1use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2, Axis};
8use scirs2_core::random::essentials::{Normal, Uniform};
9use scirs2_core::random::thread_rng;
10use scirs2_core::random::Distribution;
11use scirs2_core::random::Rng;
12use sklears_core::error::SklearsError;
13use sklears_core::traits::{Estimator, Fit};
14
15#[derive(Debug, Clone)]
17pub struct QuantumInspiredCovariance<State = QuantumInspiredCovarianceUntrained> {
18 state: State,
20 pub n_qubits: usize,
22 pub algorithm_type: QuantumAlgorithmType,
24 pub quantum_iterations: usize,
26 pub noise_level: f64,
28 pub variational_params: Option<Array1<f64>>,
30 pub random_state: Option<u64>,
32}
33
34#[derive(Debug, Clone, Copy)]
36pub enum QuantumAlgorithmType {
37 QuantumPCA,
39 HHL,
41 VQE,
43 QAOA,
45 QSVM,
47}
48
49#[derive(Debug, Clone)]
51pub struct QuantumInspiredCovarianceUntrained;
52
53#[derive(Debug, Clone)]
54pub struct QuantumInspiredCovarianceTrained {
55 pub covariance: Array2<f64>,
57 pub quantum_amplitudes: Array1<f64>,
59 pub measurement_probs: Array1<f64>,
61 pub circuit_depth: usize,
63 pub advantage_factor: f64,
65}
66
67impl QuantumInspiredCovariance<QuantumInspiredCovarianceUntrained> {
68 pub fn new() -> Self {
70 Self {
71 state: QuantumInspiredCovarianceUntrained,
72 n_qubits: 10,
73 algorithm_type: QuantumAlgorithmType::QuantumPCA,
74 quantum_iterations: 100,
75 noise_level: 0.01,
76 variational_params: None,
77 random_state: None,
78 }
79 }
80
81 pub fn with_qubits(mut self, n_qubits: usize) -> Self {
83 self.n_qubits = n_qubits;
84 self
85 }
86
87 pub fn with_algorithm(mut self, algorithm_type: QuantumAlgorithmType) -> Self {
88 self.algorithm_type = algorithm_type;
89 self
90 }
91
92 pub fn with_iterations(mut self, quantum_iterations: usize) -> Self {
93 self.quantum_iterations = quantum_iterations;
94 self
95 }
96
97 pub fn with_noise_level(mut self, noise_level: f64) -> Self {
98 self.noise_level = noise_level;
99 self
100 }
101
102 pub fn with_variational_params(mut self, params: Array1<f64>) -> Self {
103 self.variational_params = Some(params);
104 self
105 }
106
107 pub fn with_random_state(mut self, seed: u64) -> Self {
108 self.random_state = Some(seed);
109 self
110 }
111}
112
113impl Estimator for QuantumInspiredCovariance<QuantumInspiredCovarianceUntrained> {
114 type Config = Self;
115 type Error = SklearsError;
116 type Float = f64;
117
118 fn config(&self) -> &Self::Config {
119 self
120 }
121}
122
123impl<'a> Fit<ArrayView2<'a, f64>, ()>
124 for QuantumInspiredCovariance<QuantumInspiredCovarianceUntrained>
125{
126 type Fitted = QuantumInspiredCovariance<QuantumInspiredCovarianceTrained>;
127
128 fn fit(self, X: &ArrayView2<'a, f64>, _y: &()) -> Result<Self::Fitted, SklearsError> {
129 let (n_samples, n_features) = X.dim();
130
131 if n_features == 0 {
132 return Err(SklearsError::InvalidInput(
133 "Number of features must be positive".to_string(),
134 ));
135 }
136
137 let covariance = match self.algorithm_type {
139 QuantumAlgorithmType::QuantumPCA => self.quantum_pca_covariance(*X)?,
140 QuantumAlgorithmType::HHL => self.hhl_covariance(*X)?,
141 QuantumAlgorithmType::VQE => self.vqe_covariance(*X)?,
142 QuantumAlgorithmType::QAOA => self.qaoa_covariance(*X)?,
143 QuantumAlgorithmType::QSVM => self.qsvm_covariance(*X)?,
144 };
145
146 let mut local_rng = thread_rng();
148 let dist = Normal::new(0.0, 1.0).unwrap();
149 let quantum_amplitudes =
150 Array1::from_shape_fn(self.n_qubits, |_| dist.sample(&mut local_rng));
151 let measurement_probs = quantum_amplitudes.mapv(|x: f64| x.powi(2).abs());
152 let circuit_depth = self.estimate_circuit_depth();
153 let advantage_factor = self.calculate_quantum_advantage(n_features);
154
155 Ok(QuantumInspiredCovariance {
156 state: QuantumInspiredCovarianceTrained {
157 covariance,
158 quantum_amplitudes,
159 measurement_probs,
160 circuit_depth,
161 advantage_factor,
162 },
163 n_qubits: self.n_qubits,
164 algorithm_type: self.algorithm_type,
165 quantum_iterations: self.quantum_iterations,
166 noise_level: self.noise_level,
167 variational_params: self.variational_params.clone(),
168 random_state: self.random_state,
169 })
170 }
171}
172
173impl QuantumInspiredCovariance<QuantumInspiredCovarianceUntrained> {
174 fn quantum_pca_covariance(&self, X: ArrayView2<f64>) -> Result<Array2<f64>, SklearsError> {
176 let (n_samples, n_features) = X.dim();
177
178 let mut covariance = Array2::zeros((n_features, n_features));
180
181 for i in 0..n_features {
183 for j in i..n_features {
184 let mut cov_ij = 0.0;
185
186 for _ in 0..self.quantum_iterations {
188 let phase = self.simulate_phase_estimation(&X.column(i), &X.column(j))?;
189 cov_ij += phase / self.quantum_iterations as f64;
190 }
191
192 cov_ij += Normal::new(0.0, self.noise_level)
194 .unwrap()
195 .sample(&mut scirs2_core::random::thread_rng());
196
197 covariance[[i, j]] = cov_ij;
198 covariance[[j, i]] = cov_ij;
199 }
200 }
201
202 Ok(covariance)
203 }
204
205 fn hhl_covariance(&self, X: ArrayView2<f64>) -> Result<Array2<f64>, SklearsError> {
207 let (n_samples, n_features) = X.dim();
208
209 let empirical_cov = self.compute_empirical_covariance(X)?;
211
212 let mut quantum_inv = Array2::zeros((n_features, n_features));
214
215 for iter in 0..self.quantum_iterations {
216 let progress = iter as f64 / self.quantum_iterations as f64;
217 let quantum_factor = 1.0 + progress * 0.1; for i in 0..n_features {
221 for j in 0..n_features {
222 let classical_val = empirical_cov[[i, j]];
223 let quantum_enhancement = quantum_factor * (1.0 - self.noise_level);
224 quantum_inv[[i, j]] = classical_val * quantum_enhancement;
225 }
226 }
227 }
228
229 Ok(quantum_inv)
230 }
231
232 fn vqe_covariance(&self, X: ArrayView2<f64>) -> Result<Array2<f64>, SklearsError> {
234 let (n_samples, n_features) = X.dim();
235
236 let params = self
238 .variational_params
239 .as_ref()
240 .cloned()
241 .unwrap_or_else(|| {
242 let mut local_rng = thread_rng();
243 let uniform_dist = Uniform::new(-1.0, 1.0).unwrap();
244 Array1::from_shape_fn(self.n_qubits, |_| uniform_dist.sample(&mut local_rng))
245 });
246
247 let mut covariance = Array2::zeros((n_features, n_features));
248 let mut best_energy = f64::INFINITY;
249
250 for iter in 0..self.quantum_iterations {
252 let energy = self.compute_vqe_energy(X, ¶ms)?;
253
254 if energy < best_energy {
255 best_energy = energy;
256 covariance = self.construct_covariance_from_ansatz(X, ¶ms)?;
258 }
259 }
260
261 Ok(covariance)
262 }
263
264 fn qaoa_covariance(&self, X: ArrayView2<f64>) -> Result<Array2<f64>, SklearsError> {
266 let (n_samples, n_features) = X.dim();
267
268 let p_layers = 5; let mut best_covariance = Array2::zeros((n_features, n_features));
271 let mut best_cost = f64::INFINITY;
272
273 for gamma in 0..10 {
275 for beta in 0..10 {
276 let gamma_val = gamma as f64 * 0.1;
277 let beta_val = beta as f64 * 0.1;
278
279 let covariance = self.qaoa_layer_evolution(X, gamma_val, beta_val, p_layers)?;
280 let cost = self.compute_qaoa_cost(&covariance, X)?;
281
282 if cost < best_cost {
283 best_cost = cost;
284 best_covariance = covariance;
285 }
286 }
287 }
288
289 Ok(best_covariance)
290 }
291
292 fn qsvm_covariance(&self, X: ArrayView2<f64>) -> Result<Array2<f64>, SklearsError> {
294 let (n_samples, n_features) = X.dim();
295
296 let mut kernel_matrix = Array2::zeros((n_samples, n_samples));
298
299 for i in 0..n_samples {
301 for j in i..n_samples {
302 let quantum_kernel = self.compute_quantum_kernel(&X.row(i), &X.row(j))?;
303 kernel_matrix[[i, j]] = quantum_kernel;
304 kernel_matrix[[j, i]] = quantum_kernel;
305 }
306 }
307
308 let covariance = X.t().dot(&kernel_matrix).dot(&X) / (n_samples as f64);
310 Ok(covariance)
311 }
312
313 fn simulate_phase_estimation(
315 &self,
316 x: &ArrayView1<f64>,
317 y: &ArrayView1<f64>,
318 ) -> Result<f64, SklearsError> {
319 let dot_product = x.dot(y);
321 let phase = dot_product / (x.len() as f64);
322 Ok(phase)
323 }
324
325 fn compute_empirical_covariance(
326 &self,
327 X: ArrayView2<f64>,
328 ) -> Result<Array2<f64>, SklearsError> {
329 let (n_samples, n_features) = X.dim();
330 let mean = X.mean_axis(Axis(0)).unwrap();
331 let centered = &X - &mean;
332 let covariance = centered.t().dot(¢ered) / (n_samples - 1) as f64;
333 Ok(covariance)
334 }
335
336 fn compute_vqe_energy(
337 &self,
338 X: ArrayView2<f64>,
339 params: &Array1<f64>,
340 ) -> Result<f64, SklearsError> {
341 let empirical_cov = self.compute_empirical_covariance(X)?;
343 let energy = empirical_cov.diag().sum() * params.sum();
344 Ok(energy)
345 }
346
347 fn construct_covariance_from_ansatz(
348 &self,
349 X: ArrayView2<f64>,
350 params: &Array1<f64>,
351 ) -> Result<Array2<f64>, SklearsError> {
352 let (n_samples, n_features) = X.dim();
353 let empirical_cov = self.compute_empirical_covariance(X)?;
354
355 let mut covariance = empirical_cov;
357 for (i, ¶m) in params.iter().enumerate() {
358 if i < n_features {
359 covariance[[i, i]] *= 1.0 + param * 0.1;
360 }
361 }
362
363 Ok(covariance)
364 }
365
366 fn qaoa_layer_evolution(
367 &self,
368 X: ArrayView2<f64>,
369 gamma: f64,
370 beta: f64,
371 layers: usize,
372 ) -> Result<Array2<f64>, SklearsError> {
373 let mut covariance = self.compute_empirical_covariance(X)?;
374
375 for _ in 0..layers {
377 covariance = covariance.mapv(|x| x * (1.0 + gamma * 0.01));
379
380 covariance = covariance.mapv(|x| x * (1.0 + beta * 0.01));
382 }
383
384 Ok(covariance)
385 }
386
387 fn compute_qaoa_cost(
388 &self,
389 covariance: &Array2<f64>,
390 X: ArrayView2<f64>,
391 ) -> Result<f64, SklearsError> {
392 let empirical_cov = self.compute_empirical_covariance(X)?;
394 let diff = covariance - &empirical_cov;
395 let cost = diff.mapv(|x| x.powi(2)).sum();
396 Ok(cost)
397 }
398
399 fn compute_quantum_kernel(
400 &self,
401 x: &ArrayView1<f64>,
402 y: &ArrayView1<f64>,
403 ) -> Result<f64, SklearsError> {
404 let classical_kernel = x.dot(y);
406 let quantum_enhancement = 1.0 + 0.1 * (classical_kernel.abs().sin());
407 Ok(classical_kernel * quantum_enhancement)
408 }
409
410 fn estimate_circuit_depth(&self) -> usize {
411 (self.n_qubits as f64 * 2.0 + self.quantum_iterations as f64 * 0.1) as usize
413 }
414
415 fn calculate_quantum_advantage(&self, n_features: usize) -> f64 {
416 let classical_complexity = (n_features as f64).powi(3);
418 let quantum_complexity = (n_features as f64).sqrt() * (self.n_qubits as f64).log2();
419 classical_complexity / quantum_complexity.max(1.0)
420 }
421}
422
423impl QuantumInspiredCovariance<QuantumInspiredCovarianceTrained> {
424 pub fn covariance(&self) -> &Array2<f64> {
426 &self.state.covariance
427 }
428
429 pub fn quantum_amplitudes(&self) -> &Array1<f64> {
431 &self.state.quantum_amplitudes
432 }
433
434 pub fn measurement_probabilities(&self) -> &Array1<f64> {
436 &self.state.measurement_probs
437 }
438
439 pub fn circuit_depth(&self) -> usize {
441 self.state.circuit_depth
442 }
443
444 pub fn quantum_advantage(&self) -> f64 {
446 self.state.advantage_factor
447 }
448
449 pub fn analyze_quantum_advantage(&self) -> QuantumAdvantageAnalysis {
451 QuantumAdvantageAnalysis {
452 speedup_factor: self.state.advantage_factor,
453 circuit_depth: self.state.circuit_depth,
454 qubit_efficiency: self.state.quantum_amplitudes.len() as f64
455 / self.state.circuit_depth as f64,
456 noise_tolerance: 1.0 - self.noise_level,
457 algorithm_complexity: self.estimate_algorithm_complexity(),
458 }
459 }
460
461 fn estimate_algorithm_complexity(&self) -> AlgorithmComplexity {
462 match self.algorithm_type {
463 QuantumAlgorithmType::QuantumPCA => AlgorithmComplexity::Polynomial(2),
464 QuantumAlgorithmType::HHL => AlgorithmComplexity::Exponential,
465 QuantumAlgorithmType::VQE => AlgorithmComplexity::Polynomial(3),
466 QuantumAlgorithmType::QAOA => AlgorithmComplexity::Polynomial(2),
467 QuantumAlgorithmType::QSVM => AlgorithmComplexity::Exponential,
468 }
469 }
470}
471
472#[derive(Debug, Clone)]
474pub struct QuantumAdvantageAnalysis {
475 pub speedup_factor: f64,
477 pub circuit_depth: usize,
479 pub qubit_efficiency: f64,
481 pub noise_tolerance: f64,
483 pub algorithm_complexity: AlgorithmComplexity,
485}
486
487#[derive(Debug, Clone)]
489pub enum AlgorithmComplexity {
490 Polynomial(usize),
492 Exponential,
494 Logarithmic,
496}
497
498#[allow(non_snake_case)]
499#[cfg(test)]
500mod tests {
501 use super::*;
502 use scirs2_core::ndarray::Array2;
503
504 #[test]
505 fn test_quantum_inspired_covariance() {
506 let mut local_rng = thread_rng();
507 let dist = Normal::new(0.0, 1.0).unwrap();
508 let X = Array2::from_shape_fn((100, 5), |_| dist.sample(&mut local_rng));
509
510 let estimator = QuantumInspiredCovariance::new()
511 .with_qubits(8)
512 .with_algorithm(QuantumAlgorithmType::QuantumPCA)
513 .with_iterations(50)
514 .with_random_state(42);
515
516 let result = estimator.fit(&X.view(), &());
517 assert!(result.is_ok());
518
519 let trained = result.unwrap();
520 let covariance = trained.covariance();
521
522 assert_eq!(covariance.shape(), &[5, 5]);
523 assert!(trained.quantum_advantage() > 0.0);
524 }
525
526 #[test]
527 fn test_quantum_advantage_analysis() {
528 let mut local_rng = thread_rng();
529 let dist = Normal::new(0.0, 1.0).unwrap();
530 let X = Array2::from_shape_fn((50, 3), |_| dist.sample(&mut local_rng));
531
532 let estimator = QuantumInspiredCovariance::new().with_algorithm(QuantumAlgorithmType::VQE);
533
534 let trained = estimator.fit(&X.view(), &()).unwrap();
535 let analysis = trained.analyze_quantum_advantage();
536
537 assert!(analysis.speedup_factor > 0.0);
538 assert!(analysis.qubit_efficiency > 0.0);
539 assert!(analysis.noise_tolerance >= 0.0 && analysis.noise_tolerance <= 1.0);
540 }
541
542 #[test]
543 fn test_different_quantum_algorithms() {
544 let mut local_rng = thread_rng();
545 let dist = Normal::new(0.0, 1.0).unwrap();
546 let X = Array2::from_shape_fn((30, 4), |_| dist.sample(&mut local_rng));
547
548 let algorithms = vec![
549 QuantumAlgorithmType::QuantumPCA,
550 QuantumAlgorithmType::HHL,
551 QuantumAlgorithmType::VQE,
552 QuantumAlgorithmType::QAOA,
553 QuantumAlgorithmType::QSVM,
554 ];
555
556 for algorithm in algorithms {
557 let estimator = QuantumInspiredCovariance::new()
558 .with_algorithm(algorithm)
559 .with_iterations(20);
560
561 let result = estimator.fit(&X.view(), &());
562 assert!(result.is_ok(), "Algorithm {:?} failed", algorithm);
563 }
564 }
565}