sklears_dummy/
scalability.rs

1//! Scalability Features for Large-Scale Baseline Methods
2//!
3//! This module provides scalability enhancements for handling large datasets,
4//! distributed computation, streaming updates, and approximate methods for
5//! baseline dummy estimators.
6//!
7//! Features:
8//! - Large-scale baseline methods optimized for massive datasets
9//! - Distributed baseline computation across multiple nodes
10//! - Streaming baseline updates for incremental learning
11//! - Approximate baseline methods with bounded error guarantees
12//! - Sampling-based baselines for efficient large-scale processing
13
14use rayon::prelude::*;
15use scirs2_core::ndarray::{s, Array1, Array2, ArrayView1, ArrayView2};
16use scirs2_core::random::{thread_rng, Distribution, Rng};
17use sklears_core::error::{Result, SklearsError};
18use sklears_core::traits::Estimator;
19use std::collections::HashMap;
20use std::sync::RwLock;
21use std::time::Instant;
22
23/// Configuration for large-scale baseline methods
24#[derive(Debug, Clone)]
25pub struct LargeScaleConfig {
26    /// Maximum memory usage in bytes
27    pub max_memory_bytes: usize,
28    /// Chunk size for batch processing
29    pub chunk_size: usize,
30    /// Number of parallel workers
31    pub n_workers: usize,
32    /// Use memory mapping for large datasets
33    pub use_memory_mapping: bool,
34    /// Enable compression for intermediate results
35    pub enable_compression: bool,
36}
37
38impl Default for LargeScaleConfig {
39    fn default() -> Self {
40        Self {
41            max_memory_bytes: 1_073_741_824, // 1GB
42            chunk_size: 10_000,
43            n_workers: num_cpus::get(),
44            use_memory_mapping: true,
45            enable_compression: true,
46        }
47    }
48}
49
50/// Strategy for large-scale baseline computation
51#[derive(Debug, Clone, PartialEq)]
52pub enum LargeScaleStrategy {
53    /// Chunked processing with configurable chunk size
54    ChunkedProcessing { chunk_size: usize, overlap: usize },
55    /// Memory-mapped processing for very large datasets
56    MemoryMapped {
57        block_size: usize,
58        prefetch_blocks: usize,
59    },
60    /// Reservoir sampling for approximate statistics
61    ReservoirSampling {
62        reservoir_size: usize,
63        replacement_rate: f64,
64    },
65    /// Sketching algorithms for approximate computation
66    SketchBased {
67        sketch_size: usize,
68        hash_functions: usize,
69    },
70    /// Distributed processing across multiple nodes
71    Distributed {
72        node_id: usize,
73        total_nodes: usize,
74        coordinator_address: String,
75    },
76}
77
78/// Large-scale dummy estimator for massive datasets
79pub struct LargeScaleDummyEstimator {
80    strategy: LargeScaleStrategy,
81    config: LargeScaleConfig,
82    state: RwLock<LargeScaleState>,
83}
84
85#[derive(Debug, Clone)]
86struct LargeScaleState {
87    /// Accumulated statistics
88    sample_count: usize,
89    running_sum: f64,
90    running_sum_squares: f64,
91    /// Reservoir sample for approximate methods
92    reservoir: Vec<f64>,
93    /// Sketch data structures
94    sketches: HashMap<usize, Vec<f64>>,
95    /// Distributed state
96    node_statistics: HashMap<usize, NodeStatistics>,
97    /// Memory usage tracking
98    current_memory_usage: usize,
99}
100
101#[derive(Debug, Clone)]
102struct NodeStatistics {
103    sample_count: usize,
104    mean: f64,
105    variance: f64,
106    last_update: Instant,
107}
108
109impl LargeScaleDummyEstimator {
110    /// Create new large-scale dummy estimator
111    pub fn new(strategy: LargeScaleStrategy) -> Self {
112        Self::with_config(strategy, LargeScaleConfig::default())
113    }
114
115    /// Create with custom configuration
116    pub fn with_config(strategy: LargeScaleStrategy, config: LargeScaleConfig) -> Self {
117        Self {
118            strategy,
119            config,
120            state: RwLock::new(LargeScaleState {
121                sample_count: 0,
122                running_sum: 0.0,
123                running_sum_squares: 0.0,
124                reservoir: Vec::new(),
125                sketches: HashMap::new(),
126                node_statistics: HashMap::new(),
127                current_memory_usage: 0,
128            }),
129        }
130    }
131
132    /// Process large dataset in chunks
133    pub fn fit_chunked(&self, x: &ArrayView2<f64>, y: &ArrayView1<f64>) -> Result<()> {
134        match &self.strategy {
135            LargeScaleStrategy::ChunkedProcessing {
136                chunk_size,
137                overlap,
138            } => self.process_chunked(x, y, *chunk_size, *overlap),
139            LargeScaleStrategy::MemoryMapped {
140                block_size,
141                prefetch_blocks,
142            } => self.process_memory_mapped(x, y, *block_size, *prefetch_blocks),
143            LargeScaleStrategy::ReservoirSampling {
144                reservoir_size,
145                replacement_rate,
146            } => self.process_reservoir_sampling(x, y, *reservoir_size, *replacement_rate),
147            LargeScaleStrategy::SketchBased {
148                sketch_size,
149                hash_functions,
150            } => self.process_sketch_based(x, y, *sketch_size, *hash_functions),
151            LargeScaleStrategy::Distributed {
152                node_id,
153                total_nodes,
154                coordinator_address,
155            } => self.process_distributed(x, y, *node_id, *total_nodes, coordinator_address),
156        }
157    }
158
159    /// Chunked processing implementation
160    fn process_chunked(
161        &self,
162        x: &ArrayView2<f64>,
163        y: &ArrayView1<f64>,
164        chunk_size: usize,
165        overlap: usize,
166    ) -> Result<()> {
167        let n_samples = x.nrows();
168        let mut start_idx = 0;
169
170        while start_idx < n_samples {
171            let end_idx = (start_idx + chunk_size).min(n_samples);
172            let chunk_x = x.slice(s![start_idx..end_idx, ..]);
173            let chunk_y = y.slice(s![start_idx..end_idx]);
174
175            // Process chunk
176            self.update_statistics(&chunk_x, &chunk_y)?;
177
178            // Move to next chunk with overlap
179            start_idx += chunk_size - overlap;
180        }
181
182        Ok(())
183    }
184
185    /// Memory-mapped processing implementation
186    fn process_memory_mapped(
187        &self,
188        x: &ArrayView2<f64>,
189        y: &ArrayView1<f64>,
190        block_size: usize,
191        prefetch_blocks: usize,
192    ) -> Result<()> {
193        if !self.config.use_memory_mapping {
194            return self.process_chunked(x, y, block_size, 0);
195        }
196
197        // Create memory-mapped arrays for large datasets
198        let n_samples = x.nrows();
199        let n_features = x.ncols();
200
201        // Process in memory-mapped blocks
202        for block_start in (0..n_samples).step_by(block_size) {
203            let block_end = (block_start + block_size).min(n_samples);
204
205            // Simulate memory-mapped access with prefetching
206            let block_x = x.slice(s![block_start..block_end, ..]);
207            let block_y = y.slice(s![block_start..block_end]);
208
209            // Prefetch next blocks in background
210            if block_end + prefetch_blocks * block_size < n_samples {
211                // In real implementation, this would prefetch from disk/memory
212            }
213
214            self.update_statistics(&block_x, &block_y)?;
215        }
216
217        Ok(())
218    }
219
220    /// Reservoir sampling implementation
221    fn process_reservoir_sampling(
222        &self,
223        x: &ArrayView2<f64>,
224        y: &ArrayView1<f64>,
225        reservoir_size: usize,
226        replacement_rate: f64,
227    ) -> Result<()> {
228        let mut state = self.state.write().unwrap();
229        let mut rng = thread_rng();
230
231        // Initialize reservoir if needed
232        if state.reservoir.is_empty() {
233            state.reservoir.reserve(reservoir_size);
234        }
235
236        for &value in y.iter() {
237            state.sample_count += 1;
238
239            if state.reservoir.len() < reservoir_size {
240                // Fill reservoir
241                state.reservoir.push(value);
242            } else {
243                // Reservoir sampling algorithm
244                let k = rng.gen_range(0..state.sample_count);
245                if k < reservoir_size {
246                    state.reservoir[k] = value;
247                } else if rng.gen::<f64>() < replacement_rate {
248                    // Occasional replacement to handle concept drift
249                    let idx = rng.gen_range(0..reservoir_size);
250                    state.reservoir[idx] = value;
251                }
252            }
253        }
254
255        // Update statistics from reservoir
256        if !state.reservoir.is_empty() {
257            state.running_sum = state.reservoir.iter().sum();
258            state.running_sum_squares = state.reservoir.iter().map(|&x| x * x).sum();
259        }
260
261        Ok(())
262    }
263
264    /// Sketch-based processing implementation
265    fn process_sketch_based(
266        &self,
267        x: &ArrayView2<f64>,
268        y: &ArrayView1<f64>,
269        sketch_size: usize,
270        hash_functions: usize,
271    ) -> Result<()> {
272        let mut state = self.state.write().unwrap();
273
274        // Initialize sketches
275        for h in 0..hash_functions {
276            state
277                .sketches
278                .entry(h)
279                .or_insert_with(|| vec![0.0; sketch_size]);
280        }
281
282        // Count-Min sketch for frequency estimation
283        for &value in y.iter() {
284            for h in 0..hash_functions {
285                let hash = self.hash_function(value, h) % sketch_size;
286                if let Some(sketch) = state.sketches.get_mut(&h) {
287                    sketch[hash] += 1.0;
288                }
289            }
290            state.sample_count += 1;
291        }
292
293        // Estimate statistics from sketches
294        self.estimate_from_sketches(&mut state, y)?;
295
296        Ok(())
297    }
298
299    /// Distributed processing implementation
300    fn process_distributed(
301        &self,
302        x: &ArrayView2<f64>,
303        y: &ArrayView1<f64>,
304        node_id: usize,
305        total_nodes: usize,
306        coordinator_address: &str,
307    ) -> Result<()> {
308        let mut state = self.state.write().unwrap();
309
310        // Compute local statistics
311        let local_count = y.len();
312        let local_sum: f64 = y.iter().sum();
313        let local_mean = if local_count > 0 {
314            local_sum / local_count as f64
315        } else {
316            0.0
317        };
318        let local_variance = if local_count > 1 {
319            y.iter().map(|&x| (x - local_mean).powi(2)).sum::<f64>() / (local_count - 1) as f64
320        } else {
321            0.0
322        };
323
324        // Store local node statistics
325        state.node_statistics.insert(
326            node_id,
327            NodeStatistics {
328                sample_count: local_count,
329                mean: local_mean,
330                variance: local_variance,
331                last_update: Instant::now(),
332            },
333        );
334
335        // In a real distributed system, this would communicate with coordinator
336        // For now, we simulate by combining all available node statistics
337        self.combine_distributed_statistics(&mut state)?;
338
339        Ok(())
340    }
341
342    /// Update running statistics
343    fn update_statistics(&self, x: &ArrayView2<f64>, y: &ArrayView1<f64>) -> Result<()> {
344        let mut state = self.state.write().unwrap();
345
346        let chunk_count = y.len();
347        let chunk_sum: f64 = y.iter().sum();
348        let chunk_sum_squares: f64 = y.iter().map(|&x| x * x).sum();
349
350        // Online update of statistics
351        let old_count = state.sample_count;
352        let new_count = old_count + chunk_count;
353
354        if new_count > 0 {
355            let delta = chunk_sum - state.running_sum * (chunk_count as f64 / old_count as f64);
356            state.running_sum += chunk_sum;
357            state.running_sum_squares += chunk_sum_squares;
358            state.sample_count = new_count;
359        }
360
361        // Update memory usage
362        state.current_memory_usage += std::mem::size_of_val(x) + std::mem::size_of_val(y);
363
364        Ok(())
365    }
366
367    /// Simple hash function for sketching
368    fn hash_function(&self, value: f64, seed: usize) -> usize {
369        use std::collections::hash_map::DefaultHasher;
370        use std::hash::{Hash, Hasher};
371
372        let mut hasher = DefaultHasher::new();
373        value.to_bits().hash(&mut hasher);
374        seed.hash(&mut hasher);
375        hasher.finish() as usize
376    }
377
378    /// Estimate statistics from sketches
379    fn estimate_from_sketches(
380        &self,
381        state: &mut LargeScaleState,
382        y: &ArrayView1<f64>,
383    ) -> Result<()> {
384        // Simple estimation: use minimum values across all sketches for robustness
385        if let Some(sketch_0) = state.sketches.get(&0) {
386            // Estimate mean from sketch frequencies
387            let total_frequency: f64 = sketch_0.iter().sum();
388            if total_frequency > 0.0 {
389                // This is a simplified estimation - in practice you'd use more sophisticated methods
390                state.running_sum = y.iter().sum();
391                state.running_sum_squares = y.iter().map(|&x| x * x).sum();
392            }
393        }
394        Ok(())
395    }
396
397    /// Combine statistics from distributed nodes
398    fn combine_distributed_statistics(&self, state: &mut LargeScaleState) -> Result<()> {
399        let mut total_count = 0;
400        let mut weighted_sum = 0.0;
401        let mut weighted_sum_squares = 0.0;
402
403        for node_stats in state.node_statistics.values() {
404            total_count += node_stats.sample_count;
405            weighted_sum += node_stats.mean * node_stats.sample_count as f64;
406            weighted_sum_squares += (node_stats.variance + node_stats.mean * node_stats.mean)
407                * node_stats.sample_count as f64;
408        }
409
410        if total_count > 0 {
411            state.sample_count = total_count;
412            state.running_sum = weighted_sum;
413            state.running_sum_squares = weighted_sum_squares;
414        }
415
416        Ok(())
417    }
418
419    /// Get current mean estimate
420    pub fn get_mean(&self) -> f64 {
421        let state = self.state.read().unwrap();
422        if state.sample_count > 0 {
423            state.running_sum / state.sample_count as f64
424        } else {
425            0.0
426        }
427    }
428
429    /// Get current variance estimate
430    pub fn get_variance(&self) -> f64 {
431        let state = self.state.read().unwrap();
432        if state.sample_count > 1 {
433            let mean = state.running_sum / state.sample_count as f64;
434            let variance = state.running_sum_squares / state.sample_count as f64 - mean * mean;
435            variance * state.sample_count as f64 / (state.sample_count - 1) as f64
436        // Bessel's correction
437        } else {
438            0.0
439        }
440    }
441
442    /// Get memory usage statistics
443    pub fn get_memory_usage(&self) -> usize {
444        self.state.read().unwrap().current_memory_usage
445    }
446
447    /// Get processing statistics
448    pub fn get_processing_stats(&self) -> ProcessingStats {
449        let state = self.state.read().unwrap();
450        ProcessingStats {
451            total_samples_processed: state.sample_count,
452            current_memory_usage: state.current_memory_usage,
453            max_memory_limit: self.config.max_memory_bytes,
454            reservoir_size: state.reservoir.len(),
455            sketch_count: state.sketches.len(),
456            distributed_nodes: state.node_statistics.len(),
457        }
458    }
459}
460
461/// Processing statistics for monitoring
462#[derive(Debug, Clone)]
463pub struct ProcessingStats {
464    /// total_samples_processed
465    pub total_samples_processed: usize,
466    /// current_memory_usage
467    pub current_memory_usage: usize,
468    /// max_memory_limit
469    pub max_memory_limit: usize,
470    /// reservoir_size
471    pub reservoir_size: usize,
472    /// sketch_count
473    pub sketch_count: usize,
474    /// distributed_nodes
475    pub distributed_nodes: usize,
476}
477
478/// Streaming baseline updater for incremental learning
479pub struct StreamingBaselineUpdater {
480    /// Current statistics
481    count: usize,
482    mean: f64,
483    m2: f64, // For Welford's algorithm
484    /// Decay factor for exponential weighting
485    decay_factor: f64,
486    /// Minimum samples before making predictions
487    min_samples: usize,
488}
489
490impl StreamingBaselineUpdater {
491    /// Create new streaming updater
492    pub fn new(decay_factor: f64, min_samples: usize) -> Self {
493        Self {
494            count: 0,
495            mean: 0.0,
496            m2: 0.0,
497            decay_factor,
498            min_samples,
499        }
500    }
501
502    /// Update with new sample using Welford's online algorithm
503    pub fn update(&mut self, value: f64) {
504        self.count += 1;
505
506        if self.decay_factor < 1.0 && self.count > 1 {
507            // Exponential decay
508            let effective_count = (self.count as f64 * self.decay_factor).max(1.0);
509            let delta = value - self.mean;
510            self.mean += delta / effective_count;
511            let delta2 = value - self.mean;
512            self.m2 += delta * delta2;
513        } else {
514            // Standard Welford's algorithm
515            let delta = value - self.mean;
516            self.mean += delta / self.count as f64;
517            let delta2 = value - self.mean;
518            self.m2 += delta * delta2;
519        }
520    }
521
522    /// Get current mean
523    pub fn mean(&self) -> f64 {
524        self.mean
525    }
526
527    /// Get current variance
528    pub fn variance(&self) -> f64 {
529        if self.count > 1 {
530            self.m2 / (self.count - 1) as f64
531        } else {
532            0.0
533        }
534    }
535
536    /// Get current standard deviation
537    pub fn std_dev(&self) -> f64 {
538        self.variance().sqrt()
539    }
540
541    /// Check if ready for predictions
542    pub fn is_ready(&self) -> bool {
543        self.count >= self.min_samples
544    }
545
546    /// Get sample count
547    pub fn count(&self) -> usize {
548        self.count
549    }
550
551    /// Reset statistics
552    pub fn reset(&mut self) {
553        self.count = 0;
554        self.mean = 0.0;
555        self.m2 = 0.0;
556    }
557
558    /// Get prediction for new sample
559    pub fn predict(&self) -> Result<f64> {
560        if !self.is_ready() {
561            return Err(SklearsError::InvalidInput(format!(
562                "Need at least {} samples before making predictions",
563                self.min_samples
564            )));
565        }
566        Ok(self.mean)
567    }
568
569    /// Get prediction with confidence interval
570    pub fn predict_with_confidence(&self, confidence_level: f64) -> Result<(f64, f64, f64)> {
571        if !self.is_ready() {
572            return Err(SklearsError::InvalidInput(format!(
573                "Need at least {} samples before making predictions",
574                self.min_samples
575            )));
576        }
577
578        let prediction = self.mean;
579        let std_err = self.std_dev() / (self.count as f64).sqrt();
580
581        // Approximate z-score for confidence interval
582        let z_score = match confidence_level {
583            level if level >= 0.99 => 2.576,
584            level if level >= 0.95 => 1.96,
585            level if level >= 0.90 => 1.645,
586            _ => 1.0,
587        };
588
589        let margin = z_score * std_err;
590        Ok((prediction, prediction - margin, prediction + margin))
591    }
592}
593
594/// Approximate baseline methods with error bounds
595pub struct ApproximateBaseline {
596    method: ApproximateMethod,
597    error_bound: f64,
598    confidence_level: f64,
599}
600
601#[derive(Debug, Clone)]
602pub enum ApproximateMethod {
603    /// Random sampling with replacement
604    Bootstrap { n_samples: usize },
605    /// Stratified sampling
606    Stratified {
607        n_strata: usize,
608        samples_per_stratum: usize,
609    },
610    /// Systematic sampling
611    Systematic { sampling_interval: usize },
612    /// Cluster sampling
613    Cluster { n_clusters: usize },
614}
615
616impl ApproximateBaseline {
617    /// Create new approximate baseline
618    pub fn new(method: ApproximateMethod, error_bound: f64, confidence_level: f64) -> Result<Self> {
619        if !(0.0..=1.0).contains(&error_bound) {
620            return Err(SklearsError::InvalidInput(
621                "Error bound must be between 0 and 1".to_string(),
622            ));
623        }
624        if !(0.0..=1.0).contains(&confidence_level) {
625            return Err(SklearsError::InvalidInput(
626                "Confidence level must be between 0 and 1".to_string(),
627            ));
628        }
629
630        Ok(Self {
631            method,
632            error_bound,
633            confidence_level,
634        })
635    }
636
637    /// Compute approximate statistics
638    pub fn compute_approximate_stats(&self, y: &ArrayView1<f64>) -> Result<ApproximateStats> {
639        match &self.method {
640            ApproximateMethod::Bootstrap { n_samples } => self.bootstrap_stats(y, *n_samples),
641            ApproximateMethod::Stratified {
642                n_strata,
643                samples_per_stratum,
644            } => self.stratified_stats(y, *n_strata, *samples_per_stratum),
645            ApproximateMethod::Systematic { sampling_interval } => {
646                self.systematic_stats(y, *sampling_interval)
647            }
648            ApproximateMethod::Cluster { n_clusters } => self.cluster_stats(y, *n_clusters),
649        }
650    }
651
652    /// Bootstrap sampling statistics
653    fn bootstrap_stats(&self, y: &ArrayView1<f64>, n_samples: usize) -> Result<ApproximateStats> {
654        let mut rng = thread_rng();
655        let total_samples = y.len();
656        let mut bootstrap_means = Vec::with_capacity(n_samples);
657        let sample_size = (total_samples as f64 * 0.632).ceil() as usize; // ~63.2% for bootstrap
658
659        for _ in 0..n_samples {
660            let mut sample_sum = 0.0;
661
662            for _ in 0..sample_size {
663                let idx = rng.gen_range(0..total_samples);
664                sample_sum += y[idx];
665            }
666
667            bootstrap_means.push(sample_sum / sample_size as f64);
668        }
669
670        let estimated_mean = bootstrap_means.iter().sum::<f64>() / bootstrap_means.len() as f64;
671        let estimated_variance = bootstrap_means
672            .iter()
673            .map(|&x| (x - estimated_mean).powi(2))
674            .sum::<f64>()
675            / (bootstrap_means.len() - 1) as f64;
676
677        Ok(ApproximateStats {
678            estimated_mean,
679            estimated_variance,
680            confidence_interval: self.compute_confidence_interval(
681                estimated_mean,
682                estimated_variance.sqrt(),
683                bootstrap_means.len(),
684            ),
685            sample_size_used: sample_size * n_samples,
686            method_info: format!("Bootstrap with {} resamples", n_samples),
687        })
688    }
689
690    /// Stratified sampling statistics
691    fn stratified_stats(
692        &self,
693        y: &ArrayView1<f64>,
694        n_strata: usize,
695        samples_per_stratum: usize,
696    ) -> Result<ApproximateStats> {
697        let mut rng = thread_rng();
698        let total_samples = y.len();
699
700        // Sort data for stratification
701        let mut indexed_data: Vec<(usize, f64)> =
702            y.iter().enumerate().map(|(i, &v)| (i, v)).collect();
703        indexed_data.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
704
705        let stratum_size = total_samples / n_strata;
706        let mut stratum_means = Vec::new();
707        let mut total_sampled = 0;
708
709        for stratum in 0..n_strata {
710            let start = stratum * stratum_size;
711            let end = if stratum == n_strata - 1 {
712                total_samples
713            } else {
714                (stratum + 1) * stratum_size
715            };
716            let stratum_data = &indexed_data[start..end];
717
718            if stratum_data.is_empty() {
719                continue;
720            }
721
722            let actual_samples = samples_per_stratum.min(stratum_data.len());
723            let mut stratum_sum = 0.0;
724
725            for _ in 0..actual_samples {
726                let idx = rng.gen_range(0..stratum_data.len());
727                stratum_sum += stratum_data[idx].1;
728                total_sampled += 1;
729            }
730
731            stratum_means.push(stratum_sum / actual_samples as f64);
732        }
733
734        let estimated_mean = stratum_means.iter().sum::<f64>() / stratum_means.len() as f64;
735        let estimated_variance = if stratum_means.len() > 1 {
736            stratum_means
737                .iter()
738                .map(|&x| (x - estimated_mean).powi(2))
739                .sum::<f64>()
740                / (stratum_means.len() - 1) as f64
741        } else {
742            0.0
743        };
744
745        Ok(ApproximateStats {
746            estimated_mean,
747            estimated_variance,
748            confidence_interval: self.compute_confidence_interval(
749                estimated_mean,
750                estimated_variance.sqrt(),
751                stratum_means.len(),
752            ),
753            sample_size_used: total_sampled,
754            method_info: format!(
755                "Stratified sampling with {} strata, {} samples per stratum",
756                n_strata, samples_per_stratum
757            ),
758        })
759    }
760
761    /// Systematic sampling statistics
762    fn systematic_stats(
763        &self,
764        y: &ArrayView1<f64>,
765        sampling_interval: usize,
766    ) -> Result<ApproximateStats> {
767        let mut rng = thread_rng();
768        let total_samples = y.len();
769
770        if sampling_interval >= total_samples {
771            return Err(SklearsError::InvalidInput(
772                "Sampling interval too large".to_string(),
773            ));
774        }
775
776        let start = rng.gen_range(0..sampling_interval);
777        let mut sample_sum = 0.0;
778        let mut sample_count = 0;
779
780        for i in (start..total_samples).step_by(sampling_interval) {
781            sample_sum += y[i];
782            sample_count += 1;
783        }
784
785        let estimated_mean = if sample_count > 0 {
786            sample_sum / sample_count as f64
787        } else {
788            0.0
789        };
790
791        // Estimate variance using systematic sampling
792        let mut variance_sum = 0.0;
793        for i in (start..total_samples).step_by(sampling_interval) {
794            variance_sum += (y[i] - estimated_mean).powi(2);
795        }
796        let estimated_variance = if sample_count > 1 {
797            variance_sum / (sample_count - 1) as f64
798        } else {
799            0.0
800        };
801
802        Ok(ApproximateStats {
803            estimated_mean,
804            estimated_variance,
805            confidence_interval: self.compute_confidence_interval(
806                estimated_mean,
807                estimated_variance.sqrt(),
808                sample_count,
809            ),
810            sample_size_used: sample_count,
811            method_info: format!("Systematic sampling with interval {}", sampling_interval),
812        })
813    }
814
815    /// Cluster sampling statistics
816    fn cluster_stats(&self, y: &ArrayView1<f64>, n_clusters: usize) -> Result<ApproximateStats> {
817        let mut rng = thread_rng();
818        let total_samples = y.len();
819        let cluster_size = total_samples / n_clusters;
820
821        if cluster_size == 0 {
822            return Err(SklearsError::InvalidInput(
823                "Too many clusters for dataset size".to_string(),
824            ));
825        }
826
827        // Randomly select clusters
828        let selected_clusters = n_clusters / 2; // Select half of the clusters
829        let mut cluster_means = Vec::new();
830        let mut total_sampled = 0;
831
832        for _ in 0..selected_clusters {
833            let cluster_id = rng.gen_range(0..n_clusters);
834            let start = cluster_id * cluster_size;
835            let end = if cluster_id == n_clusters - 1 {
836                total_samples
837            } else {
838                (cluster_id + 1) * cluster_size
839            };
840
841            let cluster_sum: f64 = y.slice(s![start..end]).iter().sum();
842            let cluster_mean = cluster_sum / (end - start) as f64;
843            cluster_means.push(cluster_mean);
844            total_sampled += end - start;
845        }
846
847        let estimated_mean = cluster_means.iter().sum::<f64>() / cluster_means.len() as f64;
848        let estimated_variance = if cluster_means.len() > 1 {
849            cluster_means
850                .iter()
851                .map(|&x| (x - estimated_mean).powi(2))
852                .sum::<f64>()
853                / (cluster_means.len() - 1) as f64
854        } else {
855            0.0
856        };
857
858        Ok(ApproximateStats {
859            estimated_mean,
860            estimated_variance,
861            confidence_interval: self.compute_confidence_interval(
862                estimated_mean,
863                estimated_variance.sqrt(),
864                cluster_means.len(),
865            ),
866            sample_size_used: total_sampled,
867            method_info: format!(
868                "Cluster sampling with {} selected from {} clusters",
869                selected_clusters, n_clusters
870            ),
871        })
872    }
873
874    /// Compute confidence interval
875    fn compute_confidence_interval(&self, mean: f64, std_error: f64, n: usize) -> (f64, f64) {
876        // Use t-distribution for small samples, normal for large samples
877        let t_value = if n > 30 {
878            // Normal approximation
879            match self.confidence_level {
880                level if level >= 0.99 => 2.576,
881                level if level >= 0.95 => 1.96,
882                level if level >= 0.90 => 1.645,
883                _ => 1.0,
884            }
885        } else {
886            // t-distribution (simplified lookup)
887            match self.confidence_level {
888                level if level >= 0.95 => 2.0,
889                _ => 1.5,
890            }
891        };
892
893        let margin = t_value * std_error / (n as f64).sqrt();
894        (mean - margin, mean + margin)
895    }
896}
897
898/// Approximate statistics result
899#[derive(Debug, Clone)]
900pub struct ApproximateStats {
901    /// estimated_mean
902    pub estimated_mean: f64,
903    /// estimated_variance
904    pub estimated_variance: f64,
905    /// confidence_interval
906    pub confidence_interval: (f64, f64),
907    /// sample_size_used
908    pub sample_size_used: usize,
909    /// method_info
910    pub method_info: String,
911}
912
913/// Sampling-based baseline for efficient processing
914pub struct SamplingBasedBaseline {
915    sampling_rate: f64,
916    min_samples: usize,
917    max_samples: usize,
918    adaptive: bool,
919}
920
921impl SamplingBasedBaseline {
922    /// Create new sampling-based baseline
923    pub fn new(sampling_rate: f64, min_samples: usize, max_samples: usize) -> Result<Self> {
924        if !(0.0..=1.0).contains(&sampling_rate) {
925            return Err(SklearsError::InvalidInput(
926                "Sampling rate must be between 0 and 1".to_string(),
927            ));
928        }
929        if min_samples > max_samples {
930            return Err(SklearsError::InvalidInput(
931                "Min samples cannot exceed max samples".to_string(),
932            ));
933        }
934
935        Ok(Self {
936            sampling_rate,
937            min_samples,
938            max_samples,
939            adaptive: true,
940        })
941    }
942
943    /// Compute baseline using sampling
944    pub fn compute_sampled_baseline(&self, y: &ArrayView1<f64>) -> Result<SampledBaselineResult> {
945        let total_samples = y.len();
946        let target_samples = (total_samples as f64 * self.sampling_rate) as usize;
947        let actual_samples =
948            target_samples.clamp(self.min_samples, self.max_samples.min(total_samples));
949
950        if actual_samples == 0 {
951            return Err(SklearsError::InvalidInput(
952                "No samples to process".to_string(),
953            ));
954        }
955
956        // Reservoir sampling for unbiased sample
957        let mut rng = thread_rng();
958        let mut sample = Vec::with_capacity(actual_samples);
959
960        for (i, &value) in y.iter().enumerate() {
961            if sample.len() < actual_samples {
962                sample.push(value);
963            } else {
964                let j = rng.gen_range(0..i + 1);
965                if j < actual_samples {
966                    sample[j] = value;
967                }
968            }
969        }
970
971        // Compute statistics from sample
972        let mean = sample.iter().sum::<f64>() / sample.len() as f64;
973        let variance = if sample.len() > 1 {
974            sample.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / (sample.len() - 1) as f64
975        } else {
976            0.0
977        };
978
979        // Estimate error bounds
980        let standard_error = variance.sqrt() / (sample.len() as f64).sqrt();
981        let confidence_95 = (mean - 1.96 * standard_error, mean + 1.96 * standard_error);
982
983        Ok(SampledBaselineResult {
984            mean,
985            variance,
986            standard_error,
987            confidence_interval: confidence_95,
988            sample_size: sample.len(),
989            total_size: total_samples,
990            sampling_efficiency: sample.len() as f64 / total_samples as f64,
991        })
992    }
993
994    /// Adaptive sampling that adjusts rate based on variance
995    pub fn adaptive_sample(&mut self, y: &ArrayView1<f64>) -> Result<SampledBaselineResult> {
996        if !self.adaptive {
997            return self.compute_sampled_baseline(y);
998        }
999
1000        // Start with initial sample to estimate variance
1001        let initial_result = self.compute_sampled_baseline(y)?;
1002
1003        // Adjust sampling rate based on variance
1004        let cv = initial_result.standard_error / initial_result.mean.abs();
1005
1006        if cv > 0.1 {
1007            // High variance, increase sampling rate
1008            self.sampling_rate = (self.sampling_rate * 1.5).min(1.0);
1009        } else if cv < 0.05 {
1010            // Low variance, can reduce sampling rate
1011            self.sampling_rate = (self.sampling_rate * 0.8).max(0.01);
1012        }
1013
1014        // Recompute with adjusted rate
1015        self.compute_sampled_baseline(y)
1016    }
1017}
1018
1019/// Sampled baseline result
1020#[derive(Debug, Clone)]
1021pub struct SampledBaselineResult {
1022    /// mean
1023    pub mean: f64,
1024    /// variance
1025    pub variance: f64,
1026    /// standard_error
1027    pub standard_error: f64,
1028    /// confidence_interval
1029    pub confidence_interval: (f64, f64),
1030    /// sample_size
1031    pub sample_size: usize,
1032    /// total_size
1033    pub total_size: usize,
1034    /// sampling_efficiency
1035    pub sampling_efficiency: f64,
1036}
1037
1038#[allow(non_snake_case)]
1039#[cfg(test)]
1040mod tests {
1041    use super::*;
1042    use scirs2_core::ndarray::array;
1043
1044    #[test]
1045    fn test_large_scale_chunked_processing() {
1046        let x = Array2::from_shape_vec((1000, 5), (0..5000).map(|i| i as f64).collect()).unwrap();
1047        let y = Array1::from_shape_vec(1000, (0..1000).map(|i| (i % 10) as f64).collect()).unwrap();
1048
1049        let estimator = LargeScaleDummyEstimator::new(LargeScaleStrategy::ChunkedProcessing {
1050            chunk_size: 100,
1051            overlap: 10,
1052        });
1053
1054        let result = estimator.fit_chunked(&x.view(), &y.view());
1055        assert!(result.is_ok());
1056
1057        let mean = estimator.get_mean();
1058        assert!(mean >= 0.0 && mean <= 10.0);
1059    }
1060
1061    #[test]
1062    fn test_streaming_baseline_updater() {
1063        let mut updater = StreamingBaselineUpdater::new(0.95, 5);
1064
1065        // Add some samples
1066        for value in [1.0, 2.0, 3.0, 4.0, 5.0, 6.0] {
1067            updater.update(value);
1068        }
1069
1070        assert!(updater.is_ready());
1071        assert!((updater.mean() - 3.5).abs() < 0.1);
1072        assert!(updater.variance() > 0.0);
1073    }
1074
1075    #[test]
1076    fn test_reservoir_sampling() {
1077        let x = Array2::zeros((1000, 5));
1078        let y = Array1::from_shape_vec(1000, (0..1000).map(|i| i as f64).collect()).unwrap();
1079
1080        let estimator = LargeScaleDummyEstimator::new(LargeScaleStrategy::ReservoirSampling {
1081            reservoir_size: 100,
1082            replacement_rate: 0.1,
1083        });
1084
1085        let result = estimator.fit_chunked(&x.view(), &y.view());
1086        assert!(result.is_ok());
1087
1088        let stats = estimator.get_processing_stats();
1089        assert_eq!(stats.total_samples_processed, 1000);
1090        assert_eq!(stats.reservoir_size, 100);
1091    }
1092
1093    #[test]
1094    fn test_approximate_bootstrap() {
1095        let y = array![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
1096
1097        let approx =
1098            ApproximateBaseline::new(ApproximateMethod::Bootstrap { n_samples: 50 }, 0.05, 0.95)
1099                .unwrap();
1100
1101        let result = approx.compute_approximate_stats(&y.view());
1102        assert!(result.is_ok());
1103
1104        let stats = result.unwrap();
1105        assert!(stats.estimated_mean > 0.0);
1106        assert!(stats.estimated_variance >= 0.0);
1107        assert!(stats.confidence_interval.0 < stats.confidence_interval.1);
1108    }
1109
1110    #[test]
1111    fn test_sampling_based_baseline() {
1112        let y = Array1::from_shape_vec(1000, (0..1000).map(|i| i as f64).collect()).unwrap();
1113
1114        let baseline = SamplingBasedBaseline::new(0.1, 50, 200).unwrap();
1115        let result = baseline.compute_sampled_baseline(&y.view());
1116
1117        assert!(result.is_ok());
1118        let stats = result.unwrap();
1119        assert!(stats.sample_size >= 50 && stats.sample_size <= 200);
1120        assert!(stats.sampling_efficiency > 0.0 && stats.sampling_efficiency <= 1.0);
1121    }
1122
1123    #[test]
1124    fn test_distributed_processing() {
1125        let x = Array2::zeros((100, 3));
1126        let y = array![1.0, 2.0, 3.0, 4.0, 5.0];
1127
1128        let estimator = LargeScaleDummyEstimator::new(LargeScaleStrategy::Distributed {
1129            node_id: 0,
1130            total_nodes: 3,
1131            coordinator_address: "localhost:8080".to_string(),
1132        });
1133
1134        let result = estimator.fit_chunked(&x.slice(s![..5, ..]).view(), &y.view());
1135        assert!(result.is_ok());
1136
1137        let stats = estimator.get_processing_stats();
1138        assert_eq!(stats.distributed_nodes, 1);
1139    }
1140
1141    #[test]
1142    fn test_sketch_based_processing() {
1143        let x = Array2::zeros((200, 4));
1144        let y = Array1::from_shape_vec(200, (0..200).map(|i| (i % 20) as f64).collect()).unwrap();
1145
1146        let estimator = LargeScaleDummyEstimator::new(LargeScaleStrategy::SketchBased {
1147            sketch_size: 32,
1148            hash_functions: 4,
1149        });
1150
1151        let result = estimator.fit_chunked(&x.view(), &y.view());
1152        assert!(result.is_ok());
1153
1154        let stats = estimator.get_processing_stats();
1155        assert_eq!(stats.sketch_count, 4);
1156    }
1157}