sklears_dummy/
domain_specific.rs

1//! Domain-specific baseline estimators
2//!
3//! This module provides specialized baseline estimators for different domains
4//! such as computer vision, natural language processing, time series, and
5//! recommendation systems. These baselines are tailored to the specific
6//! characteristics and common patterns found in each domain.
7//!
8//! The module includes:
9//! - Computer vision baselines (pixel statistics, color histograms, spatial features)
10//! - NLP baselines (word frequency, n-grams, sentiment analysis)
11//! - Time series baselines (seasonal patterns, trend analysis)
12//! - Recommendation system baselines (popularity, user/item averages)
13//! - Anomaly detection baselines (statistical thresholds, isolation methods)
14
15use scirs2_core::ndarray::{Array1, Array2, Array3};
16use scirs2_core::random::{Rng, SeedableRng};
17use sklears_core::{error::SklearsError, traits::Estimator, traits::Fit, traits::Predict};
18use std::collections::HashMap;
19
20/// Domain-specific baseline strategies
21#[derive(Debug, Clone)]
22pub enum DomainStrategy {
23    /// Computer Vision strategies
24    ComputerVision(CVStrategy),
25    /// Natural Language Processing strategies  
26    NLP(NLPStrategy),
27    /// Time Series strategies
28    TimeSeries(TimeSeriesStrategy),
29    /// Recommendation System strategies
30    Recommendation(RecStrategy),
31    /// Anomaly Detection strategies
32    AnomalyDetection(AnomalyStrategy),
33}
34
35/// Computer Vision baseline strategies
36#[derive(Debug, Clone)]
37pub enum CVStrategy {
38    /// Predict based on pixel intensity statistics
39    PixelIntensity { statistic: PixelStatistic },
40    /// Predict based on color histogram features
41    ColorHistogram {
42        bins: usize,
43        color_space: ColorSpace,
44    },
45    /// Predict based on spatial frequency features
46    SpatialFrequency { method: FrequencyMethod },
47    /// Predict based on texture features
48    Texture { method: TextureMethod },
49    /// Predict based on edge detection features
50    EdgeDetection { threshold: f64 },
51    /// Predict most frequent class in training images
52    MostFrequentImageClass,
53    /// Random prediction with class distribution from training
54    RandomImageClass,
55}
56
57/// Pixel intensity statistics
58#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
59pub enum PixelStatistic {
60    /// Mean
61    Mean,
62    /// Median
63    Median,
64    /// StandardDeviation
65    StandardDeviation,
66    /// Skewness
67    Skewness,
68    /// Kurtosis
69    Kurtosis,
70}
71
72/// Color spaces for histogram computation
73#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
74pub enum ColorSpace {
75    /// RGB
76    RGB,
77    /// HSV
78    HSV,
79    /// Grayscale
80    Grayscale,
81}
82
83/// Spatial frequency analysis methods
84#[derive(Debug, Clone, Copy)]
85pub enum FrequencyMethod {
86    /// DFT
87    DFT,
88    /// DCT
89    DCT,
90    /// Wavelet
91    Wavelet,
92}
93
94/// Texture analysis methods
95#[derive(Debug, Clone, Copy)]
96pub enum TextureMethod {
97    /// LocalBinaryPattern
98    LocalBinaryPattern,
99    /// GrayLevelCooccurrence
100    GrayLevelCooccurrence,
101    /// Gabor
102    Gabor,
103}
104
105/// Natural Language Processing baseline strategies
106#[derive(Debug, Clone)]
107pub enum NLPStrategy {
108    /// Predict based on word frequency
109    WordFrequency { top_k: usize },
110    /// Predict based on n-gram frequency
111    NGram { n: usize, top_k: usize },
112    /// Predict based on document length
113    DocumentLength,
114    /// Predict based on vocabulary richness
115    VocabularyRichness,
116    /// Predict based on sentiment polarity
117    SentimentPolarity,
118    /// Predict most frequent class in training texts
119    MostFrequentTextClass,
120    /// Predict based on topic keywords
121    TopicKeywords { num_topics: usize },
122}
123
124/// Time Series baseline strategies
125#[derive(Debug, Clone)]
126pub enum TimeSeriesStrategy {
127    /// Predict based on seasonal patterns
128    SeasonalPattern { period: usize },
129    /// Predict based on trend analysis
130    TrendAnalysis { window_size: usize },
131    /// Predict based on cyclical patterns
132    CyclicalPattern { cycles: Vec<usize> },
133    /// Predict based on autocorrelation
134    Autocorrelation { max_lag: usize },
135    /// Predict based on moving averages
136    MovingAverage { windows: Vec<usize> },
137    /// Random walk prediction
138    RandomWalk { drift: f64 },
139}
140
141/// Recommendation System baseline strategies
142#[derive(Debug, Clone)]
143pub enum RecStrategy {
144    /// Predict based on item popularity
145    ItemPopularity,
146    /// Predict based on user average rating
147    UserAverage,
148    /// Predict based on item average rating
149    ItemAverage,
150    /// Global average rating
151    GlobalAverage,
152    /// Random rating within observed range
153    RandomRating,
154    /// Predict based on demographic similarity
155    DemographicSimilarity,
156}
157
158/// Anomaly Detection baseline strategies
159#[derive(Debug, Clone)]
160pub enum AnomalyStrategy {
161    /// Statistical threshold-based detection
162    StatisticalThreshold {
163        method: ThresholdMethod,
164        contamination: f64,
165    },
166    /// Isolation-based detection
167    IsolationBased { n_estimators: usize },
168    /// Distance-based detection
169    DistanceBased { k: usize },
170    /// Density-based detection
171    DensityBased { min_samples: usize, eps: f64 },
172    /// Always predict normal (majority class)
173    AlwaysNormal,
174    /// Random prediction with contamination rate
175    RandomAnomaly { contamination: f64 },
176}
177
178/// Statistical threshold methods for anomaly detection
179#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
180pub enum ThresholdMethod {
181    /// ZScore
182    ZScore,
183    /// ModifiedZScore
184    ModifiedZScore,
185    /// IQR
186    IQR,
187    /// Percentile
188    Percentile,
189}
190
191/// Domain-specific classifier
192#[derive(Debug, Clone)]
193pub struct DomainClassifier {
194    strategy: DomainStrategy,
195    random_state: Option<u64>,
196}
197
198/// Trained domain-specific classifier
199#[derive(Debug, Clone)]
200pub struct TrainedDomainClassifier {
201    strategy: DomainStrategy,
202    classes: Vec<i32>,
203    class_counts: HashMap<i32, usize>,
204    domain_features: DomainFeatures,
205    random_state: Option<u64>,
206}
207
208/// Domain-specific features extracted during training
209#[derive(Debug, Clone)]
210pub enum DomainFeatures {
211    /// ComputerVision
212    ComputerVision(CVFeatures),
213    /// NLP
214    NLP(NLPFeatures),
215    /// TimeSeries
216    TimeSeries(TSFeatures),
217    /// Recommendation
218    Recommendation(RecFeatures),
219    /// AnomalyDetection
220    AnomalyDetection(AnomalyFeatures),
221}
222
223/// Computer vision features
224#[derive(Debug, Clone)]
225pub struct CVFeatures {
226    /// pixel_statistics
227    pub pixel_statistics: HashMap<PixelStatistic, f64>,
228    /// color_histograms
229    pub color_histograms: HashMap<ColorSpace, Vec<f64>>,
230    /// spatial_frequencies
231    pub spatial_frequencies: Vec<f64>,
232    /// texture_features
233    pub texture_features: Vec<f64>,
234    /// edge_features
235    pub edge_features: Vec<f64>,
236}
237
238/// NLP features
239#[derive(Debug, Clone)]
240pub struct NLPFeatures {
241    /// word_frequencies
242    pub word_frequencies: HashMap<String, usize>,
243    /// ngram_frequencies
244    pub ngram_frequencies: HashMap<String, usize>,
245    /// document_lengths
246    pub document_lengths: Vec<usize>,
247    /// vocabulary_size
248    pub vocabulary_size: usize,
249    /// sentiment_scores
250    pub sentiment_scores: Vec<f64>,
251    /// topic_keywords
252    pub topic_keywords: HashMap<usize, Vec<String>>,
253}
254
255/// Time series features
256#[derive(Debug, Clone)]
257pub struct TSFeatures {
258    /// seasonal_patterns
259    pub seasonal_patterns: HashMap<usize, Vec<f64>>,
260    /// trend_coefficients
261    pub trend_coefficients: Vec<f64>,
262    /// cyclical_components
263    pub cyclical_components: HashMap<usize, Vec<f64>>,
264    /// autocorrelations
265    pub autocorrelations: Vec<f64>,
266    /// moving_averages
267    pub moving_averages: HashMap<usize, Vec<f64>>,
268}
269
270/// Recommendation features
271#[derive(Debug, Clone)]
272pub struct RecFeatures {
273    /// item_popularity
274    pub item_popularity: HashMap<usize, f64>,
275    /// user_averages
276    pub user_averages: HashMap<usize, f64>,
277    /// item_averages
278    pub item_averages: HashMap<usize, f64>,
279    /// global_average
280    pub global_average: f64,
281    /// rating_range
282    pub rating_range: (f64, f64),
283}
284
285/// Anomaly detection features
286#[derive(Debug, Clone)]
287pub struct AnomalyFeatures {
288    /// statistical_thresholds
289    pub statistical_thresholds: HashMap<ThresholdMethod, f64>,
290    /// isolation_scores
291    pub isolation_scores: Vec<f64>,
292    /// distance_thresholds
293    pub distance_thresholds: Vec<f64>,
294    /// density_thresholds
295    pub density_thresholds: Vec<f64>,
296    /// contamination_rate
297    pub contamination_rate: f64,
298}
299
300impl DomainClassifier {
301    /// Create a new domain-specific classifier
302    pub fn new(strategy: DomainStrategy) -> Self {
303        Self {
304            strategy,
305            random_state: None,
306        }
307    }
308
309    /// Set random state for reproducible results
310    pub fn with_random_state(mut self, seed: u64) -> Self {
311        self.random_state = Some(seed);
312        self
313    }
314
315    /// Create a computer vision classifier
316    pub fn computer_vision(strategy: CVStrategy) -> Self {
317        Self::new(DomainStrategy::ComputerVision(strategy))
318    }
319
320    /// Create an NLP classifier
321    pub fn nlp(strategy: NLPStrategy) -> Self {
322        Self::new(DomainStrategy::NLP(strategy))
323    }
324
325    /// Create a time series classifier
326    pub fn time_series(strategy: TimeSeriesStrategy) -> Self {
327        Self::new(DomainStrategy::TimeSeries(strategy))
328    }
329
330    /// Create a recommendation system classifier
331    pub fn recommendation(strategy: RecStrategy) -> Self {
332        Self::new(DomainStrategy::Recommendation(strategy))
333    }
334
335    /// Create an anomaly detection classifier
336    pub fn anomaly_detection(strategy: AnomalyStrategy) -> Self {
337        Self::new(DomainStrategy::AnomalyDetection(strategy))
338    }
339}
340
341impl Estimator for DomainClassifier {
342    type Config = DomainStrategy;
343    type Error = SklearsError;
344    type Float = f64;
345
346    fn config(&self) -> &Self::Config {
347        &self.strategy
348    }
349}
350
351impl Fit<Array2<f64>, Array1<i32>> for DomainClassifier {
352    type Fitted = TrainedDomainClassifier;
353
354    fn fit(self, x: &Array2<f64>, y: &Array1<i32>) -> Result<Self::Fitted, SklearsError> {
355        let mut class_counts = HashMap::new();
356        for &class in y.iter() {
357            *class_counts.entry(class).or_insert(0) += 1;
358        }
359
360        let mut classes: Vec<_> = class_counts.keys().cloned().collect();
361        classes.sort();
362
363        let domain_features = self.extract_domain_features(x, y)?;
364
365        Ok(TrainedDomainClassifier {
366            strategy: self.strategy,
367            classes,
368            class_counts,
369            domain_features,
370            random_state: self.random_state,
371        })
372    }
373}
374
375impl DomainClassifier {
376    fn extract_domain_features(
377        &self,
378        x: &Array2<f64>,
379        y: &Array1<i32>,
380    ) -> Result<DomainFeatures, SklearsError> {
381        match &self.strategy {
382            DomainStrategy::ComputerVision(cv_strategy) => {
383                let cv_features = self.extract_cv_features(x, y, cv_strategy)?;
384                Ok(DomainFeatures::ComputerVision(cv_features))
385            }
386            DomainStrategy::NLP(nlp_strategy) => {
387                let nlp_features = self.extract_nlp_features(x, y, nlp_strategy)?;
388                Ok(DomainFeatures::NLP(nlp_features))
389            }
390            DomainStrategy::TimeSeries(ts_strategy) => {
391                let ts_features = self.extract_ts_features(x, y, ts_strategy)?;
392                Ok(DomainFeatures::TimeSeries(ts_features))
393            }
394            DomainStrategy::Recommendation(rec_strategy) => {
395                let rec_features = self.extract_rec_features(x, y, rec_strategy)?;
396                Ok(DomainFeatures::Recommendation(rec_features))
397            }
398            DomainStrategy::AnomalyDetection(anomaly_strategy) => {
399                let anomaly_features = self.extract_anomaly_features(x, y, anomaly_strategy)?;
400                Ok(DomainFeatures::AnomalyDetection(anomaly_features))
401            }
402        }
403    }
404
405    fn extract_cv_features(
406        &self,
407        x: &Array2<f64>,
408        _y: &Array1<i32>,
409        strategy: &CVStrategy,
410    ) -> Result<CVFeatures, SklearsError> {
411        let mut pixel_statistics = HashMap::new();
412        let mut color_histograms = HashMap::new();
413        let spatial_frequencies = Vec::new();
414        let texture_features = Vec::new();
415        let edge_features = Vec::new();
416
417        match strategy {
418            CVStrategy::PixelIntensity { statistic } => {
419                let values = self.compute_pixel_statistic(x, *statistic)?;
420                pixel_statistics.insert(*statistic, values);
421            }
422            CVStrategy::ColorHistogram { bins, color_space } => {
423                let histogram = self.compute_color_histogram(x, *bins, *color_space)?;
424                color_histograms.insert(*color_space, histogram);
425            }
426            _ => {
427                // Compute basic pixel statistics as fallback
428                pixel_statistics.insert(PixelStatistic::Mean, x.mean().unwrap_or(0.0));
429            }
430        }
431
432        Ok(CVFeatures {
433            pixel_statistics,
434            color_histograms,
435            spatial_frequencies,
436            texture_features,
437            edge_features,
438        })
439    }
440
441    fn extract_nlp_features(
442        &self,
443        x: &Array2<f64>,
444        _y: &Array1<i32>,
445        strategy: &NLPStrategy,
446    ) -> Result<NLPFeatures, SklearsError> {
447        let mut word_frequencies = HashMap::new();
448        let ngram_frequencies = HashMap::new();
449        let document_lengths = Vec::new();
450        let vocabulary_size = 0;
451        let sentiment_scores = Vec::new();
452        let topic_keywords = HashMap::new();
453
454        match strategy {
455            NLPStrategy::WordFrequency { top_k } => {
456                // Simulate word frequency extraction from numerical features
457                for i in 0..*top_k.min(&x.ncols()) {
458                    let word = format!("word_{}", i);
459                    let freq = x.column(i).sum() as usize;
460                    word_frequencies.insert(word, freq);
461                }
462            }
463            NLPStrategy::DocumentLength => {
464                // Use sum of features as document length proxy
465                // document_lengths = x.sum_axis(Axis(1)).to_vec().iter().map(|&v| v as usize).collect();
466            }
467            _ => {
468                // Basic feature extraction
469            }
470        }
471
472        Ok(NLPFeatures {
473            word_frequencies,
474            ngram_frequencies,
475            document_lengths,
476            vocabulary_size,
477            sentiment_scores,
478            topic_keywords,
479        })
480    }
481
482    fn extract_ts_features(
483        &self,
484        x: &Array2<f64>,
485        _y: &Array1<i32>,
486        strategy: &TimeSeriesStrategy,
487    ) -> Result<TSFeatures, SklearsError> {
488        let mut seasonal_patterns = HashMap::new();
489        let trend_coefficients = Vec::new();
490        let cyclical_components = HashMap::new();
491        let autocorrelations = Vec::new();
492        let mut moving_averages = HashMap::new();
493
494        match strategy {
495            TimeSeriesStrategy::SeasonalPattern { period } => {
496                // Extract seasonal patterns from the first feature
497                if x.ncols() > 0 {
498                    let series = x.column(0);
499                    let pattern = self.compute_seasonal_pattern(&series, *period)?;
500                    seasonal_patterns.insert(*period, pattern);
501                }
502            }
503            TimeSeriesStrategy::MovingAverage { windows } => {
504                // Compute moving averages for different window sizes
505                if x.ncols() > 0 {
506                    let series = x.column(0);
507                    for &window in windows {
508                        let ma = self.compute_moving_average(&series, window)?;
509                        moving_averages.insert(window, ma);
510                    }
511                }
512            }
513            _ => {
514                // Basic time series features
515            }
516        }
517
518        Ok(TSFeatures {
519            seasonal_patterns,
520            trend_coefficients,
521            cyclical_components,
522            autocorrelations,
523            moving_averages,
524        })
525    }
526
527    fn extract_rec_features(
528        &self,
529        x: &Array2<f64>,
530        y: &Array1<i32>,
531        _strategy: &RecStrategy,
532    ) -> Result<RecFeatures, SklearsError> {
533        // Assuming x contains [user_id, item_id, ...other features] and y contains ratings/preferences
534        let mut item_popularity = HashMap::new();
535        let mut user_averages = HashMap::new();
536        let mut item_averages = HashMap::new();
537        let global_average = y.iter().map(|&v| v as f64).sum::<f64>() / y.len() as f64;
538        let rating_range = {
539            let min_rating = y.iter().min().copied().unwrap_or(0) as f64;
540            let max_rating = y.iter().max().copied().unwrap_or(5) as f64;
541            (min_rating, max_rating)
542        };
543
544        // Extract user and item IDs from features (simplified)
545        for (i, &rating) in y.iter().enumerate() {
546            if x.ncols() >= 2 {
547                let user_id = x[[i, 0]] as usize;
548                let item_id = x[[i, 1]] as usize;
549                let rating_f64 = rating as f64;
550
551                // Update item popularity (count of interactions)
552                *item_popularity.entry(item_id).or_insert(0.0) += 1.0;
553
554                // Update user averages
555                let user_entry = user_averages.entry(user_id).or_insert((0.0, 0));
556                user_entry.0 += rating_f64;
557                user_entry.1 += 1;
558
559                // Update item averages
560                let item_entry = item_averages.entry(item_id).or_insert((0.0, 0));
561                item_entry.0 += rating_f64;
562                item_entry.1 += 1;
563            }
564        }
565
566        // Convert sums to averages
567        let user_averages: HashMap<usize, f64> = user_averages
568            .into_iter()
569            .map(|(id, (sum, count))| (id, sum / count as f64))
570            .collect();
571
572        let item_averages: HashMap<usize, f64> = item_averages
573            .into_iter()
574            .map(|(id, (sum, count))| (id, sum / count as f64))
575            .collect();
576
577        Ok(RecFeatures {
578            item_popularity,
579            user_averages,
580            item_averages,
581            global_average,
582            rating_range,
583        })
584    }
585
586    fn extract_anomaly_features(
587        &self,
588        x: &Array2<f64>,
589        _y: &Array1<i32>,
590        strategy: &AnomalyStrategy,
591    ) -> Result<AnomalyFeatures, SklearsError> {
592        let mut statistical_thresholds = HashMap::new();
593        let isolation_scores = Vec::new();
594        let distance_thresholds = Vec::new();
595        let density_thresholds = Vec::new();
596
597        let contamination_rate = match strategy {
598            AnomalyStrategy::StatisticalThreshold { contamination, .. }
599            | AnomalyStrategy::RandomAnomaly { contamination } => *contamination,
600            _ => 0.1, // Default contamination rate
601        };
602
603        // Compute statistical thresholds for the first feature
604        if x.ncols() > 0 {
605            let feature = x.column(0);
606            let mean = feature.mean().unwrap_or(0.0);
607            let std = {
608                let variance = feature.iter().map(|&val| (val - mean).powi(2)).sum::<f64>()
609                    / (feature.len() - 1) as f64;
610                variance.sqrt()
611            };
612
613            // Z-score threshold (2 standard deviations)
614            statistical_thresholds.insert(ThresholdMethod::ZScore, 2.0 * std);
615
616            // IQR-based threshold
617            let mut sorted_values = feature.to_vec();
618            sorted_values.sort_by(|a, b| a.partial_cmp(b).unwrap());
619            let q1_idx = sorted_values.len() / 4;
620            let q3_idx = 3 * sorted_values.len() / 4;
621            let q1 = sorted_values[q1_idx];
622            let q3 = sorted_values[q3_idx];
623            let iqr = q3 - q1;
624            statistical_thresholds.insert(ThresholdMethod::IQR, 1.5 * iqr);
625        }
626
627        Ok(AnomalyFeatures {
628            statistical_thresholds,
629            isolation_scores,
630            distance_thresholds,
631            density_thresholds,
632            contamination_rate,
633        })
634    }
635
636    // Helper methods for feature computation
637    fn compute_pixel_statistic(
638        &self,
639        x: &Array2<f64>,
640        statistic: PixelStatistic,
641    ) -> Result<f64, SklearsError> {
642        match statistic {
643            PixelStatistic::Mean => Ok(x.mean().unwrap_or(0.0)),
644            PixelStatistic::Median => {
645                let mut values: Vec<f64> = x.iter().cloned().collect();
646                values.sort_by(|a, b| a.partial_cmp(b).unwrap());
647                let mid = values.len() / 2;
648                Ok(if values.len() % 2 == 0 {
649                    (values[mid - 1] + values[mid]) / 2.0
650                } else {
651                    values[mid]
652                })
653            }
654            PixelStatistic::StandardDeviation => {
655                let mean = x.mean().unwrap_or(0.0);
656                let variance =
657                    x.iter().map(|&val| (val - mean).powi(2)).sum::<f64>() / x.len() as f64;
658                Ok(variance.sqrt())
659            }
660            _ => Ok(0.0), // Simplified for other statistics
661        }
662    }
663
664    fn compute_color_histogram(
665        &self,
666        x: &Array2<f64>,
667        bins: usize,
668        _color_space: ColorSpace,
669    ) -> Result<Vec<f64>, SklearsError> {
670        // Simplified histogram computation
671        let min_val = x.iter().fold(f64::INFINITY, |a, &b| a.min(b));
672        let max_val = x.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
673        let bin_width = (max_val - min_val) / bins as f64;
674
675        let mut histogram = vec![0.0; bins];
676        for &value in x.iter() {
677            let bin_idx = ((value - min_val) / bin_width).floor() as usize;
678            let bin_idx = bin_idx.min(bins - 1);
679            histogram[bin_idx] += 1.0;
680        }
681
682        // Normalize histogram
683        let total: f64 = histogram.iter().sum();
684        if total > 0.0 {
685            for count in &mut histogram {
686                *count /= total;
687            }
688        }
689
690        Ok(histogram)
691    }
692
693    fn compute_seasonal_pattern(
694        &self,
695        series: &scirs2_core::ndarray::ArrayView1<f64>,
696        period: usize,
697    ) -> Result<Vec<f64>, SklearsError> {
698        let mut pattern = vec![0.0; period];
699        let mut counts = vec![0; period];
700
701        for (i, &value) in series.iter().enumerate() {
702            let seasonal_idx = i % period;
703            pattern[seasonal_idx] += value;
704            counts[seasonal_idx] += 1;
705        }
706
707        // Average by count
708        for (i, count) in counts.iter().enumerate() {
709            if *count > 0 {
710                pattern[i] /= *count as f64;
711            }
712        }
713
714        Ok(pattern)
715    }
716
717    fn compute_moving_average(
718        &self,
719        series: &scirs2_core::ndarray::ArrayView1<f64>,
720        window: usize,
721    ) -> Result<Vec<f64>, SklearsError> {
722        let mut moving_avg = Vec::new();
723
724        for i in 0..series.len() {
725            let start = if i >= window { i - window + 1 } else { 0 };
726            let end = i + 1;
727            let window_sum: f64 = series.slice(scirs2_core::ndarray::s![start..end]).sum();
728            let window_size = end - start;
729            moving_avg.push(window_sum / window_size as f64);
730        }
731
732        Ok(moving_avg)
733    }
734}
735
736impl Predict<Array2<f64>, Array1<i32>> for TrainedDomainClassifier {
737    fn predict(&self, x: &Array2<f64>) -> Result<Array1<i32>, SklearsError> {
738        let n_samples = x.nrows();
739        let mut predictions = Array1::zeros(n_samples);
740
741        match &self.strategy {
742            DomainStrategy::ComputerVision(cv_strategy) => {
743                self.predict_cv(x, cv_strategy, &mut predictions)?;
744            }
745            DomainStrategy::NLP(nlp_strategy) => {
746                self.predict_nlp(x, nlp_strategy, &mut predictions)?;
747            }
748            DomainStrategy::TimeSeries(ts_strategy) => {
749                self.predict_ts(x, ts_strategy, &mut predictions)?;
750            }
751            DomainStrategy::Recommendation(rec_strategy) => {
752                self.predict_rec(x, rec_strategy, &mut predictions)?;
753            }
754            DomainStrategy::AnomalyDetection(anomaly_strategy) => {
755                self.predict_anomaly(x, anomaly_strategy, &mut predictions)?;
756            }
757        }
758
759        Ok(predictions)
760    }
761}
762
763impl TrainedDomainClassifier {
764    fn predict_cv(
765        &self,
766        x: &Array2<f64>,
767        strategy: &CVStrategy,
768        predictions: &mut Array1<i32>,
769    ) -> Result<(), SklearsError> {
770        match strategy {
771            CVStrategy::MostFrequentImageClass => {
772                let most_frequent = self
773                    .class_counts
774                    .iter()
775                    .max_by_key(|(_, &count)| count)
776                    .map(|(&class, _)| class)
777                    .unwrap_or(0);
778                predictions.fill(most_frequent);
779            }
780            CVStrategy::RandomImageClass => {
781                let mut rng = if let Some(seed) = self.random_state {
782                    scirs2_core::random::rngs::StdRng::seed_from_u64(seed)
783                } else {
784                    scirs2_core::random::rngs::StdRng::seed_from_u64(0)
785                };
786
787                let total_count: usize = self.class_counts.values().sum();
788                for i in 0..predictions.len() {
789                    let rand_val = rng.gen_range(0..total_count);
790                    let mut cumsum = 0;
791                    for (&class, &count) in &self.class_counts {
792                        cumsum += count;
793                        if rand_val < cumsum {
794                            predictions[i] = class;
795                            break;
796                        }
797                    }
798                }
799            }
800            CVStrategy::PixelIntensity { statistic } => {
801                // Use pixel statistics to make predictions
802                if let DomainFeatures::ComputerVision(cv_features) = &self.domain_features {
803                    if let Some(&threshold) = cv_features.pixel_statistics.get(statistic) {
804                        for i in 0..predictions.len() {
805                            let pixel_value = x.row(i).mean().unwrap_or(0.0);
806                            predictions[i] = if pixel_value > threshold { 1 } else { 0 };
807                        }
808                    }
809                }
810            }
811            _ => {
812                // Default to most frequent class
813                let most_frequent = self
814                    .class_counts
815                    .iter()
816                    .max_by_key(|(_, &count)| count)
817                    .map(|(&class, _)| class)
818                    .unwrap_or(0);
819                predictions.fill(most_frequent);
820            }
821        }
822        Ok(())
823    }
824
825    fn predict_nlp(
826        &self,
827        x: &Array2<f64>,
828        strategy: &NLPStrategy,
829        predictions: &mut Array1<i32>,
830    ) -> Result<(), SklearsError> {
831        match strategy {
832            NLPStrategy::MostFrequentTextClass => {
833                let most_frequent = self
834                    .class_counts
835                    .iter()
836                    .max_by_key(|(_, &count)| count)
837                    .map(|(&class, _)| class)
838                    .unwrap_or(0);
839                predictions.fill(most_frequent);
840            }
841            NLPStrategy::DocumentLength => {
842                // Use document length (sum of features) to predict
843                let median_length = {
844                    let mut lengths: Vec<f64> = (0..x.nrows()).map(|i| x.row(i).sum()).collect();
845                    lengths.sort_by(|a, b| a.partial_cmp(b).unwrap());
846                    lengths[lengths.len() / 2]
847                };
848
849                for i in 0..predictions.len() {
850                    let doc_length = x.row(i).sum();
851                    predictions[i] = if doc_length > median_length { 1 } else { 0 };
852                }
853            }
854            _ => {
855                // Default to most frequent class
856                let most_frequent = self
857                    .class_counts
858                    .iter()
859                    .max_by_key(|(_, &count)| count)
860                    .map(|(&class, _)| class)
861                    .unwrap_or(0);
862                predictions.fill(most_frequent);
863            }
864        }
865        Ok(())
866    }
867
868    fn predict_ts(
869        &self,
870        x: &Array2<f64>,
871        strategy: &TimeSeriesStrategy,
872        predictions: &mut Array1<i32>,
873    ) -> Result<(), SklearsError> {
874        match strategy {
875            TimeSeriesStrategy::SeasonalPattern { period } => {
876                // Use seasonal patterns to predict
877                if let DomainFeatures::TimeSeries(ts_features) = &self.domain_features {
878                    if let Some(pattern) = ts_features.seasonal_patterns.get(period) {
879                        for i in 0..predictions.len() {
880                            let seasonal_idx = i % period;
881                            let seasonal_value = pattern.get(seasonal_idx).unwrap_or(&0.0);
882                            predictions[i] = if *seasonal_value > 0.5 { 1 } else { 0 };
883                        }
884                    }
885                }
886            }
887            TimeSeriesStrategy::RandomWalk { drift } => {
888                let mut current_value = 0.0;
889                let mut rng = if let Some(seed) = self.random_state {
890                    scirs2_core::random::rngs::StdRng::seed_from_u64(seed)
891                } else {
892                    scirs2_core::random::rngs::StdRng::seed_from_u64(0)
893                };
894
895                for i in 0..predictions.len() {
896                    current_value += drift + rng.gen_range(-0.1..0.1);
897                    predictions[i] = if current_value > 0.0 { 1 } else { 0 };
898                }
899            }
900            _ => {
901                // Default to most frequent class
902                let most_frequent = self
903                    .class_counts
904                    .iter()
905                    .max_by_key(|(_, &count)| count)
906                    .map(|(&class, _)| class)
907                    .unwrap_or(0);
908                predictions.fill(most_frequent);
909            }
910        }
911        Ok(())
912    }
913
914    fn predict_rec(
915        &self,
916        x: &Array2<f64>,
917        strategy: &RecStrategy,
918        predictions: &mut Array1<i32>,
919    ) -> Result<(), SklearsError> {
920        match strategy {
921            RecStrategy::GlobalAverage => {
922                if let DomainFeatures::Recommendation(rec_features) = &self.domain_features {
923                    let threshold = rec_features.global_average;
924                    for i in 0..predictions.len() {
925                        // Use some feature as a rating proxy
926                        let rating_proxy = if x.ncols() > 2 { x[[i, 2]] } else { threshold };
927                        predictions[i] = if rating_proxy > threshold { 1 } else { 0 };
928                    }
929                }
930            }
931            RecStrategy::ItemPopularity => {
932                if let DomainFeatures::Recommendation(rec_features) = &self.domain_features {
933                    let median_popularity = {
934                        let mut popularities: Vec<f64> =
935                            rec_features.item_popularity.values().cloned().collect();
936                        if popularities.is_empty() {
937                            0.0
938                        } else {
939                            popularities.sort_by(|a, b| a.partial_cmp(b).unwrap());
940                            popularities[popularities.len() / 2]
941                        }
942                    };
943
944                    for i in 0..predictions.len() {
945                        let item_id = if x.ncols() > 1 { x[[i, 1]] as usize } else { 0 };
946                        let popularity = rec_features.item_popularity.get(&item_id).unwrap_or(&0.0);
947                        predictions[i] = if *popularity > median_popularity {
948                            1
949                        } else {
950                            0
951                        };
952                    }
953                }
954            }
955            _ => {
956                // Default prediction
957                let most_frequent = self
958                    .class_counts
959                    .iter()
960                    .max_by_key(|(_, &count)| count)
961                    .map(|(&class, _)| class)
962                    .unwrap_or(0);
963                predictions.fill(most_frequent);
964            }
965        }
966        Ok(())
967    }
968
969    fn predict_anomaly(
970        &self,
971        x: &Array2<f64>,
972        strategy: &AnomalyStrategy,
973        predictions: &mut Array1<i32>,
974    ) -> Result<(), SklearsError> {
975        match strategy {
976            AnomalyStrategy::AlwaysNormal => {
977                predictions.fill(0); // 0 = normal, 1 = anomaly
978            }
979            AnomalyStrategy::RandomAnomaly { contamination } => {
980                let mut rng = if let Some(seed) = self.random_state {
981                    scirs2_core::random::rngs::StdRng::seed_from_u64(seed)
982                } else {
983                    scirs2_core::random::rngs::StdRng::seed_from_u64(0)
984                };
985
986                for i in 0..predictions.len() {
987                    predictions[i] = if rng.gen::<f64>() < *contamination {
988                        1
989                    } else {
990                        0
991                    };
992                }
993            }
994            AnomalyStrategy::StatisticalThreshold { method, .. } => {
995                if let DomainFeatures::AnomalyDetection(anomaly_features) = &self.domain_features {
996                    if let Some(&threshold) = anomaly_features.statistical_thresholds.get(method) {
997                        for i in 0..predictions.len() {
998                            if x.ncols() > 0 {
999                                let value = x[[i, 0]];
1000                                let is_anomaly = match method {
1001                                    ThresholdMethod::ZScore | ThresholdMethod::ModifiedZScore => {
1002                                        value.abs() > threshold
1003                                    }
1004                                    ThresholdMethod::IQR => value > threshold,
1005                                    ThresholdMethod::Percentile => value > threshold,
1006                                };
1007                                predictions[i] = if is_anomaly { 1 } else { 0 };
1008                            }
1009                        }
1010                    }
1011                }
1012            }
1013            _ => {
1014                // Default to always normal
1015                predictions.fill(0);
1016            }
1017        }
1018        Ok(())
1019    }
1020}
1021
1022/// Utility functions for domain-specific data preprocessing
1023pub struct DomainPreprocessor;
1024
1025impl DomainPreprocessor {
1026    /// Preprocess image data for computer vision baselines
1027    pub fn preprocess_images(images: &Array3<f64>) -> Result<Array2<f64>, SklearsError> {
1028        // Flatten images to feature vectors
1029        let (n_images, height, width) = images.dim();
1030        let features = images
1031            .clone()
1032            .into_shape((n_images, height * width))
1033            .map_err(|e| SklearsError::InvalidInput(format!("Shape error: {}", e)))?;
1034        Ok(features)
1035    }
1036
1037    /// Preprocess text data for NLP baselines (placeholder)
1038    pub fn preprocess_text(texts: &[String]) -> Result<Array2<f64>, SklearsError> {
1039        // Simple text preprocessing - convert to feature vectors
1040        let n_texts = texts.len();
1041        let max_length = texts.iter().map(|s| s.len()).max().unwrap_or(0);
1042
1043        let mut features = Array2::zeros((n_texts, max_length));
1044        for (i, text) in texts.iter().enumerate() {
1045            for (j, byte) in text.bytes().enumerate() {
1046                if j < max_length {
1047                    features[[i, j]] = byte as f64 / 255.0; // Normalize
1048                }
1049            }
1050        }
1051
1052        Ok(features)
1053    }
1054
1055    /// Preprocess time series data
1056    pub fn preprocess_timeseries(
1057        series: &Array2<f64>,
1058        window_size: usize,
1059    ) -> Result<Array2<f64>, SklearsError> {
1060        let (n_series, length) = series.dim();
1061        if length < window_size {
1062            return Err(SklearsError::InvalidInput(
1063                "Time series length must be at least window size".to_string(),
1064            ));
1065        }
1066
1067        let n_windows = length - window_size + 1;
1068        let mut windowed = Array2::zeros((n_series * n_windows, window_size));
1069
1070        for i in 0..n_series {
1071            for j in 0..n_windows {
1072                let window = series.slice(scirs2_core::ndarray::s![i, j..j + window_size]);
1073                windowed
1074                    .slice_mut(scirs2_core::ndarray::s![i * n_windows + j, ..])
1075                    .assign(&window);
1076            }
1077        }
1078
1079        Ok(windowed)
1080    }
1081}
1082
1083#[allow(non_snake_case)]
1084#[cfg(test)]
1085mod tests {
1086    use super::*;
1087    use scirs2_core::ndarray::array;
1088
1089    #[test]
1090    fn test_cv_pixel_intensity_classifier() {
1091        let x = Array2::from_shape_vec(
1092            (4, 4),
1093            vec![
1094                0.1, 0.2, 0.3, 0.4, 0.8, 0.9, 0.7, 0.6, 0.2, 0.1, 0.4, 0.3, 0.9, 0.8, 0.6, 0.7,
1095            ],
1096        )
1097        .unwrap();
1098        let y = array![0, 1, 0, 1];
1099
1100        let classifier = DomainClassifier::computer_vision(CVStrategy::PixelIntensity {
1101            statistic: PixelStatistic::Mean,
1102        });
1103        let fitted = classifier.fit(&x, &y).unwrap();
1104        let predictions = fitted.predict(&x).unwrap();
1105
1106        assert_eq!(predictions.len(), 4);
1107    }
1108
1109    #[test]
1110    fn test_nlp_document_length_classifier() {
1111        let x = Array2::from_shape_vec(
1112            (4, 3),
1113            vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5],
1114        )
1115        .unwrap();
1116        let y = array![0, 1, 0, 1];
1117
1118        let classifier = DomainClassifier::nlp(NLPStrategy::DocumentLength);
1119        let fitted = classifier.fit(&x, &y).unwrap();
1120        let predictions = fitted.predict(&x).unwrap();
1121
1122        assert_eq!(predictions.len(), 4);
1123    }
1124
1125    #[test]
1126    fn test_anomaly_detection_classifier() {
1127        let x = Array2::from_shape_vec(
1128            (4, 2),
1129            vec![
1130                1.0, 2.0, 3.0, 4.0, 100.0, 200.0, // Potential anomaly
1131                2.0, 3.0,
1132            ],
1133        )
1134        .unwrap();
1135        let y = array![0, 0, 1, 0]; // 1 indicates anomaly
1136
1137        let classifier =
1138            DomainClassifier::anomaly_detection(AnomalyStrategy::StatisticalThreshold {
1139                method: ThresholdMethod::ZScore,
1140                contamination: 0.25,
1141            });
1142        let fitted = classifier.fit(&x, &y).unwrap();
1143        let predictions = fitted.predict(&x).unwrap();
1144
1145        assert_eq!(predictions.len(), 4);
1146    }
1147
1148    #[test]
1149    fn test_time_series_seasonal_classifier() {
1150        let x =
1151            Array2::from_shape_vec((8, 1), vec![1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0, 4.0]).unwrap();
1152        let y = array![0, 1, 1, 0, 0, 1, 1, 0];
1153
1154        let classifier =
1155            DomainClassifier::time_series(TimeSeriesStrategy::SeasonalPattern { period: 4 });
1156        let fitted = classifier.fit(&x, &y).unwrap();
1157        let predictions = fitted.predict(&x).unwrap();
1158
1159        assert_eq!(predictions.len(), 8);
1160    }
1161
1162    #[test]
1163    fn test_recommendation_classifier() {
1164        let x = Array2::from_shape_vec(
1165            (4, 3),
1166            vec![
1167                0.0, 0.0, 4.0, // user_id, item_id, rating
1168                0.0, 1.0, 5.0, 1.0, 0.0, 3.0, 1.0, 1.0, 2.0,
1169            ],
1170        )
1171        .unwrap();
1172        let y = array![1, 1, 0, 0]; // 1 = recommend, 0 = don't recommend
1173
1174        let classifier = DomainClassifier::recommendation(RecStrategy::GlobalAverage);
1175        let fitted = classifier.fit(&x, &y).unwrap();
1176        let predictions = fitted.predict(&x).unwrap();
1177
1178        assert_eq!(predictions.len(), 4);
1179    }
1180
1181    #[test]
1182    fn test_domain_preprocessor() {
1183        // Test image preprocessing
1184        let images = Array3::zeros((2, 4, 4)); // 2 images of 4x4
1185        let flattened = DomainPreprocessor::preprocess_images(&images).unwrap();
1186        assert_eq!(flattened.shape(), &[2, 16]);
1187
1188        // Test text preprocessing
1189        let texts = vec!["hello".to_string(), "world".to_string()];
1190        let text_features = DomainPreprocessor::preprocess_text(&texts).unwrap();
1191        assert_eq!(text_features.shape(), &[2, 5]);
1192
1193        // Test time series preprocessing
1194        let series = Array2::from_shape_vec(
1195            (2, 6),
1196            vec![
1197                1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
1198            ],
1199        )
1200        .unwrap();
1201        let windowed = DomainPreprocessor::preprocess_timeseries(&series, 3).unwrap();
1202        assert_eq!(windowed.shape(), &[8, 3]); // 2 series * 4 windows, window size 3
1203    }
1204}