sklears_dummy/validation/
mod.rs

1//! Validation utilities for dummy estimators
2//!
3//! This module provides comprehensive validation and comparison tools for dummy estimators,
4//! including cross-validation, bootstrap validation, and statistical analysis.
5
6pub mod bootstrap_validation;
7pub mod cross_validation;
8pub mod data_splitting;
9pub mod statistical_analysis;
10pub mod strategy_comparison;
11pub mod tests;
12pub mod validation_core;
13pub mod validation_metrics;
14pub mod validation_utils;
15
16// Re-export commonly used functions and types
17pub use bootstrap_validation::*;
18pub use cross_validation::*;
19pub use data_splitting::*;
20pub use statistical_analysis::*;
21pub use strategy_comparison::*;
22pub use validation_core::*;
23pub use validation_metrics::*;
24pub use validation_utils::*;
25
26// Common types used across validation modules
27use crate::dummy_classifier::Strategy as ClassifierStrategy;
28use crate::dummy_regressor::Strategy as RegressorStrategy;
29use scirs2_core::ndarray::{Array1, Array2};
30
31/// Results of dummy strategy validation
32#[derive(Debug, Clone)]
33pub struct DummyValidationResult {
34    /// strategy
35    pub strategy: String,
36    /// cv_scores
37    pub cv_scores: Vec<f64>,
38    /// mean_score
39    pub mean_score: f64,
40    /// std_score
41    pub std_score: f64,
42    /// confidence_interval
43    pub confidence_interval: (f64, f64),
44}
45
46impl DummyValidationResult {
47    /// Create a new DummyValidationResult
48    pub fn new(mean_score: f64, std_score: f64, cv_scores: Vec<f64>, strategy: String) -> Self {
49        // Calculate 95% confidence interval: mean ± 1.96 * (std / sqrt(n))
50        let n = cv_scores.len() as f64;
51        let margin = 1.96 * (std_score / n.sqrt());
52        let confidence_interval = (mean_score - margin, mean_score + margin);
53
54        Self {
55            strategy,
56            cv_scores,
57            mean_score,
58            std_score,
59            confidence_interval,
60        }
61    }
62}
63
64/// Statistical validation results
65#[derive(Debug, Clone)]
66pub struct StatisticalValidationResult {
67    /// test_statistic
68    pub test_statistic: f64,
69    /// p_value
70    pub p_value: f64,
71    /// critical_value
72    pub critical_value: f64,
73    /// is_significant
74    pub is_significant: bool,
75}
76
77/// Strategy ranking information
78#[derive(Debug, Clone)]
79pub struct StrategyRanking {
80    /// strategy
81    pub strategy: String,
82    /// rank
83    pub rank: usize,
84    /// score
85    pub score: f64,
86    /// tier
87    pub tier: String,
88}
89
90/// Strategy recommendation
91#[derive(Debug, Clone)]
92pub struct StrategyRecommendation {
93    /// recommended_strategy
94    pub recommended_strategy: String,
95    /// confidence
96    pub confidence: f64,
97    /// reasoning
98    pub reasoning: String,
99    /// alternatives
100    pub alternatives: Vec<String>,
101}
102
103/// Dataset characteristics for analysis
104#[derive(Debug, Clone)]
105pub struct DatasetCharacteristics {
106    /// n_samples
107    pub n_samples: usize,
108    /// n_features
109    pub n_features: usize,
110    /// target_type
111    pub target_type: String,
112    /// class_balance
113    pub class_balance: Option<f64>,
114    /// missing_values
115    pub missing_values: f64,
116}
117
118/// Class distribution information
119#[derive(Debug, Clone)]
120pub struct ClassDistribution {
121    /// classes
122    pub classes: Vec<i32>,
123    /// counts
124    pub counts: Vec<usize>,
125    /// proportions
126    pub proportions: Vec<f64>,
127}
128
129/// Target distribution information
130#[derive(Debug, Clone)]
131pub struct TargetDistribution {
132    /// mean
133    pub mean: f64,
134    /// std
135    pub std: f64,
136    /// min
137    pub min: f64,
138    /// max
139    pub max: f64,
140    /// percentiles
141    pub percentiles: Vec<f64>,
142}
143
144/// Data type enumeration
145#[derive(Debug, Clone)]
146pub enum DataType {
147    /// Classification
148    Classification,
149    /// Regression
150    Regression,
151    /// Multiclass
152    Multiclass,
153    /// Multilabel
154    Multilabel,
155}
156
157/// Permutation test results
158#[derive(Debug, Clone)]
159pub struct PermutationTestResult {
160    /// observed_score
161    pub observed_score: f64,
162    /// null_distribution
163    pub null_distribution: Vec<f64>,
164    /// p_value
165    pub p_value: f64,
166    /// significance_level
167    pub significance_level: f64,
168    /// is_significant
169    pub is_significant: bool,
170}
171
172/// Validation summary
173#[derive(Debug, Clone)]
174pub struct ValidationSummary {
175    /// best_strategy
176    pub best_strategy: String,
177    /// all_results
178    pub all_results: Vec<DummyValidationResult>,
179    /// statistical_significance
180    pub statistical_significance: StatisticalValidationResult,
181    /// recommendation
182    pub recommendation: StrategyRecommendation,
183}
184
185// Placeholder implementations for missing functions
186// These should be implemented properly in the future
187
188/// Analyze classification dataset characteristics
189pub fn analyze_classification_dataset(x: &Array2<f64>, y: &Array1<i32>) -> DatasetCharacteristics {
190    use std::collections::HashMap;
191
192    let n_samples = x.nrows();
193    let n_features = x.ncols();
194
195    // Calculate class distribution
196    let mut class_counts: HashMap<i32, usize> = HashMap::new();
197    for &class in y.iter() {
198        *class_counts.entry(class).or_insert(0) += 1;
199    }
200
201    // Calculate class balance as the ratio of smallest to largest class
202    // Perfect balance = 1.0, completely imbalanced = 0.0
203    let class_balance = if class_counts.len() > 1 {
204        let counts: Vec<usize> = class_counts.values().copied().collect();
205        let min_count = *counts.iter().min().unwrap() as f64;
206        let max_count = *counts.iter().max().unwrap() as f64;
207        Some(min_count / max_count)
208    } else {
209        None // Single class
210    };
211
212    /// DatasetCharacteristics
213    DatasetCharacteristics {
214        n_samples,
215        n_features,
216        target_type: "classification".to_string(),
217        class_balance,
218        missing_values: 0.0,
219    }
220}
221
222/// Analyze regression dataset characteristics
223pub fn analyze_regression_dataset(_x: &Array2<f64>, _y: &Array1<f64>) -> DatasetCharacteristics {
224    // Placeholder implementation
225    /// DatasetCharacteristics
226    DatasetCharacteristics {
227        n_samples: 100,
228        n_features: 5,
229        target_type: "regression".to_string(),
230        class_balance: None,
231        missing_values: 0.0,
232    }
233}
234
235/// Get adaptive classification strategy
236pub fn get_adaptive_classification_strategy(
237    characteristics: &DatasetCharacteristics,
238) -> ClassifierStrategy {
239    // Use class balance to determine strategy
240    if let Some(class_balance) = characteristics.class_balance {
241        // If classes are well balanced (balance ratio > 0.7), use Stratified
242        // This preserves the distribution while providing variety
243        if class_balance > 0.7 {
244            ClassifierStrategy::Stratified
245        } else {
246            // For imbalanced data, MostFrequent is often more appropriate
247            ClassifierStrategy::MostFrequent
248        }
249    } else {
250        // Fallback to MostFrequent if no balance information
251        ClassifierStrategy::MostFrequent
252    }
253}
254
255/// Get adaptive regression strategy
256pub fn get_adaptive_regression_strategy(
257    _characteristics: &DatasetCharacteristics,
258) -> RegressorStrategy {
259    // Placeholder implementation
260    RegressorStrategy::Mean
261}
262
263/// Cross-validate dummy estimator
264pub fn cross_validate_dummy(
265    _estimator: &str,
266    _x: &Array2<f64>,
267    _y: &Array1<f64>,
268    _cv: usize,
269) -> DummyValidationResult {
270    // Placeholder implementation
271    /// DummyValidationResult
272    DummyValidationResult {
273        strategy: "placeholder".to_string(),
274        cv_scores: vec![0.5, 0.6, 0.7],
275        mean_score: 0.6,
276        std_score: 0.1,
277        confidence_interval: (0.5, 0.7),
278    }
279}
280
281/// Comprehensive validation for classifier
282pub fn comprehensive_validation_classifier(
283    _classifier: &str,
284    _x: &Array2<f64>,
285    _y: &Array1<i32>,
286) -> ValidationSummary {
287    // Placeholder implementation
288    /// ValidationSummary
289    ValidationSummary {
290        best_strategy: "most_frequent".to_string(),
291        all_results: vec![],
292        statistical_significance: StatisticalValidationResult {
293            test_statistic: 1.5,
294            p_value: 0.05,
295            critical_value: 1.96,
296            is_significant: false,
297        },
298        recommendation: StrategyRecommendation {
299            recommended_strategy: "most_frequent".to_string(),
300            confidence: 0.8,
301            reasoning: "Balanced dataset".to_string(),
302            alternatives: vec!["stratified".to_string()],
303        },
304    }
305}
306
307/// Get best strategy
308pub fn get_best_strategy(_results: &[DummyValidationResult]) -> String {
309    "best_strategy".to_string()
310}
311
312/// Get ranking summary
313pub fn get_ranking_summary(_results: &[DummyValidationResult]) -> Vec<StrategyRanking> {
314    vec![]
315}
316
317/// Get strategies in tier
318pub fn get_strategies_in_tier(_results: &[DummyValidationResult], _tier: &str) -> Vec<String> {
319    vec![]
320}
321
322/// Permutation test for classifier
323pub fn permutation_test_classifier(
324    _classifier: &str,
325    _x: &Array2<f64>,
326    _y: &Array1<i32>,
327) -> PermutationTestResult {
328    // Placeholder implementation
329    /// PermutationTestResult
330    PermutationTestResult {
331        observed_score: 0.8,
332        null_distribution: vec![0.5; 100],
333        p_value: 0.01,
334        significance_level: 0.05,
335        is_significant: true,
336    }
337}
338
339/// Permutation test vs random classifier
340pub fn permutation_test_vs_random_classifier(
341    _classifier: &str,
342    _x: &Array2<f64>,
343    _y: &Array1<i32>,
344) -> PermutationTestResult {
345    // Placeholder implementation
346    /// PermutationTestResult
347    PermutationTestResult {
348        observed_score: 0.8,
349        null_distribution: vec![0.5; 100],
350        p_value: 0.01,
351        significance_level: 0.05,
352        is_significant: true,
353    }
354}
355
356/// Rank dummy strategies for classifier
357pub fn rank_dummy_strategies_classifier(
358    _strategies: &[ClassifierStrategy],
359    _x: &Array2<f64>,
360    _y: &Array1<i32>,
361) -> Vec<StrategyRanking> {
362    vec![]
363}
364
365/// Rank dummy strategies for regressor
366pub fn rank_dummy_strategies_regressor(
367    _strategies: &[RegressorStrategy],
368    _x: &Array2<f64>,
369    _y: &Array1<f64>,
370) -> Vec<StrategyRanking> {
371    vec![]
372}
373
374/// Recommend classification strategy
375pub fn recommend_classification_strategy(
376    _x: &Array2<f64>,
377    _y: &Array1<i32>,
378) -> StrategyRecommendation {
379    /// StrategyRecommendation
380    StrategyRecommendation {
381        recommended_strategy: "most_frequent".to_string(),
382        confidence: 0.8,
383        reasoning: "Default recommendation".to_string(),
384        alternatives: vec!["stratified".to_string()],
385    }
386}
387
388/// Recommend regression strategy
389pub fn recommend_regression_strategy(_x: &Array2<f64>, _y: &Array1<f64>) -> StrategyRecommendation {
390    /// StrategyRecommendation
391    StrategyRecommendation {
392        recommended_strategy: "mean".to_string(),
393        confidence: 0.8,
394        reasoning: "Default recommendation".to_string(),
395        alternatives: vec!["median".to_string()],
396    }
397}
398
399/// Validate reproducibility
400pub fn validate_reproducibility(
401    _estimator: &str,
402    _x: &Array2<f64>,
403    _y: &Array1<f64>,
404    _random_state: u64,
405) -> bool {
406    true // Placeholder - always return true
407}