sklears_discriminant_analysis/
simd_optimizations.rs

1//! SIMD Optimizations for Discriminant Analysis
2//!
3//! This module provides SIMD-accelerated implementations of common matrix operations
4//! used in discriminant analysis, leveraging SciRS2's SIMD capabilities for maximum performance.
5
6// ✅ Using SciRS2 dependencies following SciRS2 policy
7use scirs2_core::ndarray::{s, Array1, Array2, ArrayView1, Axis};
8// Note: SIMD operations from SciRS2 may not be available in current version
9// Using fallback implementations
10
11use rayon::prelude::*;
12use sklears_core::{error::Result, prelude::SklearsError, types::Float};
13
14#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
15use std::arch::x86_64::*;
16
17/// Configuration for SIMD operations
18#[derive(Debug, Clone)]
19pub struct SimdConfig {
20    /// Use AVX-512 if available
21    pub use_avx512: bool,
22    /// Use AVX2 if available
23    pub use_avx2: bool,
24    /// Use SSE if available
25    pub use_sse: bool,
26    /// Minimum vector length for SIMD acceleration
27    pub min_vector_length: usize,
28    /// Use parallel SIMD for large operations
29    pub parallel_simd: bool,
30    /// Block size for tiled matrix operations
31    pub block_size: usize,
32}
33
34impl Default for SimdConfig {
35    fn default() -> Self {
36        Self {
37            use_avx512: cfg!(any(target_arch = "x86", target_arch = "x86_64"))
38                && cfg!(feature = "avx512"),
39            use_avx2: cfg!(any(target_arch = "x86", target_arch = "x86_64"))
40                && cfg!(feature = "avx2"),
41            use_sse: cfg!(any(target_arch = "x86", target_arch = "x86_64"))
42                && cfg!(feature = "sse"),
43            min_vector_length: 8, // Minimum 8 elements for SIMD
44            parallel_simd: true,
45            block_size: 64, // 64x64 blocks for tiled operations
46        }
47    }
48}
49
50/// SIMD-accelerated matrix operations for discriminant analysis
51pub struct SimdMatrixOps {
52    config: SimdConfig,
53}
54
55impl SimdMatrixOps {
56    /// Create a new SIMD matrix operations engine
57    pub fn new() -> Self {
58        Self {
59            config: SimdConfig::default(),
60        }
61    }
62
63    /// Create with custom configuration
64    pub fn with_config(config: SimdConfig) -> Self {
65        Self { config }
66    }
67
68    /// SIMD-accelerated matrix-vector multiplication
69    pub fn simd_matvec(
70        &self,
71        matrix: &Array2<Float>,
72        vector: &Array1<Float>,
73    ) -> Result<Array1<Float>> {
74        if matrix.ncols() != vector.len() {
75            return Err(SklearsError::InvalidInput(
76                "Matrix columns must match vector length".to_string(),
77            ));
78        }
79
80        let nrows = matrix.nrows();
81        let mut result = Array1::zeros(nrows);
82
83        // Use parallel SIMD if enabled and matrix is large enough
84        if self.config.parallel_simd && nrows >= 64 {
85            self.parallel_simd_matvec(matrix, vector, &mut result)?;
86        } else {
87            self.sequential_simd_matvec(matrix, vector, &mut result)?;
88        }
89
90        Ok(result)
91    }
92
93    /// Sequential SIMD matrix-vector multiplication
94    fn sequential_simd_matvec(
95        &self,
96        matrix: &Array2<Float>,
97        vector: &Array1<Float>,
98        result: &mut Array1<Float>,
99    ) -> Result<()> {
100        for (i, result_elem) in result.iter_mut().enumerate() {
101            let row = matrix.row(i);
102            *result_elem = self.simd_dot_product(&row, vector.view())?;
103        }
104        Ok(())
105    }
106
107    /// Parallel SIMD matrix-vector multiplication
108    fn parallel_simd_matvec(
109        &self,
110        matrix: &Array2<Float>,
111        vector: &Array1<Float>,
112        result: &mut Array1<Float>,
113    ) -> Result<()> {
114        let results: Result<Vec<Float>> = (0..matrix.nrows())
115            .into_par_iter()
116            .map(|i| -> Result<Float> {
117                let row = matrix.row(i);
118                self.simd_dot_product(&row, vector.view())
119            })
120            .collect();
121
122        let computed_results = results?;
123        for (i, value) in computed_results.into_iter().enumerate() {
124            result[i] = value;
125        }
126        Ok(())
127    }
128
129    /// SIMD-accelerated dot product
130    pub fn simd_dot_product(&self, a: &ArrayView1<Float>, b: ArrayView1<Float>) -> Result<Float> {
131        if a.len() != b.len() {
132            return Err(SklearsError::InvalidInput(
133                "Vectors must have same length".to_string(),
134            ));
135        }
136
137        // Use manual SIMD if vector is large enough
138        if a.len() >= self.config.min_vector_length {
139            let a_vec: Vec<Float> = a.to_vec();
140            let b_vec: Vec<Float> = b.to_vec();
141
142            // Use manual SIMD implementation
143            self.manual_simd_dot_product(&a_vec, &b_vec)
144        } else {
145            // Standard dot product for small vectors
146            Ok(a.iter().zip(b.iter()).map(|(&x, &y)| x * y).sum())
147        }
148    }
149
150    /// Manual SIMD dot product implementation using intrinsics
151    fn manual_simd_dot_product(&self, a: &[Float], b: &[Float]) -> Result<Float> {
152        let len = a.len();
153        let mut sum = 0.0;
154
155        if self.config.use_avx512 && len >= 8 {
156            #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
157            {
158                sum += unsafe { self.avx512_dot_product(a, b)? };
159            }
160            #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
161            {
162                sum += self.avx512_dot_product(a, b)?;
163            }
164        } else if self.config.use_avx2 && len >= 4 {
165            #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
166            {
167                sum += unsafe { self.avx2_dot_product(a, b)? };
168            }
169            #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
170            {
171                sum += self.avx2_dot_product(a, b)?;
172            }
173        } else if self.config.use_sse && len >= 2 {
174            #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
175            {
176                sum += unsafe { self.sse_dot_product(a, b)? };
177            }
178            #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
179            {
180                sum += self.sse_dot_product(a, b)?;
181            }
182        } else {
183            // Scalar fallback
184            sum = a.iter().zip(b.iter()).map(|(&x, &y)| x * y).sum();
185        }
186
187        Ok(sum)
188    }
189
190    /// AVX-512 dot product implementation
191    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
192    #[target_feature(enable = "avx512f")]
193    unsafe fn avx512_dot_product(&self, a: &[Float], b: &[Float]) -> Result<Float> {
194        let len = a.len();
195        let simd_len = len & !7; // Round down to multiple of 8
196        let mut sum = _mm512_setzero_pd();
197
198        for i in (0..simd_len).step_by(8) {
199            let a_vec = _mm512_loadu_pd(a.as_ptr().add(i));
200            let b_vec = _mm512_loadu_pd(b.as_ptr().add(i));
201            let prod = _mm512_mul_pd(a_vec, b_vec);
202            sum = _mm512_add_pd(sum, prod);
203        }
204
205        // Extract sum from SIMD register
206        let sum_array: [f64; 8] = std::mem::transmute(sum);
207        let mut result = sum_array.iter().sum::<f64>();
208
209        // Handle remaining elements
210        for i in simd_len..len {
211            result += a[i] * b[i];
212        }
213
214        Ok(result)
215    }
216
217    /// AVX2 dot product implementation
218    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
219    #[target_feature(enable = "avx2")]
220    unsafe fn avx2_dot_product(&self, a: &[Float], b: &[Float]) -> Result<Float> {
221        let len = a.len();
222        let simd_len = len & !3; // Round down to multiple of 4
223        let mut sum = _mm256_setzero_pd();
224
225        for i in (0..simd_len).step_by(4) {
226            let a_vec = _mm256_loadu_pd(a.as_ptr().add(i));
227            let b_vec = _mm256_loadu_pd(b.as_ptr().add(i));
228            let prod = _mm256_mul_pd(a_vec, b_vec);
229            sum = _mm256_add_pd(sum, prod);
230        }
231
232        // Extract sum from SIMD register
233        let sum_array: [f64; 4] = std::mem::transmute(sum);
234        let mut result = sum_array.iter().sum::<f64>();
235
236        // Handle remaining elements
237        for i in simd_len..len {
238            result += a[i] * b[i];
239        }
240
241        Ok(result)
242    }
243
244    /// SSE dot product implementation
245    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
246    #[target_feature(enable = "sse2")]
247    unsafe fn sse_dot_product(&self, a: &[Float], b: &[Float]) -> Result<Float> {
248        let len = a.len();
249        let simd_len = len & !1; // Round down to multiple of 2
250        let mut sum = _mm_setzero_pd();
251
252        for i in (0..simd_len).step_by(2) {
253            let a_vec = _mm_loadu_pd(a.as_ptr().add(i));
254            let b_vec = _mm_loadu_pd(b.as_ptr().add(i));
255            let prod = _mm_mul_pd(a_vec, b_vec);
256            sum = _mm_add_pd(sum, prod);
257        }
258
259        // Extract sum from SIMD register
260        let sum_array: [f64; 2] = std::mem::transmute(sum);
261        let mut result = sum_array.iter().sum::<f64>();
262
263        // Handle remaining elements
264        for i in simd_len..len {
265            result += a[i] * b[i];
266        }
267
268        Ok(result)
269    }
270
271    /// Fallback implementations for non-x86 platforms
272    #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
273    fn avx512_dot_product(&self, a: &[Float], b: &[Float]) -> Result<Float> {
274        // Fallback to scalar implementation
275        Ok(a.iter().zip(b.iter()).map(|(&x, &y)| x * y).sum())
276    }
277
278    #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
279    fn avx2_dot_product(&self, a: &[Float], b: &[Float]) -> Result<Float> {
280        // Fallback to scalar implementation
281        Ok(a.iter().zip(b.iter()).map(|(&x, &y)| x * y).sum())
282    }
283
284    #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
285    fn sse_dot_product(&self, a: &[Float], b: &[Float]) -> Result<Float> {
286        // Fallback to scalar implementation
287        Ok(a.iter().zip(b.iter()).map(|(&x, &y)| x * y).sum())
288    }
289
290    /// SIMD-accelerated matrix multiplication
291    pub fn simd_matmul(&self, a: &Array2<Float>, b: &Array2<Float>) -> Result<Array2<Float>> {
292        if a.ncols() != b.nrows() {
293            return Err(SklearsError::InvalidInput(
294                "Matrix dimensions incompatible for multiplication".to_string(),
295            ));
296        }
297
298        let (m, k) = (a.nrows(), a.ncols());
299        let n = b.ncols();
300        let mut result = Array2::zeros((m, n));
301
302        // Use tiled matrix multiplication for better cache locality
303        if m >= self.config.block_size && n >= self.config.block_size && k >= self.config.block_size
304        {
305            self.tiled_simd_matmul(a, b, &mut result)?;
306        } else {
307            self.simple_simd_matmul(a, b, &mut result)?;
308        }
309
310        Ok(result)
311    }
312
313    /// Simple SIMD matrix multiplication
314    fn simple_simd_matmul(
315        &self,
316        a: &Array2<Float>,
317        b: &Array2<Float>,
318        result: &mut Array2<Float>,
319    ) -> Result<()> {
320        let n = b.ncols();
321
322        if self.config.parallel_simd {
323            // Use parallel chunks approach instead of par_iter with mutable borrows
324            let rows = (0..a.nrows()).collect::<Vec<_>>();
325            let results: Result<Vec<Vec<Float>>> = rows
326                .par_iter()
327                .map(|&i| -> Result<Vec<Float>> {
328                    let a_row = a.row(i);
329                    let mut row_result = vec![0.0; n];
330                    for j in 0..n {
331                        let b_col = b.column(j);
332                        row_result[j] = self.simd_dot_product(&a_row, b_col)?;
333                    }
334                    Ok(row_result)
335                })
336                .collect();
337
338            // Copy results back to result matrix
339            let computed_results = results?;
340            for (i, row_data) in computed_results.into_iter().enumerate() {
341                for (j, value) in row_data.into_iter().enumerate() {
342                    result[[i, j]] = value;
343                }
344            }
345        } else {
346            // Sequential computation
347            for i in 0..a.nrows() {
348                let a_row = a.row(i);
349                for j in 0..n {
350                    let b_col = b.column(j);
351                    result[[i, j]] = self.simd_dot_product(&a_row, b_col)?;
352                }
353            }
354        }
355
356        Ok(())
357    }
358
359    /// Tiled SIMD matrix multiplication for better cache performance
360    fn tiled_simd_matmul(
361        &self,
362        a: &Array2<Float>,
363        b: &Array2<Float>,
364        result: &mut Array2<Float>,
365    ) -> Result<()> {
366        let (m, k, n) = (a.nrows(), a.ncols(), b.ncols());
367        let block_size = self.config.block_size;
368
369        // Tile the computation
370        for i_block in (0..m).step_by(block_size) {
371            for j_block in (0..n).step_by(block_size) {
372                for k_block in (0..k).step_by(block_size) {
373                    let i_end = (i_block + block_size).min(m);
374                    let j_end = (j_block + block_size).min(n);
375                    let k_end = (k_block + block_size).min(k);
376
377                    // Compute block
378                    self.compute_block(
379                        a, b, result, i_block, i_end, j_block, j_end, k_block, k_end,
380                    )?;
381                }
382            }
383        }
384
385        Ok(())
386    }
387
388    /// Compute a single block in tiled matrix multiplication
389    fn compute_block(
390        &self,
391        a: &Array2<Float>,
392        b: &Array2<Float>,
393        result: &mut Array2<Float>,
394        i_start: usize,
395        i_end: usize,
396        j_start: usize,
397        j_end: usize,
398        k_start: usize,
399        k_end: usize,
400    ) -> Result<()> {
401        for i in i_start..i_end {
402            for j in j_start..j_end {
403                let mut sum = 0.0;
404
405                // Use SIMD for the inner loop if possible
406                let k_len = k_end - k_start;
407                if k_len >= self.config.min_vector_length {
408                    let a_slice = a.slice(s![i, k_start..k_end]);
409                    let b_slice = b.slice(s![k_start..k_end, j]);
410                    sum = self.simd_dot_product(&a_slice, b_slice)?;
411                } else {
412                    // Scalar computation for small blocks
413                    for k in k_start..k_end {
414                        sum += a[[i, k]] * b[[k, j]];
415                    }
416                }
417
418                result[[i, j]] += sum;
419            }
420        }
421
422        Ok(())
423    }
424
425    /// SIMD-accelerated element-wise operations
426    pub fn simd_element_wise_add(
427        &self,
428        a: &Array1<Float>,
429        b: &Array1<Float>,
430    ) -> Result<Array1<Float>> {
431        if a.len() != b.len() {
432            return Err(SklearsError::InvalidInput(
433                "Arrays must have same length".to_string(),
434            ));
435        }
436
437        // Fallback implementation since SciRS2 SIMD may not be available
438        Ok(a + b)
439    }
440
441    /// SIMD-accelerated element-wise subtraction
442    pub fn simd_element_wise_subtract(
443        &self,
444        a: &Array1<Float>,
445        b: &Array1<Float>,
446    ) -> Result<Array1<Float>> {
447        if a.len() != b.len() {
448            return Err(SklearsError::InvalidInput(
449                "Arrays must have same length".to_string(),
450            ));
451        }
452
453        // Fallback implementation since SciRS2 SIMD may not be available
454        Ok(a - b)
455    }
456
457    /// SIMD-accelerated element-wise multiplication
458    pub fn simd_element_wise_multiply(
459        &self,
460        a: &Array1<Float>,
461        b: &Array1<Float>,
462    ) -> Result<Array1<Float>> {
463        if a.len() != b.len() {
464            return Err(SklearsError::InvalidInput(
465                "Arrays must have same length".to_string(),
466            ));
467        }
468
469        // Fallback implementation since SciRS2 SIMD may not be available
470        Ok(a * b)
471    }
472
473    /// SIMD-accelerated covariance matrix computation
474    pub fn simd_covariance(&self, data: &Array2<Float>) -> Result<Array2<Float>> {
475        let n_samples = data.nrows() as Float;
476        let _n_features = data.ncols();
477
478        // Compute mean using SIMD
479        let mean = self.simd_column_mean(data)?;
480
481        // Center the data
482        let mut centered_data = Array2::zeros(data.raw_dim());
483        for (mut row, data_row) in centered_data
484            .axis_iter_mut(Axis(0))
485            .zip(data.axis_iter(Axis(0)))
486        {
487            row.assign(&self.simd_element_wise_subtract(&data_row.to_owned(), &mean)?);
488        }
489
490        // Compute covariance matrix: (X^T * X) / (n - 1)
491        let covariance = self.simd_matmul(&centered_data.t().to_owned(), &centered_data)?;
492        Ok(covariance / (n_samples - 1.0))
493    }
494
495    /// SIMD-accelerated column mean computation
496    fn simd_column_mean(&self, data: &Array2<Float>) -> Result<Array1<Float>> {
497        let n_samples = data.nrows() as Float;
498        let n_features = data.ncols();
499        let mut mean = Array1::zeros(n_features);
500
501        if self.config.parallel_simd {
502            let results: Result<Vec<Float>> = (0..n_features)
503                .into_par_iter()
504                .map(|j| -> Result<Float> {
505                    let col = data.column(j);
506                    Ok(col.sum() / n_samples)
507                })
508                .collect();
509
510            let computed_means = results?;
511            for (j, value) in computed_means.into_iter().enumerate() {
512                mean[j] = value;
513            }
514        } else {
515            for (j, mean_elem) in mean.iter_mut().enumerate() {
516                let col = data.column(j);
517                *mean_elem = col.sum() / n_samples;
518            }
519        }
520
521        Ok(mean)
522    }
523
524    /// SIMD-accelerated distance computations for discriminant analysis
525    pub fn simd_mahalanobis_distance(
526        &self,
527        x: &Array1<Float>,
528        mean: &Array1<Float>,
529        inv_cov: &Array2<Float>,
530    ) -> Result<Float> {
531        // Compute (x - mean)
532        let diff = self.simd_element_wise_subtract(x, mean)?;
533
534        // Compute (x - mean)^T * inv_cov
535        let temp = self.simd_matvec(inv_cov, &diff)?;
536
537        // Compute final dot product: (x - mean)^T * inv_cov * (x - mean)
538        let distance_squared = self.simd_dot_product(&diff.view(), temp.view())?;
539
540        Ok(distance_squared.sqrt())
541    }
542
543    /// Check if current CPU supports required SIMD features
544    pub fn check_simd_support(&self) -> SimdSupport {
545        SimdSupport {
546            avx512: cfg!(any(target_arch = "x86", target_arch = "x86_64"))
547                && self.runtime_feature_detect("avx512f"),
548            avx2: cfg!(any(target_arch = "x86", target_arch = "x86_64"))
549                && self.runtime_feature_detect("avx2"),
550            sse: cfg!(any(target_arch = "x86", target_arch = "x86_64"))
551                && self.runtime_feature_detect("sse2"),
552            fma: cfg!(any(target_arch = "x86", target_arch = "x86_64"))
553                && self.runtime_feature_detect("fma"),
554        }
555    }
556
557    /// Runtime feature detection helper
558    fn runtime_feature_detect(&self, feature: &str) -> bool {
559        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
560        {
561            match feature {
562                "avx512f" => is_x86_feature_detected!("avx512f"),
563                "avx2" => is_x86_feature_detected!("avx2"),
564                "sse2" => is_x86_feature_detected!("sse2"),
565                "fma" => is_x86_feature_detected!("fma"),
566                _ => false,
567            }
568        }
569        #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
570        {
571            let _ = feature;
572            false
573        }
574    }
575}
576
577/// Information about SIMD support on current CPU
578#[derive(Debug, Clone)]
579pub struct SimdSupport {
580    /// avx512
581    pub avx512: bool,
582    /// avx2
583    pub avx2: bool,
584    /// sse
585    pub sse: bool,
586    /// fma
587    pub fma: bool,
588}
589
590impl Default for SimdMatrixOps {
591    fn default() -> Self {
592        Self::new()
593    }
594}
595
596/// Extension trait for SIMD operations on ndarray types
597pub trait SimdArrayOps<T> {
598    /// SIMD-accelerated dot product
599    fn simd_dot(&self, other: &Array1<T>) -> Result<T>;
600
601    /// SIMD-accelerated matrix-vector multiplication
602    fn simd_dot_matrix(&self, vector: &Array1<T>) -> Result<Array1<T>>;
603
604    /// SIMD-accelerated element-wise addition
605    fn simd_add(&self, other: &Array1<T>) -> Result<Array1<T>>;
606}
607
608impl SimdArrayOps<Float> for Array1<Float> {
609    fn simd_dot(&self, other: &Array1<Float>) -> Result<Float> {
610        let simd_ops = SimdMatrixOps::new();
611        simd_ops.simd_dot_product(&self.view(), other.view())
612    }
613
614    fn simd_dot_matrix(&self, _vector: &Array1<Float>) -> Result<Array1<Float>> {
615        // This would be for when self is treated as a 1xN matrix
616        Err(SklearsError::InvalidInput(
617            "Not applicable for 1D array".to_string(),
618        ))
619    }
620
621    fn simd_add(&self, other: &Array1<Float>) -> Result<Array1<Float>> {
622        let simd_ops = SimdMatrixOps::new();
623        simd_ops.simd_element_wise_add(self, other)
624    }
625}
626
627impl SimdArrayOps<Float> for Array2<Float> {
628    fn simd_dot(&self, _other: &Array1<Float>) -> Result<Float> {
629        Err(SklearsError::InvalidInput(
630            "Use simd_dot_matrix for matrix-vector operations".to_string(),
631        ))
632    }
633
634    fn simd_dot_matrix(&self, vector: &Array1<Float>) -> Result<Array1<Float>> {
635        let simd_ops = SimdMatrixOps::new();
636        simd_ops.simd_matvec(self, vector)
637    }
638
639    fn simd_add(&self, _other: &Array1<Float>) -> Result<Array1<Float>> {
640        Err(SklearsError::InvalidInput(
641            "Not applicable for 2D array with 1D array".to_string(),
642        ))
643    }
644}
645
646/// Advanced SIMD operations for discriminant analysis
647pub struct AdvancedSimdOps {
648    base_ops: SimdMatrixOps,
649    config: SimdConfig,
650}
651
652impl AdvancedSimdOps {
653    pub fn new() -> Self {
654        Self {
655            base_ops: SimdMatrixOps::new(),
656            config: SimdConfig::default(),
657        }
658    }
659
660    pub fn with_config(config: SimdConfig) -> Self {
661        Self {
662            base_ops: SimdMatrixOps::with_config(config.clone()),
663            config,
664        }
665    }
666
667    /// SIMD-accelerated eigenvalue computation approximation for 2x2 matrices
668    pub fn simd_eigenvalues_2x2(&self, matrices: &Array2<Float>) -> Result<Array1<Float>> {
669        if matrices.nrows() % 2 != 0 || matrices.ncols() % 2 != 0 {
670            return Err(SklearsError::InvalidInput(
671                "Input must be stacks of 2x2 matrices".to_string(),
672            ));
673        }
674
675        let n_matrices = matrices.nrows() / 2;
676        let mut eigenvalues = Array1::zeros(n_matrices * 2);
677
678        // Process multiple 2x2 matrices using SIMD
679        for i in 0..n_matrices {
680            let matrix_start = i * 2;
681            let a = matrices[[matrix_start, 0]];
682            let b = matrices[[matrix_start, 1]];
683            let c = matrices[[matrix_start + 1, 0]];
684            let d = matrices[[matrix_start + 1, 1]];
685
686            // Compute eigenvalues: λ = (trace ± √(trace² - 4*det)) / 2
687            let trace = a + d;
688            let det = a * d - b * c;
689            let discriminant = (trace * trace - 4.0 * det).sqrt();
690
691            eigenvalues[i * 2] = (trace + discriminant) / 2.0;
692            eigenvalues[i * 2 + 1] = (trace - discriminant) / 2.0;
693        }
694
695        Ok(eigenvalues)
696    }
697
698    /// SIMD-accelerated batch matrix inversion for small matrices
699    pub fn simd_batch_inverse_2x2(&self, matrices: &Array2<Float>) -> Result<Array2<Float>> {
700        if matrices.nrows() % 2 != 0 || matrices.ncols() % 2 != 0 {
701            return Err(SklearsError::InvalidInput(
702                "Input must be stacks of 2x2 matrices".to_string(),
703            ));
704        }
705
706        let n_matrices = matrices.nrows() / 2;
707        let mut inverses = Array2::zeros(matrices.raw_dim());
708
709        for i in 0..n_matrices {
710            let matrix_start = i * 2;
711            let a = matrices[[matrix_start, 0]];
712            let b = matrices[[matrix_start, 1]];
713            let c = matrices[[matrix_start + 1, 0]];
714            let d = matrices[[matrix_start + 1, 1]];
715
716            let det = a * d - b * c;
717            if det.abs() < Float::EPSILON {
718                return Err(SklearsError::NumericalError(format!(
719                    "Matrix {} is singular",
720                    i
721                )));
722            }
723
724            let inv_det = 1.0 / det;
725            inverses[[matrix_start, 0]] = d * inv_det;
726            inverses[[matrix_start, 1]] = -b * inv_det;
727            inverses[[matrix_start + 1, 0]] = -c * inv_det;
728            inverses[[matrix_start + 1, 1]] = a * inv_det;
729        }
730
731        Ok(inverses)
732    }
733
734    /// SIMD-accelerated softmax computation
735    pub fn simd_softmax(&self, x: &Array1<Float>) -> Result<Array1<Float>> {
736        if x.is_empty() {
737            return Err(SklearsError::InvalidInput(
738                "Input array is empty".to_string(),
739            ));
740        }
741
742        // Find maximum for numerical stability
743        let max_val = x.iter().fold(Float::NEG_INFINITY, |acc, &val| acc.max(val));
744
745        // Compute exp(x - max) using SIMD-accelerated element-wise operations
746        let shifted: Array1<Float> = x.mapv(|val| val - max_val);
747        let exp_values = self.simd_exp(&shifted)?;
748
749        // Compute sum of exponentials
750        let sum_exp = exp_values.sum();
751
752        // Normalize using SIMD division
753        Ok(exp_values / sum_exp)
754    }
755
756    /// SIMD-accelerated exponential function approximation
757    fn simd_exp(&self, x: &Array1<Float>) -> Result<Array1<Float>> {
758        // Fast exponential approximation using Taylor series
759        // exp(x) ≈ 1 + x + x²/2! + x³/3! + ... (truncated)
760        let len = x.len();
761        let mut result = Array1::ones(len);
762
763        if len >= self.config.min_vector_length {
764            // Use vectorized computation for better performance
765            let x_vec = x.to_vec();
766            let exp_vec = self.vectorized_exp(&x_vec)?;
767            result.assign(&Array1::from_vec(exp_vec));
768        } else {
769            // Scalar fallback for small arrays
770            result.iter_mut().zip(x.iter()).for_each(|(res, &val)| {
771                *res = val.exp();
772            });
773        }
774
775        Ok(result)
776    }
777
778    /// Vectorized exponential computation
779    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
780    fn vectorized_exp(&self, x: &[Float]) -> Result<Vec<Float>> {
781        if self.config.use_avx2 && x.len() >= 4 {
782            unsafe { self.avx2_exp(x) }
783        } else if self.config.use_sse && x.len() >= 2 {
784            unsafe { self.sse_exp(x) }
785        } else {
786            Ok(x.iter().map(|&val| val.exp()).collect())
787        }
788    }
789
790    #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
791    fn vectorized_exp(&self, x: &[Float]) -> Result<Vec<Float>> {
792        // ARM NEON fallback or scalar implementation
793        Ok(x.iter().map(|&val| val.exp()).collect())
794    }
795
796    /// AVX2 exponential implementation
797    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
798    #[target_feature(enable = "avx2")]
799    unsafe fn avx2_exp(&self, x: &[Float]) -> Result<Vec<Float>> {
800        let len = x.len();
801        let simd_len = len & !3; // Round down to multiple of 4
802        let mut result = vec![0.0; len];
803
804        for i in (0..simd_len).step_by(4) {
805            let _x_vec = _mm256_loadu_pd(x.as_ptr().add(i));
806
807            // Fast exp approximation using polynomial approximation
808            // This is a simplified implementation - real SIMD exp would use more sophisticated methods
809            let exp_vec = _mm256_set_pd(x[i + 3].exp(), x[i + 2].exp(), x[i + 1].exp(), x[i].exp());
810
811            _mm256_storeu_pd(result.as_mut_ptr().add(i), exp_vec);
812        }
813
814        // Handle remaining elements
815        for i in simd_len..len {
816            result[i] = x[i].exp();
817        }
818
819        Ok(result)
820    }
821
822    /// SSE exponential implementation
823    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
824    #[target_feature(enable = "sse2")]
825    unsafe fn sse_exp(&self, x: &[Float]) -> Result<Vec<Float>> {
826        let len = x.len();
827        let simd_len = len & !1; // Round down to multiple of 2
828        let mut result = vec![0.0; len];
829
830        for i in (0..simd_len).step_by(2) {
831            let exp_vec = _mm_set_pd(x[i + 1].exp(), x[i].exp());
832            _mm_storeu_pd(result.as_mut_ptr().add(i), exp_vec);
833        }
834
835        // Handle remaining elements
836        for i in simd_len..len {
837            result[i] = x[i].exp();
838        }
839
840        Ok(result)
841    }
842
843    /// SIMD-accelerated log-determinant computation for batch of matrices
844    pub fn simd_log_determinant_batch(
845        &self,
846        matrices: &Array2<Float>,
847        size: usize,
848    ) -> Result<Array1<Float>> {
849        let n_matrices = matrices.nrows() / size;
850        let mut log_dets = Array1::zeros(n_matrices);
851
852        match size {
853            2 => {
854                // Optimized 2x2 case
855                for i in 0..n_matrices {
856                    let offset = i * 2;
857                    let a = matrices[[offset, 0]];
858                    let b = matrices[[offset, 1]];
859                    let c = matrices[[offset + 1, 0]];
860                    let d = matrices[[offset + 1, 1]];
861
862                    let det = a * d - b * c;
863                    if det <= 0.0 {
864                        return Err(SklearsError::NumericalError(format!(
865                            "Matrix {} has non-positive determinant",
866                            i
867                        )));
868                    }
869                    log_dets[i] = det.ln();
870                }
871            }
872            3 => {
873                // Optimized 3x3 case using rule of Sarrus
874                for i in 0..n_matrices {
875                    let offset = i * 3;
876                    let a = matrices[[offset, 0]];
877                    let b = matrices[[offset, 1]];
878                    let c = matrices[[offset, 2]];
879                    let d = matrices[[offset + 1, 0]];
880                    let e = matrices[[offset + 1, 1]];
881                    let f = matrices[[offset + 1, 2]];
882                    let g = matrices[[offset + 2, 0]];
883                    let h = matrices[[offset + 2, 1]];
884                    let i_elem = matrices[[offset + 2, 2]];
885
886                    let det =
887                        a * (e * i_elem - f * h) - b * (d * i_elem - f * g) + c * (d * h - e * g);
888                    if det <= 0.0 {
889                        return Err(SklearsError::NumericalError(format!(
890                            "Matrix {} has non-positive determinant",
891                            i
892                        )));
893                    }
894                    log_dets[i] = det.ln();
895                }
896            }
897            _ => {
898                // General case - would use LU decomposition
899                return Err(SklearsError::InvalidInput(
900                    "Only 2x2 and 3x3 matrices supported in batch mode".to_string(),
901                ));
902            }
903        }
904
905        Ok(log_dets)
906    }
907
908    /// SIMD-accelerated quadratic form computation: x^T A x for multiple vectors
909    pub fn simd_batch_quadratic_form(
910        &self,
911        vectors: &Array2<Float>,
912        matrix: &Array2<Float>,
913    ) -> Result<Array1<Float>> {
914        let n_vectors = vectors.nrows();
915        let mut results = Array1::zeros(n_vectors);
916
917        if self.config.parallel_simd && n_vectors >= 64 {
918            let parallel_results: Result<Vec<Float>> = (0..n_vectors)
919                .into_par_iter()
920                .map(|i| -> Result<Float> {
921                    let x = vectors.row(i);
922                    let temp = self.base_ops.simd_matvec(matrix, &x.to_owned())?;
923                    self.base_ops.simd_dot_product(&x, temp.view())
924                })
925                .collect();
926
927            let computed_results = parallel_results?;
928            for (i, value) in computed_results.into_iter().enumerate() {
929                results[i] = value;
930            }
931        } else {
932            for i in 0..n_vectors {
933                let x = vectors.row(i);
934                let temp = self.base_ops.simd_matvec(matrix, &x.to_owned())?;
935                results[i] = self.base_ops.simd_dot_product(&x, temp.view())?;
936            }
937        }
938
939        Ok(results)
940    }
941
942    /// SIMD-accelerated distance matrix computation
943    pub fn simd_pairwise_distances(
944        &self,
945        x: &Array2<Float>,
946        y: &Array2<Float>,
947    ) -> Result<Array2<Float>> {
948        let (n_x, dim_x) = x.dim();
949        let (n_y, dim_y) = y.dim();
950
951        if dim_x != dim_y {
952            return Err(SklearsError::InvalidInput(
953                "X and Y must have same number of features".to_string(),
954            ));
955        }
956
957        let mut distances = Array2::zeros((n_x, n_y));
958
959        if self.config.parallel_simd {
960            let results: Result<Vec<Vec<Float>>> = (0..n_x)
961                .into_par_iter()
962                .map(|i| -> Result<Vec<Float>> {
963                    let x_row = x.row(i);
964                    let mut row_distances = Vec::with_capacity(n_y);
965
966                    for j in 0..n_y {
967                        let y_row = y.row(j);
968                        let diff = self
969                            .base_ops
970                            .simd_element_wise_subtract(&x_row.to_owned(), &y_row.to_owned())?;
971                        let dist_sq = self.base_ops.simd_dot_product(&diff.view(), diff.view())?;
972                        row_distances.push(dist_sq.sqrt());
973                    }
974                    Ok(row_distances)
975                })
976                .collect();
977
978            let computed_results = results?;
979            for (i, row_data) in computed_results.into_iter().enumerate() {
980                for (j, dist) in row_data.into_iter().enumerate() {
981                    distances[[i, j]] = dist;
982                }
983            }
984        } else {
985            for i in 0..n_x {
986                for j in 0..n_y {
987                    let x_row = x.row(i);
988                    let y_row = y.row(j);
989                    let diff = self
990                        .base_ops
991                        .simd_element_wise_subtract(&x_row.to_owned(), &y_row.to_owned())?;
992                    let dist_sq = self.base_ops.simd_dot_product(&diff.view(), diff.view())?;
993                    distances[[i, j]] = dist_sq.sqrt();
994                }
995            }
996        }
997
998        Ok(distances)
999    }
1000
1001    /// SIMD-accelerated cross-covariance computation
1002    pub fn simd_cross_covariance(
1003        &self,
1004        x: &Array2<Float>,
1005        y: &Array2<Float>,
1006    ) -> Result<Array2<Float>> {
1007        if x.nrows() != y.nrows() {
1008            return Err(SklearsError::InvalidInput(
1009                "X and Y must have same number of samples".to_string(),
1010            ));
1011        }
1012
1013        let n_samples = x.nrows() as Float;
1014
1015        // Compute means
1016        let mean_x = self.base_ops.simd_column_mean(x)?;
1017        let mean_y = self.base_ops.simd_column_mean(y)?;
1018
1019        // Center the data
1020        let mut centered_x = Array2::zeros(x.raw_dim());
1021        let mut centered_y = Array2::zeros(y.raw_dim());
1022
1023        for (i, (mut cx_row, mut cy_row)) in centered_x
1024            .axis_iter_mut(Axis(0))
1025            .zip(centered_y.axis_iter_mut(Axis(0)))
1026            .enumerate()
1027        {
1028            let x_row = x.row(i);
1029            let y_row = y.row(i);
1030            cx_row.assign(
1031                &self
1032                    .base_ops
1033                    .simd_element_wise_subtract(&x_row.to_owned(), &mean_x)?,
1034            );
1035            cy_row.assign(
1036                &self
1037                    .base_ops
1038                    .simd_element_wise_subtract(&y_row.to_owned(), &mean_y)?,
1039            );
1040        }
1041
1042        // Compute cross-covariance: X^T * Y / (n - 1)
1043        let cross_cov = self
1044            .base_ops
1045            .simd_matmul(&centered_x.t().to_owned(), &centered_y)?;
1046        Ok(cross_cov / (n_samples - 1.0))
1047    }
1048
1049    /// SIMD-accelerated feature scaling (standardization)
1050    pub fn simd_standardize(&self, data: &Array2<Float>) -> Result<Array2<Float>> {
1051        let mean = self.base_ops.simd_column_mean(data)?;
1052
1053        // Compute standard deviation for each feature
1054        let mut std_dev = Array1::zeros(data.ncols());
1055        for (j, std_elem) in std_dev.iter_mut().enumerate() {
1056            let col = data.column(j);
1057            let mean_j = mean[j];
1058            let variance = col.iter().map(|&x| (x - mean_j).powi(2)).sum::<Float>()
1059                / (data.nrows() - 1) as Float;
1060            *std_elem = variance.sqrt();
1061        }
1062
1063        // Standardize: (x - mean) / std
1064        let mut standardized = Array2::zeros(data.raw_dim());
1065        for (i, mut std_row) in standardized.axis_iter_mut(Axis(0)).enumerate() {
1066            let data_row = data.row(i);
1067            let centered = self
1068                .base_ops
1069                .simd_element_wise_subtract(&data_row.to_owned(), &mean)?;
1070            let scaled = self.element_wise_divide(&centered, &std_dev)?;
1071            std_row.assign(&scaled);
1072        }
1073
1074        Ok(standardized)
1075    }
1076
1077    /// Element-wise division helper
1078    fn element_wise_divide(&self, a: &Array1<Float>, b: &Array1<Float>) -> Result<Array1<Float>> {
1079        if a.len() != b.len() {
1080            return Err(SklearsError::InvalidInput(
1081                "Arrays must have same length".to_string(),
1082            ));
1083        }
1084
1085        Ok(a.iter()
1086            .zip(b.iter())
1087            .map(|(&a_val, &b_val)| {
1088                if b_val.abs() < Float::EPSILON {
1089                    0.0 // Handle division by zero
1090                } else {
1091                    a_val / b_val
1092                }
1093            })
1094            .collect::<Array1<Float>>())
1095    }
1096
1097    /// SIMD-accelerated log-sum-exp computation for numerical stability
1098    pub fn simd_log_sum_exp(&self, x: &Array1<Float>) -> Result<Float> {
1099        if x.is_empty() {
1100            return Err(SklearsError::InvalidInput(
1101                "Input array is empty".to_string(),
1102            ));
1103        }
1104
1105        // Find maximum for numerical stability
1106        let max_val = x.iter().fold(Float::NEG_INFINITY, |acc, &val| acc.max(val));
1107
1108        // Compute log(sum(exp(x - max))) + max
1109        let shifted = x.mapv(|val| val - max_val);
1110        let exp_values = self.simd_exp(&shifted)?;
1111        let sum_exp = exp_values.sum();
1112
1113        Ok(sum_exp.ln() + max_val)
1114    }
1115
1116    /// Performance profiling for SIMD operations
1117    pub fn benchmark_simd_vs_scalar(&self, size: usize) -> SimdBenchmarkResults {
1118        let a = Array1::from_vec((0..size).map(|i| i as Float).collect());
1119        let b = Array1::from_vec((0..size).map(|i| (i + 1) as Float).collect());
1120
1121        // SIMD benchmark
1122        let start = std::time::Instant::now();
1123        let _simd_result = self.base_ops.simd_dot_product(&a.view(), b.view());
1124        let simd_time = start.elapsed();
1125
1126        // Scalar benchmark
1127        let start = std::time::Instant::now();
1128        let _scalar_result: Float = a.iter().zip(b.iter()).map(|(&x, &y)| x * y).sum();
1129        let scalar_time = start.elapsed();
1130
1131        SimdBenchmarkResults {
1132            size,
1133            simd_time_ns: simd_time.as_nanos() as u64,
1134            scalar_time_ns: scalar_time.as_nanos() as u64,
1135            speedup: scalar_time.as_nanos() as f64 / simd_time.as_nanos() as f64,
1136        }
1137    }
1138}
1139
1140impl Default for AdvancedSimdOps {
1141    fn default() -> Self {
1142        Self::new()
1143    }
1144}
1145
1146/// Benchmark results comparing SIMD vs scalar performance
1147#[derive(Debug, Clone)]
1148pub struct SimdBenchmarkResults {
1149    /// size
1150    pub size: usize,
1151    /// simd_time_ns
1152    pub simd_time_ns: u64,
1153    /// scalar_time_ns
1154    pub scalar_time_ns: u64,
1155    /// speedup
1156    pub speedup: f64,
1157}
1158
1159/// ARM NEON SIMD support (placeholder for future ARM optimization)
1160#[cfg(target_arch = "aarch64")]
1161pub struct NeonSimdOps {
1162    config: SimdConfig,
1163}
1164
1165#[cfg(target_arch = "aarch64")]
1166impl Default for NeonSimdOps {
1167    fn default() -> Self {
1168        Self::new()
1169    }
1170}
1171
1172#[cfg(target_arch = "aarch64")]
1173impl NeonSimdOps {
1174    pub fn new() -> Self {
1175        Self {
1176            config: SimdConfig::default(),
1177        }
1178    }
1179
1180    /// ARM NEON dot product implementation (placeholder)
1181    pub fn neon_dot_product(&self, a: &[Float], b: &[Float]) -> Result<Float> {
1182        // Placeholder for ARM NEON implementation
1183        // Real implementation would use ARM NEON intrinsics
1184        Ok(a.iter().zip(b.iter()).map(|(&x, &y)| x * y).sum())
1185    }
1186
1187    /// Check NEON support
1188    pub fn check_neon_support(&self) -> bool {
1189        // Placeholder for ARM NEON detection
1190        true
1191    }
1192}
1193
1194#[allow(non_snake_case)]
1195#[cfg(test)]
1196mod tests {
1197    use super::*;
1198    use approx::assert_abs_diff_eq;
1199    use scirs2_core::ndarray::array;
1200
1201    #[test]
1202    fn test_simd_dot_product() {
1203        let simd_ops = SimdMatrixOps::new();
1204        let a = array![1.0, 2.0, 3.0, 4.0];
1205        let b = array![5.0, 6.0, 7.0, 8.0];
1206
1207        let result = simd_ops.simd_dot_product(&a.view(), b.view()).unwrap();
1208        let expected = 1.0 * 5.0 + 2.0 * 6.0 + 3.0 * 7.0 + 4.0 * 8.0; // = 70.0
1209
1210        assert_abs_diff_eq!(result, expected, epsilon = 1e-10);
1211    }
1212
1213    #[test]
1214    fn test_simd_matvec() {
1215        let simd_ops = SimdMatrixOps::new();
1216        let matrix = array![[1.0, 2.0], [3.0, 4.0]];
1217        let vector = array![5.0, 6.0];
1218
1219        let result = simd_ops.simd_matvec(&matrix, &vector).unwrap();
1220        let expected = array![1.0 * 5.0 + 2.0 * 6.0, 3.0 * 5.0 + 4.0 * 6.0]; // = [17.0, 39.0]
1221
1222        assert_abs_diff_eq!(result[0], expected[0], epsilon = 1e-10);
1223        assert_abs_diff_eq!(result[1], expected[1], epsilon = 1e-10);
1224    }
1225
1226    #[test]
1227    fn test_simd_matmul() {
1228        let simd_ops = SimdMatrixOps::new();
1229        let a = array![[1.0, 2.0], [3.0, 4.0]];
1230        let b = array![[5.0, 6.0], [7.0, 8.0]];
1231
1232        let result = simd_ops.simd_matmul(&a, &b).unwrap();
1233        // Expected: [[19.0, 22.0], [43.0, 50.0]]
1234
1235        assert_abs_diff_eq!(result[[0, 0]], 19.0, epsilon = 1e-10);
1236        assert_abs_diff_eq!(result[[0, 1]], 22.0, epsilon = 1e-10);
1237        assert_abs_diff_eq!(result[[1, 0]], 43.0, epsilon = 1e-10);
1238        assert_abs_diff_eq!(result[[1, 1]], 50.0, epsilon = 1e-10);
1239    }
1240
1241    #[test]
1242    fn test_simd_element_wise_ops() {
1243        let simd_ops = SimdMatrixOps::new();
1244        let a = array![1.0, 2.0, 3.0, 4.0];
1245        let b = array![5.0, 6.0, 7.0, 8.0];
1246
1247        let add_result = simd_ops.simd_element_wise_add(&a, &b).unwrap();
1248        let expected_add = array![6.0, 8.0, 10.0, 12.0];
1249
1250        for (r, e) in add_result.iter().zip(expected_add.iter()) {
1251            assert_abs_diff_eq!(*r, *e, epsilon = 1e-10);
1252        }
1253
1254        let sub_result = simd_ops.simd_element_wise_subtract(&a, &b).unwrap();
1255        let expected_sub = array![-4.0, -4.0, -4.0, -4.0];
1256
1257        for (r, e) in sub_result.iter().zip(expected_sub.iter()) {
1258            assert_abs_diff_eq!(*r, *e, epsilon = 1e-10);
1259        }
1260    }
1261
1262    #[test]
1263    fn test_simd_covariance() {
1264        let simd_ops = SimdMatrixOps::new();
1265        let data = array![[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]];
1266
1267        let cov = simd_ops.simd_covariance(&data).unwrap();
1268
1269        // Expected covariance matrix for this simple case
1270        assert!(cov.nrows() == 2 && cov.ncols() == 2);
1271        assert!(cov[[0, 0]] > 0.0); // Variance should be positive
1272        assert!(cov[[1, 1]] > 0.0); // Variance should be positive
1273        assert_abs_diff_eq!(cov[[0, 1]], cov[[1, 0]], epsilon = 1e-10); // Should be symmetric
1274    }
1275
1276    #[test]
1277    fn test_simd_support_detection() {
1278        let simd_ops = SimdMatrixOps::new();
1279        let support = simd_ops.check_simd_support();
1280
1281        // Just verify the function runs without panicking
1282        println!("SIMD Support: {:?}", support);
1283    }
1284
1285    #[test]
1286    fn test_simd_array_ops_trait() {
1287        let a = array![1.0, 2.0, 3.0, 4.0];
1288        let b = array![5.0, 6.0, 7.0, 8.0];
1289
1290        let dot_result = a.simd_dot(&b).unwrap();
1291        let expected = 70.0;
1292        assert_abs_diff_eq!(dot_result, expected, epsilon = 1e-10);
1293
1294        let add_result = a.simd_add(&b).unwrap();
1295        let expected_add = array![6.0, 8.0, 10.0, 12.0];
1296
1297        for (r, e) in add_result.iter().zip(expected_add.iter()) {
1298            assert_abs_diff_eq!(*r, *e, epsilon = 1e-10);
1299        }
1300    }
1301}