Crate sklears_cross_decomposition

Crate sklears_cross_decomposition 

Source
Expand description

Cross decomposition algorithms (PLS, CCA)

This module is part of sklears, providing scikit-learn compatible machine learning algorithms in Rust.

Re-exports§

pub use bayesian::BayesianCCA;
pub use bayesian::BayesianCCAResults;
pub use bayesian::HierarchicalBayesianCCA;
pub use bayesian::HierarchicalBayesianCCAResults;
pub use bayesian::VariationalPLS;
pub use bayesian::VariationalPLSResults;
pub use benchmarks::AccuracyResults;
pub use benchmarks::BenchmarkResults;
pub use benchmarks::BenchmarkSuite;
pub use benchmarks::DecompositionResult;
pub use benchmarks::MethodBenchmarkResults;
pub use benchmarks::ScalabilityResults;
pub use benchmarks::SpeedResult;
pub use benchmarks::SummaryStats;
pub use cca::RidgeCCA;
pub use cca::SparseCCA;
pub use cca::CCA;
pub use consensus_pca::ConsensusPCA;
pub use deep_cca::ActivationFunction;
pub use deep_cca::DeepCCA;
pub use deep_learning::ActivationFunction as DeepActivationFunction;
pub use deep_learning::AttentionActivation;
pub use deep_learning::AttentionConfig;
pub use deep_learning::AttentionLayer;
pub use deep_learning::AttentionOutput;
pub use deep_learning::AttentionTensorDecomposition;
pub use deep_learning::AttentionType;
pub use deep_learning::CrossModalAttention;
pub use deep_learning::CrossModalAttentionOutput;
pub use deep_learning::CrossModalSimilarity;
pub use deep_learning::CrossModalVAE;
pub use deep_learning::MultiHeadAttention;
pub use deep_learning::NeuralActivation;
pub use deep_learning::NeuralParafacDecomposition;
pub use deep_learning::NeuralTensorConfig;
pub use deep_learning::NeuralTensorResults;
pub use deep_learning::NeuralTuckerDecomposition;
pub use deep_learning::TransformerDecoderBlock;
pub use deep_learning::TransformerEncoderBlock;
pub use deep_learning::VAEConfig;
pub use deep_learning::VAETrainingResults;
pub use deep_learning::VariationalTensorNetwork;
pub use federated_learning::AggregationStrategy as FederatedAggregationStrategy;
pub use federated_learning::ClientId;
pub use federated_learning::CommunicationConfig;
pub use federated_learning::FederatedCCA;
pub use federated_learning::FederatedCCAResults;
pub use federated_learning::FederatedClient;
pub use federated_learning::FederatedError;
pub use federated_learning::FederatedPCA;
pub use federated_learning::FederatedPCAResults;
pub use federated_learning::FederatedServer;
pub use federated_learning::PrivacyBudget;
pub use finance::FactorConstrainedOptimization;
pub use finance::FactorRotation;
pub use finance::FactorStatistics;
pub use finance::FinanceError;
pub use finance::FinancialFactorAnalysis;
pub use finance::FittedFinancialFactorAnalysis;
pub use finance::FittedMacroeconomicFactorAnalysis;
pub use finance::ForecastingModel;
pub use finance::MacroFactorStatistics;
pub use finance::MacroeconomicFactorAnalysis;
pub use finance::OptimizedPortfolio;
pub use finance::RiskDecomposition;
pub use generalized_cca::GeneralizedCCA;
pub use genomics::ConsensusMethod;
pub use genomics::EnhancedPathwayAnalysis;
pub use genomics::EnhancedPathwayResults;
pub use genomics::EnrichmentMethod;
pub use genomics::FittedGeneEnvironmentInteraction;
pub use genomics::FittedMultiOmicsIntegration;
pub use genomics::FittedSingleCellMultiModal;
pub use genomics::FittedTemporalGeneExpression;
pub use genomics::GeneEnvironmentInteraction;
pub use genomics::GenomicsError;
pub use genomics::MLScoringConfig;
pub use genomics::MissingDataStrategy;
pub use genomics::MultiModalConfig;
pub use genomics::MultiOmicsIntegration;
pub use genomics::MultipleTestingCorrection;
pub use genomics::NetworkAnalysisConfig;
pub use genomics::PathwayAnalysis;
pub use genomics::PathwayAnalysisConfig;
pub use genomics::PathwayDatabase;
pub use genomics::SingleCellMultiModal;
pub use genomics::TemporalAnalysisConfig;
pub use genomics::TemporalGeneExpression;
pub use gpu_acceleration::GpuAcceleratedContext;
pub use gpu_acceleration::GpuCCA;
pub use gpu_acceleration::GpuCCAFitted;
pub use gpu_acceleration::GpuMatrixOps;
pub use gpu_acceleration::GpuMemoryInfo;
pub use graph_regularization::CommunityAlgorithm;
pub use graph_regularization::CommunityDetectionConfig;
pub use graph_regularization::CommunityDetector;
pub use graph_regularization::CommunityStructure;
pub use graph_regularization::GraphBuilder;
pub use graph_regularization::GraphRegularizationConfig;
pub use graph_regularization::GraphRegularizationError;
pub use graph_regularization::GraphRegularizedCCA;
pub use graph_regularization::GraphStructure;
pub use graph_regularization::GraphType;
pub use graph_regularization::Hypergraph;
pub use graph_regularization::HypergraphCCA;
pub use graph_regularization::HypergraphCCAResults;
pub use graph_regularization::HypergraphCentrality;
pub use graph_regularization::HypergraphConfig;
pub use graph_regularization::HypergraphLaplacianType;
pub use graph_regularization::MotifType;
pub use graph_regularization::MultiGraphCCA;
pub use graph_regularization::MultiWayInteractionAnalyzer;
pub use graph_regularization::NetworkConstrainedPLS;
pub use graph_regularization::RegularizationType;
pub use graph_regularization::TemporalAnalysisResults;
pub use graph_regularization::TemporalMotif;
pub use graph_regularization::TemporalNetwork;
pub use graph_regularization::TemporalNetworkAnalyzer;
pub use graph_regularization::TemporalNetworkConfig;
pub use information_theory::ComponentInterpretation;
pub use information_theory::ComponentInterpreter;
pub use information_theory::ComponentSelection;
pub use information_theory::ComponentSimilarityAnalysis;
pub use information_theory::DistanceBasedConfig;
pub use information_theory::DistanceBasedMetric;
pub use information_theory::DistanceBasedResults;
pub use information_theory::DistanceCCA;
pub use information_theory::DistanceCovariance;
pub use information_theory::EntropyComponentSelection;
pub use information_theory::EntropyEstimator;
pub use information_theory::FeatureContribution;
pub use information_theory::FeatureImportanceAnalyzer;
pub use information_theory::FeatureImportanceResults;
pub use information_theory::FittedMutualInformationCCA;
pub use information_theory::HigherOrderAnalyzer;
pub use information_theory::HigherOrderConfig;
pub use information_theory::HigherOrderResults;
pub use information_theory::ImportanceMethod;
pub use information_theory::InformationGeometry;
pub use information_theory::InformationMeasure;
pub use information_theory::InformationTheoreticRegularization;
pub use information_theory::InformationTheoryError;
pub use information_theory::KLDivergenceMethods;
pub use information_theory::ManifoldStructure;
pub use information_theory::MutualInformationCCA;
pub use information_theory::NonGaussianComponentAnalysis;
pub use information_theory::NonGaussianResults;
pub use information_theory::PolyspectralCCA;
pub use information_theory::PolyspectralResults;
pub use information_theory::RegularizationMethod;
pub use information_theory::RiemannianOptimizer;
pub use information_theory::SelectionCriteria;
pub use information_theory::SingleComponentInterpretation;
pub use information_theory::VariableInterpretation;
pub use information_theory::HSIC;
pub use interactive_visualization::ColorScheme;
pub use interactive_visualization::InteractivePlot;
pub use interactive_visualization::InteractiveVisualizationConfig;
pub use interactive_visualization::InteractiveVisualizer;
pub use interactive_visualization::PlotData;
pub use interactive_visualization::PlotType;
pub use interactive_visualization::VisualizationError;
pub use jive::JIVE;
pub use kernel_cca::KernelCCA;
pub use kernel_cca::KernelType;
pub use manifold_learning::AdvancedManifoldLearning;
pub use manifold_learning::ConvergenceInfo;
pub use manifold_learning::CrossModalAlignment;
pub use manifold_learning::DistanceMetric;
pub use manifold_learning::EigenSolver;
pub use manifold_learning::FittedManifoldAwareCCA;
pub use manifold_learning::FittedManifoldCCA as FittedAdvancedManifoldCCA;
pub use manifold_learning::GeodesicMethod;
pub use manifold_learning::ManifoldAwareCCA;
pub use manifold_learning::ManifoldCCA as AdvancedManifoldCCA;
pub use manifold_learning::ManifoldError;
pub use manifold_learning::ManifoldLearning;
pub use manifold_learning::ManifoldLearningResult;
pub use manifold_learning::ManifoldMethod;
pub use manifold_learning::ManifoldProperties;
pub use manifold_learning::ManifoldRegularization;
pub use manifold_learning::ManifoldResults;
pub use manifold_learning::OptimizationParams;
pub use manifold_learning::PathMethod;
pub use multi_omics::GenomicsError as MultiOmicsGenomicsError;
pub use multiblock_pls::BlockScaling;
pub use multiblock_pls::MultiBlockPLS;
pub use multitask::DomainAdaptationCCA;
pub use multitask::FewShotCCA;
pub use multitask::MultiTaskCCA;
pub use multitask::SharedComponentAnalysis;
pub use multitask::TransferLearningCCA;
pub use multiview_cca::MultiViewCCA;
pub use multiview_clustering::DistanceMetric as MultiViewDistanceMetric;
pub use multiview_clustering::InitMethod;
pub use multiview_clustering::MultiViewClustering;
pub use neuroimaging::BrainBehaviorCorrelation;
pub use neuroimaging::BrainBehaviorResults;
pub use neuroimaging::ConnectivityType;
pub use neuroimaging::CorrelationMethod;
pub use neuroimaging::FunctionalConnectivity;
pub use neuroimaging::FunctionalConnectivityResults;
pub use neuroimaging::NetworkMeasures;
pub use opls::OPLS;
pub use out_of_core::OOCAlgorithm;
pub use out_of_core::OutOfCoreCCA;
pub use out_of_core::OutOfCoreCCAResults;
pub use out_of_core::OutOfCorePLS;
pub use out_of_core::OutOfCorePLSResults;
pub use parallel::EigenMethod;
pub use parallel::OptimizedMatrixOps;
pub use parallel::ParallelEigenSolver;
pub use parallel::ParallelMatrixOps;
pub use parallel::ParallelSVD;
pub use parallel::SVDAlgorithm;
pub use parallel::WorkStealingThreadPool;
pub use pls::PLSRegression;
pub use pls_canonical::PLSCanonical;
pub use pls_da::PLSDA;
pub use pls_svd::PLSSVD;
pub use quantum_methods::QuantumCCA;
pub use quantum_methods::QuantumCCAResults;
pub use quantum_methods::QuantumCircuit;
pub use quantum_methods::QuantumError;
pub use quantum_methods::QuantumFeatureSelection;
pub use quantum_methods::QuantumGate;
pub use quantum_methods::QuantumMethod;
pub use quantum_methods::QuantumPCA;
pub use quantum_methods::QuantumPCAResults;
pub use quantum_methods::QuantumState;
pub use regularization::AdaptiveLasso;
pub use regularization::ElasticNet;
pub use regularization::FusedLasso;
pub use regularization::GroupLasso;
pub use regularization::MCP;
pub use regularization::SCAD;
pub use riemannian_optimization::CCAObjective;
pub use riemannian_optimization::GrassmannManifold;
pub use riemannian_optimization::LineSearchParams;
pub use riemannian_optimization::ManifoldType;
pub use riemannian_optimization::RiemannianAlgorithm;
pub use riemannian_optimization::RiemannianConfig;
pub use riemannian_optimization::RiemannianError;
pub use riemannian_optimization::RiemannianManifold;
pub use riemannian_optimization::RiemannianObjective;
pub use riemannian_optimization::RiemannianOptimizer as RiemannianOptimizerAdvanced;
pub use riemannian_optimization::RiemannianResults;
pub use riemannian_optimization::SPDManifold;
pub use riemannian_optimization::StiefelManifold;
pub use riemannian_optimization::TrustRegionParams;
pub use robust_methods::MEstimatorType;
pub use robust_methods::RobustCCA;
pub use robust_methods::RobustPLS;
pub use scalability::AggregationStrategy;
pub use scalability::DistributedCCA;
pub use scalability::DistributedCCAResults;
pub use scalability::MemoryEfficientCCA;
pub use simd_acceleration::AdvancedSimdConfig;
pub use simd_acceleration::AdvancedSimdOps;
pub use simd_acceleration::SimdBenchmarkResults;
pub use simd_acceleration::SimdCCA;
pub use simd_acceleration::SimdCCAFitted;
pub use simd_acceleration::SimdMatrixOps;
pub use sparse_pls::SparsePLS;
pub use tensor_methods::BayesianParafac;
pub use tensor_methods::ParafacDecomposition;
pub use tensor_methods::ProbabilisticConfig;
pub use tensor_methods::ProbabilisticTensorResults;
pub use tensor_methods::ProbabilisticTucker;
pub use tensor_methods::RobustProbabilisticTensor;
pub use tensor_methods::SparseTensorDecomposition;
pub use tensor_methods::TensorCCA;
pub use tensor_methods::TensorCompletion;
pub use tensor_methods::TensorInitMethod;
pub use tensor_methods::TuckerDecomposition;
pub use time_series::DynamicCCA;
pub use time_series::DynamicCCAResults;
pub use time_series::DynamicCCASummary;
pub use time_series::FittedRegimeSwitchingModel;
pub use time_series::FittedStateSpaceModel;
pub use time_series::FittedVAR;
pub use time_series::GrangerCausalityTest;
pub use time_series::GrangerTestResult;
pub use time_series::InformationCriterion;
pub use time_series::RegimeSwitchingModel;
pub use time_series::StateSpaceForecast;
pub use time_series::StateSpaceModel;
pub use time_series::StateSpaceModelDiagnostics;
pub use time_series::StreamingCCA;
pub use time_series::TrendType;
pub use time_series::VARMethod;
pub use time_series::VectorAutoregression;
pub use type_safe_linalg::decomp;
pub use type_safe_linalg::ops;
pub use type_safe_linalg::Dim;
pub use type_safe_linalg::MatrixDimension;
pub use type_safe_linalg::SquareMatrix;
pub use type_safe_linalg::TypeSafeMatrix;
pub use type_safe_linalg::TypeSafeVector;
pub use validation_framework::BenchmarkDataset;
pub use validation_framework::CaseStudy;
pub use validation_framework::ComputationalBenchmarks;
pub use validation_framework::CorrelationStructure;
pub use validation_framework::CriterionType;
pub use validation_framework::CrossValidationResult;
pub use validation_framework::CrossValidationSettings;
pub use validation_framework::DatasetCharacteristics;
pub use validation_framework::DatasetValidationResult;
pub use validation_framework::DistributionType;
pub use validation_framework::PerformanceMetric;
pub use validation_framework::PerformanceRange;
pub use validation_framework::PerformanceSummary;
pub use validation_framework::RobustnessAnalysis;
pub use validation_framework::ScalabilityAnalysis;
pub use validation_framework::SignificanceTest;
pub use validation_framework::StatisticalTestResult;
pub use validation_framework::ValidationError;
pub use validation_framework::ValidationFramework;
pub use validation_framework::ValidationResults;

Modules§

bayesian
Bayesian approaches for cross-decomposition
benchmarks
Benchmarking utilities for cross-decomposition methods
cca
Canonical Correlation Analysis
consensus_pca
Consensus Principal Component Analysis (Consensus PCA)
deep_cca
Deep Canonical Correlation Analysis
deep_learning
Deep Learning Integration for Cross-Decomposition
differential_geometry
Differential Geometry Methods for Cross-Decomposition
federated_learning
Federated Learning for Cross-Decomposition Methods
finance
Finance and Economics Applications
generalized_cca
Generalized Canonical Correlation Analysis (GCCA)
genomics
Genomics and Multi-Omics Integration
gpu_acceleration
GPU Acceleration Module for Cross-Decomposition Methods
graph_regularization
Graph-Regularized Cross-Decomposition Methods
information_theory
Information Theory Approaches for Cross-Decomposition
interactive_visualization
Interactive Visualization for Cross-Decomposition Methods
jive
Joint and Individual Variation Explained (JIVE)
kernel_cca
Kernel Canonical Correlation Analysis
manifold_learning
Manifold Learning Integration for Cross-Decomposition Methods
multi_omics
Multi-Omics Integration
multiblock_pls
Multi-block Partial Least Squares
multitask
Multi-task learning methods for cross-decomposition
multiview_cca
Multi-view Canonical Correlation Analysis (Multi-view CCA)
multiview_clustering
Multi-view Clustering
neuroimaging
Neuroimaging applications for cross-decomposition methods
opls
Orthogonal Partial Least Squares (OPLS)
out_of_core
Out-of-core processing for large-scale cross-decomposition
parallel
Parallel computing enhancements for cross-decomposition methods
pls
Partial Least Squares regression
pls_canonical
PLS in canonical mode
pls_da
PLS Discriminant Analysis
pls_svd
PLS using SVD
quantum_methods
Quantum-Inspired Methods for Cross-Decomposition
regularization
Regularization techniques for cross-decomposition methods
riemannian_optimization
Riemannian Optimization for Cross-Decomposition Methods
robust_methods
Robust cross-decomposition methods
scalability
Scalability and performance optimizations for cross-decomposition
simd_acceleration
SIMD Acceleration Module for Cross-Decomposition Methods
sparse_pls
Sparse Partial Least Squares
tensor_methods
Tensor-based cross-decomposition methods
time_series
Time series extensions for cross-decomposition
type_safe_linalg
Type-safe linear algebra operations for cross-decomposition
validation_framework
Comprehensive Validation Framework