Expand description
Dummy estimators for baseline comparisons
This module provides simple baseline estimators that ignore the input features and generate predictions based on simple rules. These are useful for establishing baselines for comparison with more sophisticated models.
The module includes:
DummyClassifier- Simple rules-based classifierDummyRegressor- Simple rules-based regressorContextAwareDummyRegressor- Context-aware baselines using feature informationContextAwareDummyClassifier- Context-aware classifier baselinesRobustDummyRegressor- Robust baselines resistant to outliersRobustDummyClassifier- Robust classifier baselinesOnlineDummyRegressor- Online learning regressor for streaming dataOnlineDummyClassifier- Online learning classifier for streaming dataBenchmarkClassifier- Standard benchmark baselines for classificationBenchmarkRegressor- Standard benchmark baselines for regression
Re-exports§
pub use advanced_bayesian::AdvancedBayesianStrategy;pub use advanced_bayesian::EmpiricalBayesEstimator;pub use advanced_bayesian::HierarchicalBayesEstimator;pub use advanced_bayesian::MCMCBayesEstimator;pub use advanced_bayesian::VariationalBayesEstimator;pub use benchmark::BenchmarkClassifier;pub use benchmark::BenchmarkRegressor;pub use benchmark::BenchmarkStrategy;pub use benchmark::CompetitionBaseline;pub use benchmark::DomainBenchmarkClassifier;pub use benchmark::DomainStrategy as BenchmarkDomainStrategy;pub use benchmark::TheoreticalBound;pub use benchmark::TheoreticalBounds;pub use causal_inference::CausalDiscoveryBaseline;pub use causal_inference::CausalDiscoveryStrategy;pub use causal_inference::CounterfactualBaseline;pub use causal_inference::CounterfactualStrategy;pub use causal_inference::DoCalculusBaseline;pub use causal_inference::DoCalculusStrategy;pub use causal_inference::FittedCausalDiscoveryBaseline;pub use causal_inference::FittedCounterfactualBaseline;pub use causal_inference::FittedDoCalculusBaseline;pub use causal_inference::FittedInstrumentalVariableBaseline;pub use causal_inference::FittedMediationAnalysisBaseline;pub use causal_inference::InstrumentalVariableBaseline;pub use causal_inference::InstrumentalVariableStrategy;pub use causal_inference::MediationAnalysisBaseline;pub use causal_inference::MediationStrategy;pub use comparative_analysis::ComparativeAnalyzer;pub use comparative_analysis::ComparisonReporter;pub use comparative_analysis::ConfidenceIntervalType;pub use comparative_analysis::EffectSizeInterpretation;pub use comparative_analysis::EffectSizeMeasure;pub use comparative_analysis::EffectSizeResult;pub use comparative_analysis::ModelComparisonResult;pub use comparative_analysis::MultipleComparisonCorrection;pub use comparative_analysis::PairwiseComparison;pub use comparative_analysis::SignificanceTest;pub use comparative_analysis::SignificanceTestResult;pub use comparative_analysis::StatisticalSummary;pub use context_aware::ContextAwareDummyClassifier;pub use context_aware::ContextAwareDummyRegressor;pub use context_aware::ContextAwareStrategy;pub use context_aware::FeatureWeighting;pub use domain_specific::AnomalyFeatures;pub use domain_specific::AnomalyStrategy;pub use domain_specific::CVFeatures;pub use domain_specific::CVStrategy;pub use domain_specific::ColorSpace;pub use domain_specific::DomainClassifier;pub use domain_specific::DomainFeatures;pub use domain_specific::DomainPreprocessor;pub use domain_specific::DomainStrategy;pub use domain_specific::FrequencyMethod;pub use domain_specific::NLPFeatures;pub use domain_specific::NLPStrategy;pub use domain_specific::PixelStatistic;pub use domain_specific::RecFeatures;pub use domain_specific::RecStrategy;pub use domain_specific::TSFeatures;pub use domain_specific::TextureMethod;pub use domain_specific::ThresholdMethod;pub use domain_specific::TimeSeriesStrategy;pub use dummy_classifier::DummyClassifier;pub use dummy_classifier::Strategy as ClassifierStrategy;pub use dummy_multioutput_regressor::MultiOutputDummyRegressor;pub use dummy_multioutput_regressor::MultiOutputStrategy;pub use dummy_multioutput_regressor::SingleOutputStrategy;pub use dummy_regressor::CyclicalMethod;pub use dummy_regressor::DecompositionMethod;pub use dummy_regressor::DummyRegressor;pub use dummy_regressor::PredictConfidenceInterval;pub use dummy_regressor::ProbabilisticRegression;pub use dummy_regressor::SeasonalAdjustmentMethod;pub use dummy_regressor::SeasonalType;pub use dummy_regressor::Strategy as RegressorStrategy;pub use ensemble_dummy::EnsembleDummyClassifier;pub use ensemble_dummy::EnsembleDummyRegressor;pub use ensemble_dummy::EnsembleStrategy;pub use extensibility::BaselinePlugin;pub use extensibility::DataInfo;pub use extensibility::ErrorContext;pub use extensibility::ErrorHook;pub use extensibility::EvaluationFramework;pub use extensibility::EvaluationIntegration;pub use extensibility::EvaluationResult;pub use extensibility::FeatureType;pub use extensibility::FitContext;pub use extensibility::FitResult;pub use extensibility::HookSystem;pub use extensibility::LogLevel;pub use extensibility::LoggingConfig;pub use extensibility::MetricComputer;pub use extensibility::MetricResult;pub use extensibility::MetricType;pub use extensibility::MiddlewareContext;pub use extensibility::MiddlewareParameter;pub use extensibility::MiddlewarePipeline;pub use extensibility::MiddlewareResult;pub use extensibility::PipelineMiddleware;pub use extensibility::PluginConfig;pub use extensibility::PluginMetadata;pub use extensibility::PluginParameter;pub use extensibility::PluginRegistry;pub use extensibility::PostFitHook;pub use extensibility::PostPredictHook;pub use extensibility::PreFitHook;pub use extensibility::PrePredictHook;pub use extensibility::PredictContext;pub use extensibility::ResourceConfig;pub use extensibility::TargetType;pub use extensibility::TaskType;pub use extensibility::TestData;pub use fairness_ethics::BiasDetectionBaseline;pub use fairness_ethics::BiasDetectionStrategy;pub use fairness_ethics::BiasMetric;pub use fairness_ethics::BiasMetricResult;pub use fairness_ethics::DemographicParityBaseline;pub use fairness_ethics::DemographicParityStrategy;pub use fairness_ethics::EqualizedOddsBaseline;pub use fairness_ethics::EqualizedOddsStrategy;pub use fairness_ethics::FairnessAwareBaseline;pub use fairness_ethics::FairnessConstraint;pub use fairness_ethics::FairnessStrategy;pub use fairness_ethics::FittedBiasDetectionBaseline;pub use fairness_ethics::FittedDemographicParityBaseline;pub use fairness_ethics::FittedEqualizedOddsBaseline;pub use fairness_ethics::FittedFairnessAwareBaseline;pub use fairness_ethics::FittedIndividualFairnessBaseline;pub use fairness_ethics::GroupStatistics;pub use fairness_ethics::IndividualFairnessBaseline;pub use fairness_ethics::IndividualFairnessStrategy;pub use fairness_ethics::SimilarityMetric;pub use fairness_ethics::StatisticalTest;pub use fairness_ethics::StatisticalTestResult;pub use fluent_api::ClassifierConfig;pub use fluent_api::ClassifierFluentExt;pub use fluent_api::ConfigPresets;pub use fluent_api::PreprocessingChain;pub use fluent_api::RegressorConfig;pub use fluent_api::RegressorFluentExt;pub use game_theoretic::ExplorationStrategy;pub use game_theoretic::GameTheoreticClassifier;pub use game_theoretic::GameTheoreticRegressor;pub use game_theoretic::GameTheoreticResult;pub use game_theoretic::GameTheoreticStrategy;pub use game_theoretic::LpNorm;pub use game_theoretic::OpponentStrategy;pub use information_theoretic::EntropySamplingEstimator;pub use information_theoretic::InformationGainEstimator;pub use information_theoretic::InformationTheoreticStrategy;pub use information_theoretic::MDLEstimator;pub use information_theoretic::MaximumEntropyEstimator;pub use information_theoretic::MutualInformationEstimator;pub use integration_utilities::AutoBaselineGenerator;pub use integration_utilities::BaselineEstimator;pub use integration_utilities::BaselinePipeline;pub use integration_utilities::BaselineRecommendation;pub use integration_utilities::BaselineRecommendationEngine;pub use integration_utilities::BaselineType;pub use integration_utilities::ConfigurationHelper;pub use integration_utilities::DataCharacteristics;pub use integration_utilities::OptimizationHint;pub use integration_utilities::ParameterDefault;pub use integration_utilities::PerformanceMetrics as IntegrationPerformanceMetrics;pub use integration_utilities::PipelineConfig;pub use integration_utilities::PreprocessingStep;pub use integration_utilities::RecommendationRule;pub use integration_utilities::SmartDefaultSelector;pub use integration_utilities::ValidationStrategy;pub use memory_management::advanced_pooling;pub use memory_management::reference_counting;pub use memory_management::streaming_algorithms;pub use meta_learning::ContinualLearningBaseline;pub use meta_learning::ContinualStrategy;pub use meta_learning::DomainAdaptationBaseline;pub use meta_learning::DomainAdaptationStrategy;pub use meta_learning::FewShotBaselineClassifier;pub use meta_learning::FewShotBaselineRegressor;pub use meta_learning::FewShotStrategy;pub use meta_learning::FittedContinualLearningBaseline;pub use meta_learning::FittedDomainAdaptationBaseline;pub use meta_learning::FittedFewShotClassifier;pub use meta_learning::FittedFewShotRegressor;pub use meta_learning::FittedTransferBaseline;pub use meta_learning::SourceDomainStats;pub use meta_learning::TransferLearningBaseline;pub use meta_learning::TransferStrategy;pub use modular_design::statistical_methods;pub use modular_design::BaselineStrategy;pub use modular_design::BaselineStrategyFactory;pub use modular_design::ClassificationStrategy;pub use modular_design::ClippingPostprocessor;pub use modular_design::FittedPipeline;pub use modular_design::MeanConfig;pub use modular_design::MeanFittedData;pub use modular_design::MeanStrategy;pub use modular_design::MostFrequentConfig;pub use modular_design::MostFrequentFittedData;pub use modular_design::MostFrequentStrategy;pub use modular_design::Postprocessor;pub use modular_design::PredictionPipeline;pub use modular_design::Preprocessor;pub use modular_design::RegressionStrategy;pub use modular_design::StandardScaler;pub use modular_design::StrategyRegistry;pub use online::DriftDetectionMethod;pub use online::OnlineClassificationStrategy;pub use online::OnlineDummyClassifier;pub use online::OnlineDummyRegressor;pub use online::OnlineStrategy;pub use online::WindowStrategy;pub use performance::benchmarks;pub use performance::cache_friendly;pub use performance::memory_efficient;pub use performance::parallel;pub use performance::simd_stats;pub use performance_enhancements::branch_optimization;pub use performance_enhancements::cpu_optimization;pub use performance_enhancements::dummy_optimization;pub use robust::LocationEstimator;pub use robust::OutlierDetectionMethod;pub use robust::RobustDummyClassifier;pub use robust::RobustDummyRegressor;pub use robust::RobustStrategy;pub use robust::ScaleEstimator;pub use scalability::ApproximateBaseline;pub use scalability::ApproximateMethod;pub use scalability::ApproximateStats;pub use scalability::LargeScaleConfig;pub use scalability::LargeScaleDummyEstimator;pub use scalability::LargeScaleStrategy;pub use scalability::ProcessingStats;pub use scalability::SampledBaselineResult;pub use scalability::SamplingBasedBaseline;pub use scalability::StreamingBaselineUpdater;pub use sklearn_benchmarks::AccuracyComparison;pub use sklearn_benchmarks::BenchmarkConfig;pub use sklearn_benchmarks::BenchmarkResult;pub use sklearn_benchmarks::DatasetConfig;pub use sklearn_benchmarks::DatasetInfo;pub use sklearn_benchmarks::DatasetProperties;pub use sklearn_benchmarks::DatasetSize;pub use sklearn_benchmarks::DatasetType;pub use sklearn_benchmarks::NumericalAccuracy;pub use sklearn_benchmarks::PerformanceMetrics;pub use sklearn_benchmarks::SklearnBenchmarkFramework;pub use sklearn_benchmarks::TargetStatistics;pub use sklearn_comparison::generate_comparison_report;pub use sklearn_comparison::ComparisonResult;pub use sklearn_comparison::SklearnComparisonFramework;pub use type_safe::BoundedParameter;pub use type_safe::Classification;pub use type_safe::ClassificationFittedData;pub use type_safe::EstimatorConfig;pub use type_safe::EstimatorState;pub use type_safe::ParameterValidation;pub use type_safe::PositiveInt;pub use type_safe::Probability;pub use type_safe::RandomSeed;pub use type_safe::Regression;pub use type_safe::RegressionFittedData;pub use type_safe::StrategyValid;pub use type_safe::TaskType as TypeSafeTaskType;pub use type_safe::Trained;pub use type_safe::TypeSafeDummyEstimator;pub use type_safe::TypeSafeEstimator;pub use type_safe::TypeSafeFittedClassifier;pub use type_safe::TypeSafeFittedRegressor;pub use type_safe::TypeSafeParameters;pub use type_safe::Untrained;pub use type_safe::ValidatedStrategy;pub use validation::analyze_classification_dataset;pub use validation::analyze_regression_dataset;pub use validation::bootstrap_validate_classifier;pub use validation::bootstrap_validate_regressor;pub use validation::compare_dummy_strategies;pub use validation::comprehensive_validation_classifier;pub use validation::cross_validate_dummy;pub use validation::get_adaptive_classification_strategy;pub use validation::get_adaptive_regression_strategy;pub use validation::get_best_strategy;pub use validation::get_ranking_summary;pub use validation::get_strategies_in_tier;pub use validation::permutation_test_classifier;pub use validation::permutation_test_vs_random_classifier;pub use validation::rank_dummy_strategies_classifier;pub use validation::rank_dummy_strategies_regressor;pub use validation::recommend_classification_strategy;pub use validation::recommend_regression_strategy;pub use validation::validate_reproducibility;pub use validation::BootstrapValidationResult;pub use validation::ClassDistribution;pub use validation::DataType;pub use validation::DatasetCharacteristics;pub use validation::DummyValidationResult;pub use validation::PermutationTestResult;pub use validation::StatisticalValidationResult;pub use validation::StrategyRanking;pub use validation::StrategyRecommendation;pub use validation::TargetDistribution;pub use validation::ValidationSummary;
Modules§
- advanced_
bayesian - Advanced Bayesian baseline estimators
- benchmark
- Benchmark baselines for performance evaluation
- causal_
inference - Causal Inference Baseline Estimators
- comparative_
analysis - Comparative analysis tools for benchmarking and evaluation
- context_
aware - Context-aware dummy estimators that use feature information
- domain_
specific - Domain-specific baseline estimators
- dummy_
classifier - Dummy classifier for baseline comparisons
- dummy_
multioutput_ regressor - Multi-output dummy regressor for baseline comparisons
- dummy_
regressor - Dummy regressor for baseline comparisons
- ensemble_
dummy - Ensemble dummy estimators that combine multiple baseline strategies
- extensibility
- Extensibility Framework for Dummy Estimators
- fairness_
ethics - Fairness and Ethics Baseline Estimators
- fluent_
api - Fluent API for baseline estimator configuration
- game_
theoretic - Game-theoretic baseline estimators
- information_
theoretic - Information-Theoretic baseline estimators
- integration_
utilities - Integration Utilities for Baseline Estimators
- memory_
management - Advanced Memory Management for Dummy Estimators
- meta_
learning - Meta-Learning Baseline Estimators
- modular_
design - Modular Design Framework for Dummy Estimators
- online
- Online learning dummy estimators for streaming data
- performance
- Performance Optimizations for Dummy Estimators
- performance_
enhancements - Additional Performance Optimizations
- robust
- Robust dummy estimators resistant to outliers and anomalies
- scalability
- Scalability Features for Large-Scale Baseline Methods
- sklearn_
benchmarks - Comprehensive benchmarking framework comparing against scikit-learn dummy estimators
- sklearn_
comparison - Comparison tests against scikit-learn reference implementations
- type_
safe - Type-Safe Dummy Estimators
- validation
- Validation utilities for dummy estimators
Macros§
- assert_
strategy_ compatible - Compile-time strategy compatibility validation macro
- type_
safe_ estimator - Compile-time estimator configuration macro
- validate_
estimator_ config - Compile-time configuration validation macro
- validate_
strategy_ at_ compile_ time - Compile-time strategy validation macro