Crate sklears_decomposition

Crate sklears_decomposition 

Source
Expand description

Matrix and tensor decomposition algorithms for dimensionality reduction

This module provides various decomposition techniques including:

  • PCA: Principal Component Analysis with SVD (including Randomized SVD)
  • Incremental PCA: Memory-efficient PCA for large datasets
  • Kernel PCA: Non-linear dimensionality reduction using kernel methods
  • ICA: Independent Component Analysis (including constrained ICA)
  • NMF: Non-negative Matrix Factorization
  • Factor Analysis: Statistical model for latent variables
  • Dictionary Learning: Sparse coding and dictionary learning
  • Tensor Decomposition: CP (CANDECOMP/PARAFAC) and Tucker decomposition
  • Matrix Completion: Filling missing values using low-rank matrix completion
  • CCA: Canonical Correlation Analysis for finding linear relationships between two datasets
  • PLS: Partial Least Squares for regression and dimensionality reduction
  • Time Series: SSA, seasonal decomposition, and trend extraction
  • Signal Processing: EMD, spectral decomposition, and adaptive methods
  • Image & Computer Vision: 2D-PCA, image denoising, face recognition, texture analysis
  • Manifold Learning: LLE, Isomap, Laplacian Eigenmaps, t-SNE, UMAP
  • Component Selection: Cross-validation, bootstrap, information criteria, parallel analysis
  • Quality Metrics: Goodness-of-fit statistics, reconstruction quality, interpretability measures
  • Robust Methods: Robust PCA with L1 loss, M-estimators, outlier-resistant methods
  • Hardware Acceleration: SIMD optimizations, parallel processing, and mixed-precision arithmetic
  • Distributed Processing: Large-scale distributed decomposition across multiple nodes/workers
  • Scikit-learn Compatibility: Drop-in replacements for scikit-learn transformers with full API compatibility
  • Advanced Format Support: HDF5, sparse matrices, memory-mapped files, and compressed storage
  • Cache Optimization: Memory-aligned data structures, tiled algorithms, and performance analysis
  • Comprehensive Validation: Input validation, parameter checking, and result quality assessment
  • Modular Architecture: Pluggable algorithms, preprocessing pipelines, and extensible framework
  • Constrained Decomposition: Orthogonality, non-negativity, sparsity, and smoothness constraints
  • Type-Safe Decomposition: Zero-cost abstractions with compile-time dimension and rank checking

Re-exports§

pub use hardware_acceleration::AccelerationConfig;
pub use hardware_acceleration::AlignedMemoryOps;
pub use hardware_acceleration::MixedPrecisionOps;
pub use hardware_acceleration::ParallelDecomposition;
pub use hardware_acceleration::SimdMatrixOps;
pub use modular_framework::AlgorithmCapabilities;
pub use modular_framework::AlgorithmCapability;
pub use modular_framework::AlgorithmMetadata;
pub use modular_framework::AlgorithmRegistry;
pub use modular_framework::ComputationalComplexity;
pub use modular_framework::DecompositionAlgorithm as DecompositionAlgorithmTrait;
pub use modular_framework::DecompositionComponents;
pub use modular_framework::DecompositionParams;
pub use modular_framework::DecompositionWorkflowBuilder;
pub use modular_framework::MatrixProperty;
pub use modular_framework::ParamValue;
pub use modular_framework::PostprocessingStep;
pub use modular_framework::PreprocessingStep;
pub use modular_framework::StandardizationStep;
pub use modular_framework::VarimaxRotationStep;
pub use robust_methods::BreakdownPointAnalysis;
pub use robust_methods::BreakdownResult;
pub use robust_methods::LossFunction;
pub use robust_methods::MEstimatorDecomposition;
pub use robust_methods::MEstimatorResult;
pub use robust_methods::RobustConfig;
pub use robust_methods::RobustPCAResult;
pub use sklearn_compat::CrossValidation;
pub use sklearn_compat::GridSearchCV;
pub use sklearn_compat::ParameterValue as SklearnParameterValue;
pub use sklearn_compat::SklearnPCA;
pub use sklearn_compat::SklearnPipeline;
pub use sklearn_compat::SklearnTransformer;
pub use type_safe::CenteringOperation;
pub use type_safe::ComponentAccess;
pub use type_safe::ComponentIndex;
pub use type_safe::DecompositionOperation;
pub use type_safe::DecompositionPipeline as TypeSafeDecompositionPipeline;
pub use type_safe::DecompositionState;
pub use type_safe::Dimensions;
pub use type_safe::Fitted;
pub use type_safe::Rank;
pub use type_safe::ScalingOperation;
pub use type_safe::TypeSafeDecomposition;
pub use type_safe::TypeSafeMatrix;
pub use type_safe::TypeSafePCA;
pub use type_safe::Untrained;
pub use component_selection::*;
pub use constrained_decomposition::*;
pub use dictionary_learning::*;
pub use distributed::*;
pub use error_diagnostics::*;
pub use factor_analysis::*;
pub use fluent_api::*;
pub use ica::*;
pub use image_cv::*;
pub use integration::*;
pub use memory_efficiency::*;
pub use nmf::*;
pub use online_nmf::*;
pub use pca::*;
pub use performance::*;
pub use quality_metrics::*;
pub use signal_processing::*;
pub use streaming::*;
pub use time_series::*;
pub use validation::*;
pub use visualization::*;

Modules§

cache_optimization
Cache-Friendly Matrix Layouts and Performance Optimizations
component_selection
Component Selection Methods for Decomposition
constrained_decomposition
Constrained Decomposition Methods
dictionary_learning
Dictionary Learning implementation
distributed
Distributed Decomposition Methods for Large-Scale Processing
error_diagnostics
Comprehensive Error Handling and Diagnostics for Decomposition
factor_analysis
Factor Analysis implementation
fluent_api
Fluent API for Decomposition Pipelines
hardware_acceleration
Hardware Acceleration for Decomposition Algorithms
ica
Independent Component Analysis (ICA) implementation.
image_cv
Image and Computer Vision Decomposition Methods
integration
Enhanced Integration and Interoperability Module
memory_efficiency
Memory efficiency improvements for decomposition algorithms
modular_framework
Modular Pluggable Decomposition Architecture
nmf
Non-negative Matrix Factorization (NMF) implementation.
online_nmf
Online Non-negative Matrix Factorization (Online NMF)
pca
Principal Component Analysis and dimensionality reduction utilities
performance
Performance Optimization Utilities
quality_metrics
Quality Metrics and Goodness-of-Fit Statistics for Decomposition
robust_methods
Robust Decomposition Methods
signal_processing
Signal Processing Framework for Decomposition Applications
sklearn_compat
Scikit-learn Compatibility Layer
streaming
Real-time and streaming decomposition algorithms
time_series
Time Series Decomposition methods
type_safe
Type-safe decomposition abstractions using Rust’s type system
validation
Comprehensive Validation Framework for Matrix Decomposition
visualization
Visualization and interpretation utilities for matrix decomposition

Macros§

s
Slice argument constructor.