // Simple training loop (placeholder implementation)
222    for _iter in 0..n_iterations {
223        // Generate meta-features
224        let meta_features =
225            simd_generate_meta_features(X, &base_weights.view(), &base_intercepts.view())?;
226
227        // Compute gradients for meta-learner
228        let (grad_weights, grad_intercept) = simd_compute_gradients(
229            &meta_features.view(),
230            y,
231            &meta_weights.view(),
232            meta_intercept,
233            l2_reg,
234        )?;
235
236        // Update meta-learner parameters
237        for i in 0..n_base_estimators {
238            meta_weights[i] -= learning_rate * grad_weights[i];
239        }
240        meta_intercept -= learning_rate * grad_intercept;
241    }
242
243    Ok(StackingEnsembleModel {
244        base_weights,
245        base_intercepts,
246        meta_weights,
247        meta_intercept,
248        n_features,
249        n_estimators: n_base_estimators,
250    })
251}
252
253// Additional utility functions for completeness
254
255/// Calculate mean of array
256fn simd_mean(arr: &ArrayView1<Float>) -> Float {
257    if arr.is_empty() {
258        return 0.0;
259    }
260    arr.sum() / arr.len() as Float
261}
262
263/// Calculate variance of array
264fn simd_variance(arr: &ArrayView1<Float>, mean: Float) -> Float {
265    if arr.len() < 2 {
266        return 0.0;
267    }
268    let sum_sq_diff: Float = arr.iter().map(|&x| (x - mean).powi(2)).sum();
269    sum_sq_diff / (arr.len() - 1) as Float
270}
271
272/// Ensemble diversity measurement
273pub fn simd_compute_ensemble_diversity(predictions: &ArrayView2<Float>) -> Result<Float> {
274    let (n_samples, n_estimators) = predictions.dim();
275
276    if n_estimators < 2 {
277        return Ok(0.0);
278    }
279
280    let mut total_diversity = 0.0;
281    let mut pair_count = 0;
282
283    // Compute pairwise diversity
284    for i in 0..n_estimators {
285        for j in i + 1..n_estimators {
286            let pred_i = predictions.column(i);
287            let pred_j = predictions.column(j);
288
289            let correlation = simd_correlation_coefficient(&pred_i, &pred_j);
290            let diversity = 1.0 - correlation.abs();
291            total_diversity += diversity;
292            pair_count += 1;
293        }
294    }
295
296    Ok(total_diversity / pair_count as Float)
297}
298
299/// Correlation coefficient computation
300fn simd_correlation_coefficient(x: &ArrayView1<Float>, y: &ArrayView1<Float>) -> Float {
301    if x.len() != y.len() || x.len() < 2 {
302        return 0.0;
303    }
304
305    let mean_x = simd_mean(x);
306    let mean_y = simd_mean(y);
307
308    let mut sum_xy = 0.0;
309    let mut sum_xx = 0.0;
310    let mut sum_yy = 0.0;
311
312    for i in 0..x.len() {
313        let dx = x[i] - mean_x;
314        let dy = y[i] - mean_y;
315        sum_xy += dx * dy;
316        sum_xx += dx * dx;
317        sum_yy += dy * dy;
318    }
319
320    let denominator = (sum_xx * sum_yy).sqrt();
321    if denominator > 1e-12 {
322        sum_xy / denominator
323    } else {
324        0.0
325    }
326}
327
328#[allow(non_snake_case)]
329#[cfg(test)]
330mod tests {
331    use super::*;
332    use scirs2_core::ndarray::Array1;
333
334    #[test]
335    fn test_simd_dot_product() {
336        let x = Array1::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
337        let w = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
338
339        let result = simd_dot_product(&x.view(), &w.view());
340        let expected = 1.0 * 0.1 + 2.0 * 0.2 + 3.0 * 0.3 + 4.0 * 0.4;
341
342        assert!((result - expected).abs() < 1e-10);
343    }
344
345    #[test]
346    fn test_simd_linear_prediction() {
347        let x = Array1::from_vec(vec![2.0, 3.0]);
348        let w = Array1::from_vec(vec![0.5, 0.3]);
349        let intercept = 1.5;
350
351        let result = simd_linear_prediction(&x.view(), &w.view(), intercept);
352        let expected = 2.0 * 0.5 + 3.0 * 0.3 + 1.5;
353
354        assert!((result - expected).abs() < 1e-10);
355    }
356
357    #[test]
358    fn test_simd_mean() {
359        let data = Array1::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0]);
360        let result = simd_mean(&data.view());
361        assert!((result - 3.0).abs() < 1e-10);
362    }
363}