1use crate::error::{Result, SklearsError};
7use crate::exotic_hardware::{HardwareCapabilities, HardwareId, HardwareType, Precision};
8use serde::{Deserialize, Serialize};
9use std::collections::HashMap;
10
11#[derive(Debug)]
16pub struct TPUAccelerator {
17 pub hardware_id: HardwareId,
19 pub capabilities: TPUCapabilities,
21 pub compilation_cache: HashMap<String, CompiledGraph>,
23 pub context: TPUContext,
25}
26
27#[derive(Debug, Clone, Serialize, Deserialize)]
29pub struct TPUCapabilities {
30 pub base: HardwareCapabilities,
32 pub num_cores: u32,
34 pub mxu_per_core: u32,
36 pub hbm_gb: f64,
38 pub peak_tflops: f64,
40 pub supports_bfloat16: bool,
42}
43
44#[derive(Debug, Clone)]
46pub struct TPUContext {
47 pub batch_size: usize,
49 pub precision: Precision,
51 pub use_xla: bool,
53 pub layout: TensorLayout,
55}
56
57#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
59pub enum TensorLayout {
60 RowMajor,
62 ColumnMajor,
64 Tiled { tile_size: usize },
66}
67
68#[derive(Debug, Clone)]
70pub struct CompiledGraph {
71 pub id: String,
73 pub compiled_at: std::time::SystemTime,
75 pub operations: Vec<TPUOperation>,
77 pub memory_layout: Vec<MemoryAllocation>,
79}
80
81#[derive(Debug, Clone, Serialize, Deserialize)]
83pub enum TPUOperation {
84 MatMul {
86 m: usize,
87 n: usize,
88 k: usize,
89 precision: Precision,
90 },
91 Conv2D {
93 input_channels: usize,
94 output_channels: usize,
95 kernel_size: (usize, usize),
96 },
97 ElementWise {
99 op_type: ElementWiseOp,
100 num_elements: usize,
101 },
102 Reduce {
104 op_type: ReductionOp,
105 axis: Option<usize>,
106 },
107}
108
109#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
111pub enum ElementWiseOp {
112 Add,
113 Multiply,
114 ReLU,
115 Tanh,
116 Sigmoid,
117}
118
119#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
121pub enum ReductionOp {
122 Sum,
123 Mean,
124 Max,
125 Min,
126}
127
128#[derive(Debug, Clone, Serialize, Deserialize)]
130pub struct MemoryAllocation {
131 pub id: String,
133 pub size_bytes: usize,
135 pub memory_type: MemoryType,
137}
138
139#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
141pub enum MemoryType {
142 HBM,
144 ChipMemory,
146 HostMemory,
148}
149
150impl TPUAccelerator {
151 pub fn new(device_index: u32) -> Self {
153 Self {
154 hardware_id: HardwareId {
155 device_type: HardwareType::TPU,
156 device_index,
157 vendor: "Google".to_string(),
158 model: "TPU v4".to_string(),
159 },
160 capabilities: TPUCapabilities {
161 base: HardwareCapabilities {
162 compute_units: 1,
163 memory_gb: 96.0,
164 peak_performance_ops: 275e12,
165 supported_precisions: vec![
166 Precision::Float32,
167 Precision::BFloat16,
168 Precision::Float16,
169 ],
170 supports_sparsity: true,
171 supports_quantization: true,
172 supports_dynamic_shapes: true,
173 custom_features: HashMap::new(),
174 },
175 num_cores: 2,
176 mxu_per_core: 128,
177 hbm_gb: 96.0,
178 peak_tflops: 275.0,
179 supports_bfloat16: true,
180 },
181 compilation_cache: HashMap::new(),
182 context: TPUContext {
183 batch_size: 32,
184 precision: Precision::BFloat16,
185 use_xla: true,
186 layout: TensorLayout::Tiled { tile_size: 128 },
187 },
188 }
189 }
190
191 pub fn compile_graph(&mut self, operations: Vec<TPUOperation>) -> Result<String> {
193 let graph_id = format!("graph_{}", self.compilation_cache.len());
194
195 let compiled = CompiledGraph {
196 id: graph_id.clone(),
197 compiled_at: std::time::SystemTime::now(),
198 operations,
199 memory_layout: vec![],
200 };
201
202 self.compilation_cache.insert(graph_id.clone(), compiled);
203 Ok(graph_id)
204 }
205
206 pub fn execute_graph(&self, graph_id: &str, inputs: &[f32]) -> Result<Vec<f32>> {
208 let _graph = self.compilation_cache.get(graph_id).ok_or_else(|| {
209 SklearsError::InvalidOperation(format!("Graph {} not found", graph_id))
210 })?;
211
212 Ok(inputs.to_vec())
214 }
215
216 pub fn estimate_performance(&self, operation: &TPUOperation) -> PerformanceEstimate {
218 match operation {
219 TPUOperation::MatMul { m, n, k, precision } => {
220 let ops = 2 * m * n * k;
221 let flops_per_second = match precision {
222 Precision::BFloat16 => self.capabilities.peak_tflops * 1e12,
223 Precision::Float32 => self.capabilities.peak_tflops * 0.5 * 1e12,
224 _ => self.capabilities.peak_tflops * 0.25 * 1e12,
225 };
226
227 let time_ms = (ops as f64 / flops_per_second * 1000.0).max(0.001); PerformanceEstimate {
229 execution_time_ms: time_ms.ceil() as u64, memory_bandwidth_gb: (*m * *n * 4) as f64 / 1e9,
231 utilization: 0.8,
232 }
233 }
234 _ => PerformanceEstimate {
235 execution_time_ms: 1,
236 memory_bandwidth_gb: 0.1,
237 utilization: 0.5,
238 },
239 }
240 }
241}
242
243#[derive(Debug, Clone, Serialize, Deserialize)]
245pub struct PerformanceEstimate {
246 pub execution_time_ms: u64,
248 pub memory_bandwidth_gb: f64,
250 pub utilization: f64,
252}
253
254#[derive(Debug)]
259pub struct FPGAAccelerator {
260 pub hardware_id: HardwareId,
262 pub capabilities: FPGACapabilities,
264 pub pipelines: Vec<FPGAPipeline>,
266 pub bitstream_cache: HashMap<String, Bitstream>,
268}
269
270#[derive(Debug, Clone, Serialize, Deserialize)]
272pub struct FPGACapabilities {
273 pub base: HardwareCapabilities,
275 pub logic_elements: usize,
277 pub dsp_blocks: usize,
279 pub block_ram_kb: usize,
281 pub max_clock_mhz: f64,
283}
284
285#[derive(Debug, Clone, Serialize, Deserialize)]
287pub struct FPGAPipeline {
288 pub name: String,
290 pub stages: Vec<PipelineStage>,
292 pub throughput: f64,
294 pub latency_cycles: usize,
296}
297
298#[derive(Debug, Clone, Serialize, Deserialize)]
300pub struct PipelineStage {
301 pub name: String,
303 pub operation: String,
305 pub resource_usage: ResourceUsage,
307}
308
309#[derive(Debug, Clone, Serialize, Deserialize)]
311pub struct ResourceUsage {
312 pub logic_elements: usize,
314 pub dsp_blocks: usize,
316 pub block_ram_kb: usize,
318}
319
320#[derive(Debug, Clone)]
322pub struct Bitstream {
323 pub id: String,
325 pub data: Vec<u8>,
327 pub config: FPGAConfig,
329}
330
331#[derive(Debug, Clone, Serialize, Deserialize)]
333pub struct FPGAConfig {
334 pub clock_mhz: f64,
336 pub pipeline_depth: usize,
338 pub data_width: usize,
340}
341
342impl FPGAAccelerator {
343 pub fn new(device_index: u32) -> Self {
345 Self {
346 hardware_id: HardwareId {
347 device_type: HardwareType::FPGA,
348 device_index,
349 vendor: "Xilinx".to_string(),
350 model: "Alveo U250".to_string(),
351 },
352 capabilities: FPGACapabilities {
353 base: HardwareCapabilities {
354 compute_units: 1,
355 memory_gb: 64.0,
356 peak_performance_ops: 90e12,
357 supported_precisions: vec![
358 Precision::Float32,
359 Precision::Int32,
360 Precision::Int16,
361 Precision::Custom(8),
362 ],
363 supports_sparsity: true,
364 supports_quantization: true,
365 supports_dynamic_shapes: false,
366 custom_features: HashMap::new(),
367 },
368 logic_elements: 1172000,
369 dsp_blocks: 12288,
370 block_ram_kb: 77824,
371 max_clock_mhz: 450.0,
372 },
373 pipelines: Vec::new(),
374 bitstream_cache: HashMap::new(),
375 }
376 }
377
378 pub fn configure_pipeline(&mut self, pipeline: FPGAPipeline) -> Result<()> {
380 let total_usage = pipeline.stages.iter().fold(
382 ResourceUsage {
383 logic_elements: 0,
384 dsp_blocks: 0,
385 block_ram_kb: 0,
386 },
387 |acc, stage| ResourceUsage {
388 logic_elements: acc.logic_elements + stage.resource_usage.logic_elements,
389 dsp_blocks: acc.dsp_blocks + stage.resource_usage.dsp_blocks,
390 block_ram_kb: acc.block_ram_kb + stage.resource_usage.block_ram_kb,
391 },
392 );
393
394 if total_usage.logic_elements > self.capabilities.logic_elements {
395 return Err(SklearsError::InvalidOperation(
396 "Insufficient logic elements".to_string(),
397 ));
398 }
399
400 self.pipelines.push(pipeline);
401 Ok(())
402 }
403
404 pub fn program_bitstream(&mut self, bitstream: Bitstream) -> Result<()> {
406 self.bitstream_cache.insert(bitstream.id.clone(), bitstream);
407 Ok(())
408 }
409
410 pub fn execute_pipeline(&self, pipeline_name: &str, data: &[f32]) -> Result<Vec<f32>> {
412 let _pipeline = self
413 .pipelines
414 .iter()
415 .find(|p| p.name == pipeline_name)
416 .ok_or_else(|| {
417 SklearsError::InvalidOperation(format!("Pipeline {} not found", pipeline_name))
418 })?;
419
420 Ok(data.to_vec())
422 }
423}
424
425#[derive(Debug)]
434pub struct QuantumAccelerator {
435 pub hardware_id: HardwareId,
437 pub capabilities: QuantumCapabilities,
439 pub circuits: HashMap<String, QuantumCircuit>,
441 pub backend: QuantumBackend,
443}
444
445#[derive(Debug, Clone, Serialize, Deserialize)]
447pub struct QuantumCapabilities {
448 pub base: HardwareCapabilities,
450 pub num_qubits: usize,
452 pub connectivity: ConnectivityGraph,
454 pub gate_fidelity: f64,
456 pub measurement_fidelity: f64,
458 pub t1_coherence_us: f64,
460 pub t2_coherence_us: f64,
462 pub supported_gates: Vec<QuantumGate>,
464 pub supports_mid_circuit_measurement: bool,
466}
467
468#[derive(Debug, Clone, Serialize, Deserialize)]
470pub struct ConnectivityGraph {
471 pub num_qubits: usize,
473 pub edges: Vec<(usize, usize)>,
475 pub topology: TopologyType,
477}
478
479#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
481pub enum TopologyType {
482 Linear,
484 Grid2D,
486 HeavyHex,
488 AllToAll,
490 Custom,
492}
493
494#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
496pub enum QuantumGate {
497 Hadamard,
499 PauliX,
500 PauliY,
501 PauliZ,
502 RX,
503 RY,
504 RZ,
505 Phase,
506 T,
507 S,
508 CNOT,
510 CZ,
511 SWAP,
512 Toffoli,
514 Fredkin,
515 Measure,
517}
518
519#[derive(Debug, Clone, Serialize, Deserialize)]
521pub struct QuantumCircuit {
522 pub name: String,
524 pub num_qubits: usize,
526 pub num_classical_bits: usize,
528 pub gates: Vec<QuantumGateOp>,
530 pub depth: usize,
532}
533
534#[derive(Debug, Clone, Serialize, Deserialize)]
536pub struct QuantumGateOp {
537 pub gate: QuantumGate,
539 pub qubits: Vec<usize>,
541 pub parameters: Vec<f64>,
543 pub control: Option<ClassicalControl>,
545}
546
547#[derive(Debug, Clone, Serialize, Deserialize)]
549pub struct ClassicalControl {
550 pub bit: usize,
552 pub value: bool,
554}
555
556#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
558pub enum QuantumBackend {
559 Simulator,
561 NoisySimulator,
563 Hardware,
565 Cloud,
567}
568
569#[derive(Debug, Clone, Serialize, Deserialize)]
571pub struct QuantumMeasurement {
572 pub outcomes: Vec<String>,
574 pub counts: HashMap<String, usize>,
576 pub total_shots: usize,
578}
579
580impl QuantumAccelerator {
581 pub fn new(num_qubits: usize, backend: QuantumBackend) -> Self {
583 let hardware_id = HardwareId {
584 device_type: HardwareType::Quantum,
585 device_index: 0,
586 vendor: "SkleaRS".to_string(),
587 model: format!("Q{}", num_qubits),
588 };
589
590 let connectivity = ConnectivityGraph {
591 num_qubits,
592 edges: Self::generate_linear_connectivity(num_qubits),
593 topology: TopologyType::Linear,
594 };
595
596 let capabilities = QuantumCapabilities {
597 base: HardwareCapabilities {
598 compute_units: num_qubits as u32,
599 memory_gb: 0.001, peak_performance_ops: 2.0_f64.powi(num_qubits as i32), supported_precisions: vec![Precision::Float64],
602 supports_sparsity: false,
603 supports_quantization: false,
604 supports_dynamic_shapes: false,
605 custom_features: HashMap::new(),
606 },
607 num_qubits,
608 connectivity,
609 gate_fidelity: match backend {
610 QuantumBackend::Simulator => 1.0,
611 QuantumBackend::NoisySimulator => 0.99,
612 QuantumBackend::Hardware => 0.995,
613 QuantumBackend::Cloud => 0.998,
614 },
615 measurement_fidelity: match backend {
616 QuantumBackend::Simulator => 1.0,
617 QuantumBackend::NoisySimulator => 0.95,
618 QuantumBackend::Hardware => 0.97,
619 QuantumBackend::Cloud => 0.98,
620 },
621 t1_coherence_us: 100.0,
622 t2_coherence_us: 50.0,
623 supported_gates: vec![
624 QuantumGate::Hadamard,
625 QuantumGate::PauliX,
626 QuantumGate::PauliY,
627 QuantumGate::PauliZ,
628 QuantumGate::RX,
629 QuantumGate::RY,
630 QuantumGate::RZ,
631 QuantumGate::CNOT,
632 QuantumGate::CZ,
633 QuantumGate::Measure,
634 ],
635 supports_mid_circuit_measurement: matches!(
636 backend,
637 QuantumBackend::Simulator | QuantumBackend::NoisySimulator
638 ),
639 };
640
641 Self {
642 hardware_id,
643 capabilities,
644 circuits: HashMap::new(),
645 backend,
646 }
647 }
648
649 fn generate_linear_connectivity(num_qubits: usize) -> Vec<(usize, usize)> {
651 (0..num_qubits.saturating_sub(1))
652 .map(|i| (i, i + 1))
653 .collect()
654 }
655
656 pub fn add_circuit(&mut self, circuit: QuantumCircuit) {
658 self.circuits.insert(circuit.name.clone(), circuit);
659 }
660
661 pub fn create_variational_circuit(&self, name: String, num_layers: usize) -> QuantumCircuit {
663 let mut gates = Vec::new();
664 let num_qubits = self.capabilities.num_qubits;
665
666 for _layer in 0..num_layers {
667 for qubit in 0..num_qubits {
669 gates.push(QuantumGateOp {
670 gate: QuantumGate::RY,
671 qubits: vec![qubit],
672 parameters: vec![0.0], control: None,
674 });
675 }
676
677 for qubit in 0..num_qubits - 1 {
679 gates.push(QuantumGateOp {
680 gate: QuantumGate::CNOT,
681 qubits: vec![qubit, qubit + 1],
682 parameters: vec![],
683 control: None,
684 });
685 }
686 }
687
688 for qubit in 0..num_qubits {
690 gates.push(QuantumGateOp {
691 gate: QuantumGate::Measure,
692 qubits: vec![qubit],
693 parameters: vec![],
694 control: None,
695 });
696 }
697
698 QuantumCircuit {
699 name,
700 num_qubits,
701 num_classical_bits: num_qubits,
702 depth: num_layers * 2,
703 gates,
704 }
705 }
706
707 pub fn execute_circuit(&self, circuit_name: &str, shots: usize) -> Result<QuantumMeasurement> {
709 let circuit = self.circuits.get(circuit_name).ok_or_else(|| {
710 SklearsError::InvalidOperation(format!("Circuit {} not found", circuit_name))
711 })?;
712
713 let num_outcomes = 2_usize.pow(circuit.num_classical_bits as u32).min(shots);
715 let mut counts = HashMap::new();
716
717 for i in 0..num_outcomes {
719 let bitstring = format!("{:0width$b}", i, width = circuit.num_classical_bits);
720 counts.insert(bitstring.clone(), shots / num_outcomes);
721 }
722
723 let outcomes: Vec<String> = counts.keys().cloned().collect();
724
725 Ok(QuantumMeasurement {
726 outcomes,
727 counts,
728 total_shots: shots,
729 })
730 }
731
732 pub fn quantum_kernel(&self, x1: &[f64], x2: &[f64]) -> Result<f64> {
734 if x1.len() != x2.len() {
735 return Err(SklearsError::InvalidInput(
736 "Input vectors must have same length".to_string(),
737 ));
738 }
739
740 let inner_product: f64 = x1.iter().zip(x2.iter()).map(|(a, b)| a * b).sum();
743 Ok(inner_product.cos().abs())
744 }
745}
746
747#[derive(Debug)]
756pub struct NeuromorphicAccelerator {
757 pub hardware_id: HardwareId,
759 pub capabilities: NeuromorphicCapabilities,
761 pub networks: HashMap<String, SpikingNeuralNetwork>,
763 pub config: NeuromorphicConfig,
765}
766
767#[derive(Debug, Clone, Serialize, Deserialize)]
769pub struct NeuromorphicCapabilities {
770 pub base: HardwareCapabilities,
772 pub num_neurons: usize,
774 pub num_synapses: usize,
776 pub event_rate_eps: f64,
778 pub power_consumption_watts: f64,
780 pub supports_online_learning: bool,
782 pub supported_neuron_models: Vec<NeuronModel>,
784 pub supported_plasticity: Vec<PlasticityRule>,
786}
787
788#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
790pub enum NeuronModel {
791 LIF,
793 Izhikevich,
795 HodgkinHuxley,
797 AdEx,
799}
800
801#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
803pub enum PlasticityRule {
804 STDP,
806 TripletSTDP,
808 Homeostatic,
810 RewardModulated,
812}
813
814#[derive(Debug, Clone, Serialize, Deserialize)]
816pub struct SpikingNeuralNetwork {
817 pub name: String,
819 pub populations: Vec<NeuronPopulation>,
821 pub connections: Vec<SynapticConnection>,
823 pub topology: NetworkTopology,
825}
826
827#[derive(Debug, Clone, Serialize, Deserialize)]
829pub struct NeuronPopulation {
830 pub id: String,
832 pub size: usize,
834 pub neuron_model: NeuronModel,
836 pub parameters: NeuronParameters,
838}
839
840#[derive(Debug, Clone, Serialize, Deserialize)]
842pub struct NeuronParameters {
843 pub tau_mem: f64,
845 pub v_rest: f64,
847 pub v_threshold: f64,
849 pub v_reset: f64,
851 pub tau_refrac: f64,
853}
854
855#[derive(Debug, Clone, Serialize, Deserialize)]
857pub struct SynapticConnection {
858 pub source: String,
860 pub target: String,
862 pub weights: Vec<f64>,
864 pub delays: Vec<f64>,
866 pub plasticity: Option<PlasticityRule>,
868}
869
870#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
872pub enum NetworkTopology {
873 Feedforward,
875 Recurrent,
877 Convolutional,
879 Reservoir,
881}
882
883#[derive(Debug, Clone, Serialize, Deserialize)]
885pub struct NeuromorphicConfig {
886 pub time_step_ms: f64,
888 pub simulation_duration_ms: f64,
890 pub record_spikes: bool,
892 pub record_voltage: bool,
894 pub event_driven: bool,
896}
897
898impl Default for NeuromorphicConfig {
899 fn default() -> Self {
900 Self {
901 time_step_ms: 1.0,
902 simulation_duration_ms: 1000.0,
903 record_spikes: true,
904 record_voltage: false,
905 event_driven: true,
906 }
907 }
908}
909
910#[derive(Debug, Clone, Serialize, Deserialize)]
912pub struct SpikeEvent {
913 pub neuron_id: usize,
915 pub time_ms: f64,
917}
918
919#[derive(Debug, Clone, Serialize, Deserialize)]
921pub struct NeuromorphicResult {
922 pub spike_trains: Vec<Vec<SpikeEvent>>,
924 pub total_spikes: usize,
926 pub firing_rates: Vec<f64>,
928 pub energy_consumed: f64,
930}
931
932impl NeuromorphicAccelerator {
933 pub fn new(num_neurons: usize, num_synapses: usize) -> Self {
935 let hardware_id = HardwareId {
936 device_type: HardwareType::Neuromorphic,
937 device_index: 0,
938 vendor: "SkleaRS".to_string(),
939 model: format!("N{}", num_neurons),
940 };
941
942 let capabilities = NeuromorphicCapabilities {
943 base: HardwareCapabilities {
944 compute_units: num_neurons as u32,
945 memory_gb: (num_synapses * 8) as f64 / 1e9, peak_performance_ops: num_neurons as f64 * 1000.0, supported_precisions: vec![Precision::Float32, Precision::Int16],
948 supports_sparsity: true, supports_quantization: true,
950 supports_dynamic_shapes: true,
951 custom_features: HashMap::new(),
952 },
953 num_neurons,
954 num_synapses,
955 event_rate_eps: num_neurons as f64 * 1000.0,
956 power_consumption_watts: (num_neurons as f64 * 1e-6), supports_online_learning: true,
958 supported_neuron_models: vec![
959 NeuronModel::LIF,
960 NeuronModel::Izhikevich,
961 NeuronModel::AdEx,
962 ],
963 supported_plasticity: vec![
964 PlasticityRule::STDP,
965 PlasticityRule::TripletSTDP,
966 PlasticityRule::Homeostatic,
967 ],
968 };
969
970 Self {
971 hardware_id,
972 capabilities,
973 networks: HashMap::new(),
974 config: NeuromorphicConfig::default(),
975 }
976 }
977
978 pub fn add_network(&mut self, network: SpikingNeuralNetwork) {
980 self.networks.insert(network.name.clone(), network);
981 }
982
983 pub fn create_feedforward_snn(
985 &self,
986 name: String,
987 layer_sizes: &[usize],
988 ) -> SpikingNeuralNetwork {
989 let mut populations = Vec::new();
990 let mut connections = Vec::new();
991
992 for (i, &size) in layer_sizes.iter().enumerate() {
994 populations.push(NeuronPopulation {
995 id: format!("layer_{}", i),
996 size,
997 neuron_model: NeuronModel::LIF,
998 parameters: NeuronParameters {
999 tau_mem: 20.0,
1000 v_rest: -70.0,
1001 v_threshold: -50.0,
1002 v_reset: -70.0,
1003 tau_refrac: 2.0,
1004 },
1005 });
1006 }
1007
1008 for i in 0..layer_sizes.len() - 1 {
1010 let num_weights = layer_sizes[i] * layer_sizes[i + 1];
1011 connections.push(SynapticConnection {
1012 source: format!("layer_{}", i),
1013 target: format!("layer_{}", i + 1),
1014 weights: vec![0.1; num_weights], delays: vec![1.0; num_weights], plasticity: Some(PlasticityRule::STDP),
1017 });
1018 }
1019
1020 SpikingNeuralNetwork {
1021 name,
1022 populations,
1023 connections,
1024 topology: NetworkTopology::Feedforward,
1025 }
1026 }
1027
1028 pub fn simulate(
1030 &self,
1031 network_name: &str,
1032 input_spikes: &[SpikeEvent],
1033 ) -> Result<NeuromorphicResult> {
1034 let network = self.networks.get(network_name).ok_or_else(|| {
1035 SklearsError::InvalidOperation(format!("Network {} not found", network_name))
1036 })?;
1037
1038 let total_neurons: usize = network.populations.iter().map(|p| p.size).sum();
1040 let mut spike_trains = vec![Vec::new(); total_neurons];
1041
1042 for event in input_spikes {
1044 spike_trains[event.neuron_id % total_neurons].push(event.clone());
1045 }
1046
1047 let total_spikes = input_spikes.len();
1048 let firing_rates = spike_trains
1049 .iter()
1050 .map(|train| (train.len() as f64 / self.config.simulation_duration_ms) * 1000.0)
1051 .collect();
1052
1053 let energy_consumed = (self.capabilities.power_consumption_watts
1054 * self.config.simulation_duration_ms
1055 / 1000.0)
1056 * total_spikes as f64;
1057
1058 Ok(NeuromorphicResult {
1059 spike_trains,
1060 total_spikes,
1061 firing_rates,
1062 energy_consumed,
1063 })
1064 }
1065}
1066
1067#[cfg(test)]
1068mod tests {
1069 use super::*;
1070
1071 #[test]
1072 fn test_tpu_creation() {
1073 let tpu = TPUAccelerator::new(0);
1074 assert_eq!(tpu.hardware_id.device_type, HardwareType::TPU);
1075 assert_eq!(tpu.capabilities.num_cores, 2);
1076 }
1077
1078 #[test]
1079 fn test_tpu_compile_graph() {
1080 let mut tpu = TPUAccelerator::new(0);
1081
1082 let operations = vec![TPUOperation::MatMul {
1083 m: 128,
1084 n: 128,
1085 k: 128,
1086 precision: Precision::BFloat16,
1087 }];
1088
1089 let graph_id = tpu.compile_graph(operations).unwrap();
1090 assert!(tpu.compilation_cache.contains_key(&graph_id));
1091 }
1092
1093 #[test]
1094 fn test_tpu_execute_graph() {
1095 let mut tpu = TPUAccelerator::new(0);
1096
1097 let operations = vec![TPUOperation::MatMul {
1098 m: 10,
1099 n: 10,
1100 k: 10,
1101 precision: Precision::Float32,
1102 }];
1103
1104 let graph_id = tpu.compile_graph(operations).unwrap();
1105 let inputs = vec![1.0; 100];
1106 let outputs = tpu.execute_graph(&graph_id, &inputs).unwrap();
1107
1108 assert_eq!(outputs.len(), 100);
1109 }
1110
1111 #[test]
1112 fn test_tpu_performance_estimate() {
1113 let tpu = TPUAccelerator::new(0);
1114
1115 let op = TPUOperation::MatMul {
1116 m: 1024,
1117 n: 1024,
1118 k: 1024,
1119 precision: Precision::BFloat16,
1120 };
1121
1122 let estimate = tpu.estimate_performance(&op);
1123 assert!(estimate.execution_time_ms > 0);
1124 assert!(estimate.utilization > 0.0);
1125 }
1126
1127 #[test]
1128 fn test_fpga_creation() {
1129 let fpga = FPGAAccelerator::new(0);
1130 assert_eq!(fpga.hardware_id.device_type, HardwareType::FPGA);
1131 assert!(fpga.capabilities.logic_elements > 0);
1132 }
1133
1134 #[test]
1135 fn test_fpga_configure_pipeline() {
1136 let mut fpga = FPGAAccelerator::new(0);
1137
1138 let pipeline = FPGAPipeline {
1139 name: "matmul_pipeline".to_string(),
1140 stages: vec![PipelineStage {
1141 name: "multiply".to_string(),
1142 operation: "matmul".to_string(),
1143 resource_usage: ResourceUsage {
1144 logic_elements: 10000,
1145 dsp_blocks: 100,
1146 block_ram_kb: 1000,
1147 },
1148 }],
1149 throughput: 1e9,
1150 latency_cycles: 10,
1151 };
1152
1153 fpga.configure_pipeline(pipeline).unwrap();
1154 assert_eq!(fpga.pipelines.len(), 1);
1155 }
1156
1157 #[test]
1158 fn test_fpga_excessive_resources() {
1159 let mut fpga = FPGAAccelerator::new(0);
1160
1161 let pipeline = FPGAPipeline {
1162 name: "too_large".to_string(),
1163 stages: vec![PipelineStage {
1164 name: "huge_op".to_string(),
1165 operation: "matmul".to_string(),
1166 resource_usage: ResourceUsage {
1167 logic_elements: 999999999, dsp_blocks: 100,
1169 block_ram_kb: 1000,
1170 },
1171 }],
1172 throughput: 1e9,
1173 latency_cycles: 10,
1174 };
1175
1176 let result = fpga.configure_pipeline(pipeline);
1177 assert!(result.is_err());
1178 }
1179
1180 #[test]
1181 fn test_tensor_layout() {
1182 assert_ne!(TensorLayout::RowMajor, TensorLayout::ColumnMajor);
1183 assert_eq!(TensorLayout::RowMajor, TensorLayout::RowMajor);
1184 }
1185
1186 #[test]
1187 fn test_element_wise_op() {
1188 assert_ne!(ElementWiseOp::Add, ElementWiseOp::Multiply);
1189 assert_eq!(ElementWiseOp::ReLU, ElementWiseOp::ReLU);
1190 }
1191
1192 #[test]
1193 fn test_memory_type() {
1194 assert_ne!(MemoryType::HBM, MemoryType::ChipMemory);
1195 assert_eq!(MemoryType::HostMemory, MemoryType::HostMemory);
1196 }
1197
1198 #[test]
1203 fn test_quantum_accelerator_creation() {
1204 let quantum = QuantumAccelerator::new(5, QuantumBackend::Simulator);
1205 assert_eq!(quantum.hardware_id.device_type, HardwareType::Quantum);
1206 assert_eq!(quantum.capabilities.num_qubits, 5);
1207 assert_eq!(quantum.backend, QuantumBackend::Simulator);
1208 }
1209
1210 #[test]
1211 fn test_quantum_gate_fidelity() {
1212 let sim = QuantumAccelerator::new(5, QuantumBackend::Simulator);
1213 let noisy_sim = QuantumAccelerator::new(5, QuantumBackend::NoisySimulator);
1214 let hardware = QuantumAccelerator::new(5, QuantumBackend::Hardware);
1215
1216 assert_eq!(sim.capabilities.gate_fidelity, 1.0);
1217 assert!(noisy_sim.capabilities.gate_fidelity < 1.0);
1218 assert!(hardware.capabilities.gate_fidelity < 1.0);
1219 }
1220
1221 #[test]
1222 fn test_quantum_connectivity() {
1223 let quantum = QuantumAccelerator::new(4, QuantumBackend::Simulator);
1224
1225 assert_eq!(quantum.capabilities.connectivity.num_qubits, 4);
1226 assert_eq!(
1227 quantum.capabilities.connectivity.topology,
1228 TopologyType::Linear
1229 );
1230 assert_eq!(quantum.capabilities.connectivity.edges.len(), 3);
1232 }
1233
1234 #[test]
1235 fn test_quantum_variational_circuit() {
1236 let quantum = QuantumAccelerator::new(3, QuantumBackend::Simulator);
1237 let circuit = quantum.create_variational_circuit("vqc".to_string(), 2);
1238
1239 assert_eq!(circuit.name, "vqc");
1240 assert_eq!(circuit.num_qubits, 3);
1241 assert_eq!(circuit.num_classical_bits, 3);
1242 assert_eq!(circuit.depth, 4); assert!(!circuit.gates.is_empty());
1244 }
1245
1246 #[test]
1247 fn test_quantum_add_circuit() {
1248 let mut quantum = QuantumAccelerator::new(2, QuantumBackend::Simulator);
1249
1250 let circuit = QuantumCircuit {
1251 name: "test_circuit".to_string(),
1252 num_qubits: 2,
1253 num_classical_bits: 2,
1254 gates: vec![],
1255 depth: 1,
1256 };
1257
1258 quantum.add_circuit(circuit);
1259 assert_eq!(quantum.circuits.len(), 1);
1260 assert!(quantum.circuits.contains_key("test_circuit"));
1261 }
1262
1263 #[test]
1264 fn test_quantum_execute_circuit() {
1265 let mut quantum = QuantumAccelerator::new(2, QuantumBackend::Simulator);
1266
1267 let circuit = quantum.create_variational_circuit("test".to_string(), 1);
1268 quantum.add_circuit(circuit);
1269
1270 let measurement = quantum.execute_circuit("test", 1000).unwrap();
1271
1272 assert_eq!(measurement.total_shots, 1000);
1273 assert!(!measurement.outcomes.is_empty());
1274 assert!(!measurement.counts.is_empty());
1275 }
1276
1277 #[test]
1278 fn test_quantum_kernel() {
1279 let quantum = QuantumAccelerator::new(4, QuantumBackend::Simulator);
1280
1281 let x1 = vec![1.0, 0.0, 0.0, 1.0];
1282 let x2 = vec![0.0, 1.0, 1.0, 0.0];
1283
1284 let kernel_value = quantum.quantum_kernel(&x1, &x2).unwrap();
1285 assert!(kernel_value >= 0.0 && kernel_value <= 1.0);
1286 }
1287
1288 #[test]
1289 fn test_quantum_kernel_mismatch() {
1290 let quantum = QuantumAccelerator::new(4, QuantumBackend::Simulator);
1291
1292 let x1 = vec![1.0, 0.0];
1293 let x2 = vec![0.0, 1.0, 1.0];
1294
1295 let result = quantum.quantum_kernel(&x1, &x2);
1296 assert!(result.is_err());
1297 }
1298
1299 #[test]
1300 fn test_quantum_gate_types() {
1301 assert_eq!(QuantumGate::Hadamard, QuantumGate::Hadamard);
1302 assert_ne!(QuantumGate::PauliX, QuantumGate::PauliY);
1303 assert_ne!(QuantumGate::CNOT, QuantumGate::CZ);
1304 }
1305
1306 #[test]
1307 fn test_quantum_backend_types() {
1308 assert_eq!(QuantumBackend::Simulator, QuantumBackend::Simulator);
1309 assert_ne!(QuantumBackend::Hardware, QuantumBackend::Cloud);
1310 }
1311
1312 #[test]
1313 fn test_topology_types() {
1314 assert_eq!(TopologyType::Linear, TopologyType::Linear);
1315 assert_ne!(TopologyType::Grid2D, TopologyType::HeavyHex);
1316 assert_ne!(TopologyType::AllToAll, TopologyType::Custom);
1317 }
1318
1319 #[test]
1320 fn test_quantum_mid_circuit_measurement() {
1321 let sim = QuantumAccelerator::new(4, QuantumBackend::Simulator);
1322 let hardware = QuantumAccelerator::new(4, QuantumBackend::Hardware);
1323
1324 assert!(sim.capabilities.supports_mid_circuit_measurement);
1325 assert!(!hardware.capabilities.supports_mid_circuit_measurement);
1326 }
1327
1328 #[test]
1333 fn test_neuromorphic_accelerator_creation() {
1334 let neuro = NeuromorphicAccelerator::new(1000, 10000);
1335 assert_eq!(neuro.hardware_id.device_type, HardwareType::Neuromorphic);
1336 assert_eq!(neuro.capabilities.num_neurons, 1000);
1337 assert_eq!(neuro.capabilities.num_synapses, 10000);
1338 }
1339
1340 #[test]
1341 fn test_neuromorphic_ultra_low_power() {
1342 let neuro = NeuromorphicAccelerator::new(10000, 100000);
1343
1344 assert!(neuro.capabilities.power_consumption_watts < 0.1);
1346 assert!((neuro.capabilities.power_consumption_watts - 0.01).abs() < 0.01);
1348 }
1349
1350 #[test]
1351 fn test_neuromorphic_sparsity_support() {
1352 let neuro = NeuromorphicAccelerator::new(1000, 10000);
1353
1354 assert!(neuro.capabilities.base.supports_sparsity);
1356 assert!(neuro.capabilities.supports_online_learning);
1357 }
1358
1359 #[test]
1360 fn test_neuromorphic_create_feedforward_snn() {
1361 let neuro = NeuromorphicAccelerator::new(1000, 10000);
1362 let snn = neuro.create_feedforward_snn("test_snn".to_string(), &[10, 20, 10]);
1363
1364 assert_eq!(snn.name, "test_snn");
1365 assert_eq!(snn.populations.len(), 3);
1366 assert_eq!(snn.connections.len(), 2);
1367 assert_eq!(snn.topology, NetworkTopology::Feedforward);
1368 }
1369
1370 #[test]
1371 fn test_neuromorphic_population_sizes() {
1372 let neuro = NeuromorphicAccelerator::new(1000, 10000);
1373 let snn = neuro.create_feedforward_snn("test".to_string(), &[5, 15, 10]);
1374
1375 assert_eq!(snn.populations[0].size, 5);
1376 assert_eq!(snn.populations[1].size, 15);
1377 assert_eq!(snn.populations[2].size, 10);
1378 }
1379
1380 #[test]
1381 fn test_neuromorphic_add_network() {
1382 let mut neuro = NeuromorphicAccelerator::new(1000, 10000);
1383 let snn = neuro.create_feedforward_snn("my_network".to_string(), &[10, 20]);
1384
1385 neuro.add_network(snn);
1386 assert_eq!(neuro.networks.len(), 1);
1387 assert!(neuro.networks.contains_key("my_network"));
1388 }
1389
1390 #[test]
1391 fn test_neuromorphic_simulate() {
1392 let mut neuro = NeuromorphicAccelerator::new(100, 1000);
1393 let snn = neuro.create_feedforward_snn("test".to_string(), &[10, 10]);
1394 neuro.add_network(snn);
1395
1396 let input_spikes = vec![
1397 SpikeEvent {
1398 neuron_id: 0,
1399 time_ms: 1.0,
1400 },
1401 SpikeEvent {
1402 neuron_id: 1,
1403 time_ms: 2.0,
1404 },
1405 ];
1406
1407 let result = neuro.simulate("test", &input_spikes).unwrap();
1408
1409 assert_eq!(result.total_spikes, 2);
1410 assert_eq!(result.spike_trains.len(), 20); assert_eq!(result.firing_rates.len(), 20);
1412 }
1413
1414 #[test]
1415 fn test_neuromorphic_energy_consumption() {
1416 let mut neuro = NeuromorphicAccelerator::new(100, 1000);
1417 let snn = neuro.create_feedforward_snn("test".to_string(), &[5, 5]);
1418 neuro.add_network(snn);
1419
1420 let input_spikes = vec![SpikeEvent {
1421 neuron_id: 0,
1422 time_ms: 1.0,
1423 }];
1424
1425 let result = neuro.simulate("test", &input_spikes).unwrap();
1426
1427 assert!(result.energy_consumed < 0.001);
1429 assert!(result.energy_consumed > 0.0);
1430 }
1431
1432 #[test]
1433 fn test_neuron_model_types() {
1434 assert_eq!(NeuronModel::LIF, NeuronModel::LIF);
1435 assert_ne!(NeuronModel::Izhikevich, NeuronModel::HodgkinHuxley);
1436 assert_ne!(NeuronModel::AdEx, NeuronModel::LIF);
1437 }
1438
1439 #[test]
1440 fn test_plasticity_rules() {
1441 assert_eq!(PlasticityRule::STDP, PlasticityRule::STDP);
1442 assert_ne!(PlasticityRule::TripletSTDP, PlasticityRule::Homeostatic);
1443 assert_ne!(PlasticityRule::RewardModulated, PlasticityRule::STDP);
1444 }
1445
1446 #[test]
1447 fn test_network_topology_types() {
1448 assert_eq!(NetworkTopology::Feedforward, NetworkTopology::Feedforward);
1449 assert_ne!(NetworkTopology::Recurrent, NetworkTopology::Convolutional);
1450 assert_ne!(NetworkTopology::Reservoir, NetworkTopology::Feedforward);
1451 }
1452
1453 #[test]
1454 fn test_neuromorphic_config_default() {
1455 let config = NeuromorphicConfig::default();
1456
1457 assert_eq!(config.time_step_ms, 1.0);
1458 assert_eq!(config.simulation_duration_ms, 1000.0);
1459 assert!(config.record_spikes);
1460 assert!(!config.record_voltage);
1461 assert!(config.event_driven);
1462 }
1463
1464 #[test]
1465 fn test_neuron_parameters() {
1466 let params = NeuronParameters {
1467 tau_mem: 20.0,
1468 v_rest: -70.0,
1469 v_threshold: -50.0,
1470 v_reset: -70.0,
1471 tau_refrac: 2.0,
1472 };
1473
1474 assert_eq!(params.tau_mem, 20.0);
1475 assert_eq!(params.v_threshold, -50.0);
1476 assert!(params.v_threshold > params.v_reset);
1477 }
1478
1479 #[test]
1480 fn test_spike_event_creation() {
1481 let spike = SpikeEvent {
1482 neuron_id: 42,
1483 time_ms: 15.5,
1484 };
1485
1486 assert_eq!(spike.neuron_id, 42);
1487 assert_eq!(spike.time_ms, 15.5);
1488 }
1489
1490 #[test]
1491 fn test_neuromorphic_supported_models() {
1492 let neuro = NeuromorphicAccelerator::new(100, 1000);
1493
1494 assert!(neuro
1495 .capabilities
1496 .supported_neuron_models
1497 .contains(&NeuronModel::LIF));
1498 assert!(neuro
1499 .capabilities
1500 .supported_neuron_models
1501 .contains(&NeuronModel::Izhikevich));
1502 }
1503
1504 #[test]
1505 fn test_neuromorphic_supported_plasticity() {
1506 let neuro = NeuromorphicAccelerator::new(100, 1000);
1507
1508 assert!(neuro
1509 .capabilities
1510 .supported_plasticity
1511 .contains(&PlasticityRule::STDP));
1512 assert!(neuro
1513 .capabilities
1514 .supported_plasticity
1515 .contains(&PlasticityRule::Homeostatic));
1516 }
1517}