Crate sklears_dummy

Crate sklears_dummy 

Source
Expand description

Dummy estimators for baseline comparisons

This module provides simple baseline estimators that ignore the input features and generate predictions based on simple rules. These are useful for establishing baselines for comparison with more sophisticated models.

The module includes:

Re-exports§

pub use advanced_bayesian::AdvancedBayesianStrategy;
pub use advanced_bayesian::EmpiricalBayesEstimator;
pub use advanced_bayesian::HierarchicalBayesEstimator;
pub use advanced_bayesian::MCMCBayesEstimator;
pub use advanced_bayesian::VariationalBayesEstimator;
pub use benchmark::BenchmarkClassifier;
pub use benchmark::BenchmarkRegressor;
pub use benchmark::BenchmarkStrategy;
pub use benchmark::CompetitionBaseline;
pub use benchmark::DomainBenchmarkClassifier;
pub use benchmark::DomainStrategy as BenchmarkDomainStrategy;
pub use benchmark::TheoreticalBound;
pub use benchmark::TheoreticalBounds;
pub use causal_inference::CausalDiscoveryBaseline;
pub use causal_inference::CausalDiscoveryStrategy;
pub use causal_inference::CounterfactualBaseline;
pub use causal_inference::CounterfactualStrategy;
pub use causal_inference::DoCalculusBaseline;
pub use causal_inference::DoCalculusStrategy;
pub use causal_inference::FittedCausalDiscoveryBaseline;
pub use causal_inference::FittedCounterfactualBaseline;
pub use causal_inference::FittedDoCalculusBaseline;
pub use causal_inference::FittedInstrumentalVariableBaseline;
pub use causal_inference::FittedMediationAnalysisBaseline;
pub use causal_inference::InstrumentalVariableBaseline;
pub use causal_inference::InstrumentalVariableStrategy;
pub use causal_inference::MediationAnalysisBaseline;
pub use causal_inference::MediationStrategy;
pub use comparative_analysis::ComparativeAnalyzer;
pub use comparative_analysis::ComparisonReporter;
pub use comparative_analysis::ConfidenceIntervalType;
pub use comparative_analysis::EffectSizeInterpretation;
pub use comparative_analysis::EffectSizeMeasure;
pub use comparative_analysis::EffectSizeResult;
pub use comparative_analysis::ModelComparisonResult;
pub use comparative_analysis::MultipleComparisonCorrection;
pub use comparative_analysis::PairwiseComparison;
pub use comparative_analysis::SignificanceTest;
pub use comparative_analysis::SignificanceTestResult;
pub use comparative_analysis::StatisticalSummary;
pub use context_aware::ContextAwareDummyClassifier;
pub use context_aware::ContextAwareDummyRegressor;
pub use context_aware::ContextAwareStrategy;
pub use context_aware::FeatureWeighting;
pub use domain_specific::AnomalyFeatures;
pub use domain_specific::AnomalyStrategy;
pub use domain_specific::CVFeatures;
pub use domain_specific::CVStrategy;
pub use domain_specific::ColorSpace;
pub use domain_specific::DomainClassifier;
pub use domain_specific::DomainFeatures;
pub use domain_specific::DomainPreprocessor;
pub use domain_specific::DomainStrategy;
pub use domain_specific::FrequencyMethod;
pub use domain_specific::NLPFeatures;
pub use domain_specific::NLPStrategy;
pub use domain_specific::PixelStatistic;
pub use domain_specific::RecFeatures;
pub use domain_specific::RecStrategy;
pub use domain_specific::TSFeatures;
pub use domain_specific::TextureMethod;
pub use domain_specific::ThresholdMethod;
pub use domain_specific::TimeSeriesStrategy;
pub use dummy_classifier::DummyClassifier;
pub use dummy_classifier::Strategy as ClassifierStrategy;
pub use dummy_multioutput_regressor::MultiOutputDummyRegressor;
pub use dummy_multioutput_regressor::MultiOutputStrategy;
pub use dummy_multioutput_regressor::SingleOutputStrategy;
pub use dummy_regressor::CyclicalMethod;
pub use dummy_regressor::DecompositionMethod;
pub use dummy_regressor::DummyRegressor;
pub use dummy_regressor::PredictConfidenceInterval;
pub use dummy_regressor::ProbabilisticRegression;
pub use dummy_regressor::SeasonalAdjustmentMethod;
pub use dummy_regressor::SeasonalType;
pub use dummy_regressor::Strategy as RegressorStrategy;
pub use ensemble_dummy::EnsembleDummyClassifier;
pub use ensemble_dummy::EnsembleDummyRegressor;
pub use ensemble_dummy::EnsembleStrategy;
pub use extensibility::BaselinePlugin;
pub use extensibility::DataInfo;
pub use extensibility::ErrorContext;
pub use extensibility::ErrorHook;
pub use extensibility::EvaluationFramework;
pub use extensibility::EvaluationIntegration;
pub use extensibility::EvaluationResult;
pub use extensibility::FeatureType;
pub use extensibility::FitContext;
pub use extensibility::FitResult;
pub use extensibility::HookSystem;
pub use extensibility::LogLevel;
pub use extensibility::LoggingConfig;
pub use extensibility::MetricComputer;
pub use extensibility::MetricResult;
pub use extensibility::MetricType;
pub use extensibility::MiddlewareContext;
pub use extensibility::MiddlewareParameter;
pub use extensibility::MiddlewarePipeline;
pub use extensibility::MiddlewareResult;
pub use extensibility::PipelineMiddleware;
pub use extensibility::PluginConfig;
pub use extensibility::PluginMetadata;
pub use extensibility::PluginParameter;
pub use extensibility::PluginRegistry;
pub use extensibility::PostFitHook;
pub use extensibility::PostPredictHook;
pub use extensibility::PreFitHook;
pub use extensibility::PrePredictHook;
pub use extensibility::PredictContext;
pub use extensibility::ResourceConfig;
pub use extensibility::TargetType;
pub use extensibility::TaskType;
pub use extensibility::TestData;
pub use fairness_ethics::BiasDetectionBaseline;
pub use fairness_ethics::BiasDetectionStrategy;
pub use fairness_ethics::BiasMetric;
pub use fairness_ethics::BiasMetricResult;
pub use fairness_ethics::DemographicParityBaseline;
pub use fairness_ethics::DemographicParityStrategy;
pub use fairness_ethics::EqualizedOddsBaseline;
pub use fairness_ethics::EqualizedOddsStrategy;
pub use fairness_ethics::FairnessAwareBaseline;
pub use fairness_ethics::FairnessConstraint;
pub use fairness_ethics::FairnessStrategy;
pub use fairness_ethics::FittedBiasDetectionBaseline;
pub use fairness_ethics::FittedDemographicParityBaseline;
pub use fairness_ethics::FittedEqualizedOddsBaseline;
pub use fairness_ethics::FittedFairnessAwareBaseline;
pub use fairness_ethics::FittedIndividualFairnessBaseline;
pub use fairness_ethics::GroupStatistics;
pub use fairness_ethics::IndividualFairnessBaseline;
pub use fairness_ethics::IndividualFairnessStrategy;
pub use fairness_ethics::SimilarityMetric;
pub use fairness_ethics::StatisticalTest;
pub use fairness_ethics::StatisticalTestResult;
pub use fluent_api::ClassifierConfig;
pub use fluent_api::ClassifierFluentExt;
pub use fluent_api::ConfigPresets;
pub use fluent_api::PreprocessingChain;
pub use fluent_api::RegressorConfig;
pub use fluent_api::RegressorFluentExt;
pub use game_theoretic::ExplorationStrategy;
pub use game_theoretic::GameTheoreticClassifier;
pub use game_theoretic::GameTheoreticRegressor;
pub use game_theoretic::GameTheoreticResult;
pub use game_theoretic::GameTheoreticStrategy;
pub use game_theoretic::LpNorm;
pub use game_theoretic::OpponentStrategy;
pub use information_theoretic::EntropySamplingEstimator;
pub use information_theoretic::InformationGainEstimator;
pub use information_theoretic::InformationTheoreticStrategy;
pub use information_theoretic::MDLEstimator;
pub use information_theoretic::MaximumEntropyEstimator;
pub use information_theoretic::MutualInformationEstimator;
pub use integration_utilities::AutoBaselineGenerator;
pub use integration_utilities::BaselineEstimator;
pub use integration_utilities::BaselinePipeline;
pub use integration_utilities::BaselineRecommendation;
pub use integration_utilities::BaselineRecommendationEngine;
pub use integration_utilities::BaselineType;
pub use integration_utilities::ConfigurationHelper;
pub use integration_utilities::DataCharacteristics;
pub use integration_utilities::OptimizationHint;
pub use integration_utilities::ParameterDefault;
pub use integration_utilities::PerformanceMetrics as IntegrationPerformanceMetrics;
pub use integration_utilities::PipelineConfig;
pub use integration_utilities::PreprocessingStep;
pub use integration_utilities::RecommendationRule;
pub use integration_utilities::SmartDefaultSelector;
pub use integration_utilities::ValidationStrategy;
pub use memory_management::advanced_pooling;
pub use memory_management::reference_counting;
pub use memory_management::streaming_algorithms;
pub use meta_learning::ContinualLearningBaseline;
pub use meta_learning::ContinualStrategy;
pub use meta_learning::DomainAdaptationBaseline;
pub use meta_learning::DomainAdaptationStrategy;
pub use meta_learning::FewShotBaselineClassifier;
pub use meta_learning::FewShotBaselineRegressor;
pub use meta_learning::FewShotStrategy;
pub use meta_learning::FittedContinualLearningBaseline;
pub use meta_learning::FittedDomainAdaptationBaseline;
pub use meta_learning::FittedFewShotClassifier;
pub use meta_learning::FittedFewShotRegressor;
pub use meta_learning::FittedTransferBaseline;
pub use meta_learning::SourceDomainStats;
pub use meta_learning::TransferLearningBaseline;
pub use meta_learning::TransferStrategy;
pub use modular_design::statistical_methods;
pub use modular_design::BaselineStrategy;
pub use modular_design::BaselineStrategyFactory;
pub use modular_design::ClassificationStrategy;
pub use modular_design::ClippingPostprocessor;
pub use modular_design::FittedPipeline;
pub use modular_design::MeanConfig;
pub use modular_design::MeanFittedData;
pub use modular_design::MeanStrategy;
pub use modular_design::MostFrequentConfig;
pub use modular_design::MostFrequentFittedData;
pub use modular_design::MostFrequentStrategy;
pub use modular_design::Postprocessor;
pub use modular_design::PredictionPipeline;
pub use modular_design::Preprocessor;
pub use modular_design::RegressionStrategy;
pub use modular_design::StandardScaler;
pub use modular_design::StrategyRegistry;
pub use online::DriftDetectionMethod;
pub use online::OnlineClassificationStrategy;
pub use online::OnlineDummyClassifier;
pub use online::OnlineDummyRegressor;
pub use online::OnlineStrategy;
pub use online::WindowStrategy;
pub use performance::benchmarks;
pub use performance::cache_friendly;
pub use performance::memory_efficient;
pub use performance::parallel;
pub use performance::simd_stats;
pub use performance_enhancements::branch_optimization;
pub use performance_enhancements::cpu_optimization;
pub use performance_enhancements::dummy_optimization;
pub use robust::LocationEstimator;
pub use robust::OutlierDetectionMethod;
pub use robust::RobustDummyClassifier;
pub use robust::RobustDummyRegressor;
pub use robust::RobustStrategy;
pub use robust::ScaleEstimator;
pub use scalability::ApproximateBaseline;
pub use scalability::ApproximateMethod;
pub use scalability::ApproximateStats;
pub use scalability::LargeScaleConfig;
pub use scalability::LargeScaleDummyEstimator;
pub use scalability::LargeScaleStrategy;
pub use scalability::ProcessingStats;
pub use scalability::SampledBaselineResult;
pub use scalability::SamplingBasedBaseline;
pub use scalability::StreamingBaselineUpdater;
pub use sklearn_benchmarks::AccuracyComparison;
pub use sklearn_benchmarks::BenchmarkConfig;
pub use sklearn_benchmarks::BenchmarkResult;
pub use sklearn_benchmarks::DatasetConfig;
pub use sklearn_benchmarks::DatasetInfo;
pub use sklearn_benchmarks::DatasetProperties;
pub use sklearn_benchmarks::DatasetSize;
pub use sklearn_benchmarks::DatasetType;
pub use sklearn_benchmarks::NumericalAccuracy;
pub use sklearn_benchmarks::PerformanceMetrics;
pub use sklearn_benchmarks::SklearnBenchmarkFramework;
pub use sklearn_benchmarks::TargetStatistics;
pub use sklearn_comparison::generate_comparison_report;
pub use sklearn_comparison::ComparisonResult;
pub use sklearn_comparison::SklearnComparisonFramework;
pub use type_safe::BoundedParameter;
pub use type_safe::Classification;
pub use type_safe::ClassificationFittedData;
pub use type_safe::EstimatorConfig;
pub use type_safe::EstimatorState;
pub use type_safe::ParameterValidation;
pub use type_safe::PositiveInt;
pub use type_safe::Probability;
pub use type_safe::RandomSeed;
pub use type_safe::Regression;
pub use type_safe::RegressionFittedData;
pub use type_safe::StrategyValid;
pub use type_safe::TaskType as TypeSafeTaskType;
pub use type_safe::Trained;
pub use type_safe::TypeSafeDummyEstimator;
pub use type_safe::TypeSafeEstimator;
pub use type_safe::TypeSafeFittedClassifier;
pub use type_safe::TypeSafeFittedRegressor;
pub use type_safe::TypeSafeParameters;
pub use type_safe::Untrained;
pub use type_safe::ValidatedStrategy;
pub use validation::analyze_classification_dataset;
pub use validation::analyze_regression_dataset;
pub use validation::bootstrap_validate_classifier;
pub use validation::bootstrap_validate_regressor;
pub use validation::compare_dummy_strategies;
pub use validation::comprehensive_validation_classifier;
pub use validation::cross_validate_dummy;
pub use validation::get_adaptive_classification_strategy;
pub use validation::get_adaptive_regression_strategy;
pub use validation::get_best_strategy;
pub use validation::get_ranking_summary;
pub use validation::get_strategies_in_tier;
pub use validation::permutation_test_classifier;
pub use validation::permutation_test_vs_random_classifier;
pub use validation::rank_dummy_strategies_classifier;
pub use validation::rank_dummy_strategies_regressor;
pub use validation::recommend_classification_strategy;
pub use validation::recommend_regression_strategy;
pub use validation::validate_reproducibility;
pub use validation::BootstrapValidationResult;
pub use validation::ClassDistribution;
pub use validation::DataType;
pub use validation::DatasetCharacteristics;
pub use validation::DummyValidationResult;
pub use validation::PermutationTestResult;
pub use validation::StatisticalValidationResult;
pub use validation::StrategyRanking;
pub use validation::StrategyRecommendation;
pub use validation::TargetDistribution;
pub use validation::ValidationSummary;

Modules§

advanced_bayesian
Advanced Bayesian baseline estimators
benchmark
Benchmark baselines for performance evaluation
causal_inference
Causal Inference Baseline Estimators
comparative_analysis
Comparative analysis tools for benchmarking and evaluation
context_aware
Context-aware dummy estimators that use feature information
domain_specific
Domain-specific baseline estimators
dummy_classifier
Dummy classifier for baseline comparisons
dummy_multioutput_regressor
Multi-output dummy regressor for baseline comparisons
dummy_regressor
Dummy regressor for baseline comparisons
ensemble_dummy
Ensemble dummy estimators that combine multiple baseline strategies
extensibility
Extensibility Framework for Dummy Estimators
fairness_ethics
Fairness and Ethics Baseline Estimators
fluent_api
Fluent API for baseline estimator configuration
game_theoretic
Game-theoretic baseline estimators
information_theoretic
Information-Theoretic baseline estimators
integration_utilities
Integration Utilities for Baseline Estimators
memory_management
Advanced Memory Management for Dummy Estimators
meta_learning
Meta-Learning Baseline Estimators
modular_design
Modular Design Framework for Dummy Estimators
online
Online learning dummy estimators for streaming data
performance
Performance Optimizations for Dummy Estimators
performance_enhancements
Additional Performance Optimizations
robust
Robust dummy estimators resistant to outliers and anomalies
scalability
Scalability Features for Large-Scale Baseline Methods
sklearn_benchmarks
Comprehensive benchmarking framework comparing against scikit-learn dummy estimators
sklearn_comparison
Comparison tests against scikit-learn reference implementations
type_safe
Type-Safe Dummy Estimators
validation
Validation utilities for dummy estimators

Macros§

assert_strategy_compatible
Compile-time strategy compatibility validation macro
type_safe_estimator
Compile-time estimator configuration macro
validate_estimator_config
Compile-time configuration validation macro
validate_strategy_at_compile_time
Compile-time strategy validation macro