sklears_core/dsl_impl/
macro_implementations.rs

1//! Core macro implementation entry points for DSL functionality
2//!
3//! This module provides the main entry points for the Domain-Specific Language (DSL)
4//! macros used in the sklears machine learning framework. It handles macro dispatch
5//! and coordinates with parsers and code generators to produce the final generated code.
6
7use crate::dsl_impl::{
8    code_generators::{
9        generate_feature_engineering_code, generate_hyperparameter_code, generate_pipeline_code,
10    },
11    parsers::{parse_feature_engineering, parse_hyperparameter_config, parse_ml_pipeline},
12};
13use proc_macro2::TokenStream;
14
15/// Implementation of the ml_pipeline! macro
16///
17/// This macro creates efficient ML pipeline code from a high-level configuration.
18/// It parses the pipeline configuration DSL and generates optimized Rust code
19/// for data processing, model training, and inference.
20///
21/// # Arguments
22/// * `input` - TokenStream containing the pipeline configuration DSL
23///
24/// # Returns
25/// Generated TokenStream with the pipeline implementation
26///
27/// # Examples
28/// ```ignore
29/// ml_pipeline! {
30///     name: "text_classification_pipeline",
31///     input: DataFrame,
32///     output: `Vec<String>`,
33///     stages: [
34///         preprocess {
35///             tokenize,
36///             normalize_text,
37///             remove_stopwords
38///         },
39///         model {
40///             algorithm: RandomForest,
41///             hyperparameters: {
42///                 n_trees: 100,
43///                 max_depth: 10
44///             }
45///         },
46///         postprocess {
47///             confidence_threshold: 0.8,
48///             format_output
49///         }
50///     ]
51/// }
52/// ```
53pub fn ml_pipeline_impl(input: TokenStream) -> TokenStream {
54    match parse_ml_pipeline(input) {
55        Ok(pipeline) => generate_pipeline_code(pipeline),
56        Err(err) => err.to_compile_error(),
57    }
58}
59
60/// Implementation of the feature_engineering! macro
61///
62/// This macro generates feature engineering transformations from declarative
63/// expressions. It supports complex feature derivations, statistical operations,
64/// and data transformations with automatic optimization.
65///
66/// # Arguments
67/// * `input` - TokenStream containing the feature engineering configuration DSL
68///
69/// # Returns
70/// Generated TokenStream with the feature engineering implementation
71///
72/// # Examples
73/// ```ignore
74/// feature_engineering! {
75///     dataset: my_dataframe,
76///     features: [
77///         price_per_sqft = price / square_feet,
78///         log_income = log(household_income),
79///         age_group = categorize(age, [0, 18, 35, 50, 65, 100]),
80///         distance_to_center = sqrt((x - center_x)^2 + (y - center_y)^2)
81///     ],
82///     selection: [
83///         "correlation > 0.1",
84///         "variance > 0.01",
85///         "mutual_info > 0.05"
86///     ],
87///     validation: [
88///         price_per_sqft: "not_null && > 0",
89///         log_income: "finite && > 0",
90///         age_group: "in_range(0, 4)"
91///     ]
92/// }
93/// ```
94pub fn feature_engineering_impl(input: TokenStream) -> TokenStream {
95    match parse_feature_engineering(input) {
96        Ok(config) => generate_feature_engineering_code(config),
97        Err(err) => err.to_compile_error(),
98    }
99}
100
101/// Implementation of the hyperparameter_config! macro
102///
103/// This macro creates hyperparameter optimization configurations for machine
104/// learning models. It supports various optimization strategies, constraint
105/// definitions, and search space specifications.
106///
107/// # Arguments
108/// * `input` - TokenStream containing the hyperparameter configuration DSL
109///
110/// # Returns
111/// Generated TokenStream with the hyperparameter optimization setup
112///
113/// # Examples
114/// ```ignore
115/// hyperparameter_config! {
116///     model: RandomForestClassifier,
117///     parameters: [
118///         n_estimators: Integer(range: 10..500, distribution: LogUniform),
119///         max_depth: Integer(range: 3..20, distribution: Uniform),
120///         min_samples_split: Float(range: 0.01..0.2, distribution: LogUniform),
121///         criterion: Categorical(options: ["gini", "entropy"])
122///     ],
123///     constraints: [
124///         n_estimators * max_depth < 10000,  // Computational constraint
125///         min_samples_split < 0.1 => max_depth > 5  // Conditional constraint
126///     ],
127///     optimization: {
128///         strategy: BayesianOptimization,
129///         n_trials: 100,
130///         timeout: 3600,  // seconds
131///         early_stopping: {
132///             patience: 20,
133///             improvement_threshold: 0.001
134///         }
135///     }
136/// }
137/// ```
138pub fn hyperparameter_config_impl(input: TokenStream) -> TokenStream {
139    match parse_hyperparameter_config(input) {
140        Ok(config) => generate_hyperparameter_code(config),
141        Err(err) => err.to_compile_error(),
142    }
143}
144
145/// Implementation of the model_evaluation! macro
146///
147/// This macro generates comprehensive model evaluation code including
148/// cross-validation, metric computation, and statistical testing.
149///
150/// # Arguments
151/// * `input` - TokenStream containing the evaluation configuration DSL
152///
153/// # Returns
154/// Generated TokenStream with the evaluation implementation
155pub fn model_evaluation_impl(_input: TokenStream) -> TokenStream {
156    // TODO: Implement model evaluation macro
157    // This is a placeholder for future enhancement
158    quote::quote! {
159        compile_error!("model_evaluation! macro not yet implemented");
160    }
161}
162
163/// Implementation of the data_pipeline! macro
164///
165/// This macro creates efficient data processing pipelines with support for
166/// streaming, batch processing, and real-time data transformations.
167///
168/// # Arguments
169/// * `input` - TokenStream containing the data pipeline configuration DSL
170///
171/// # Returns
172/// Generated TokenStream with the data pipeline implementation
173pub fn data_pipeline_impl(_input: TokenStream) -> TokenStream {
174    // TODO: Implement data pipeline macro
175    // This is a placeholder for future enhancement
176    quote::quote! {
177        compile_error!("data_pipeline! macro not yet implemented");
178    }
179}
180
181/// Implementation of the experiment_config! macro
182///
183/// This macro generates experiment tracking and configuration code for
184/// machine learning experiments with automatic logging and reproducibility.
185///
186/// # Arguments
187/// * `input` - TokenStream containing the experiment configuration DSL
188///
189/// # Returns
190/// Generated TokenStream with the experiment setup implementation
191pub fn experiment_config_impl(_input: TokenStream) -> TokenStream {
192    // TODO: Implement experiment config macro
193    // This is a placeholder for future enhancement
194    quote::quote! {
195        compile_error!("experiment_config! macro not yet implemented");
196    }
197}
198
199/// Utility function to handle macro errors consistently
200///
201/// Provides standardized error handling and reporting for all DSL macros.
202///
203/// # Arguments
204/// * `error` - The syntax error encountered during parsing
205/// * `context` - Additional context about where the error occurred
206///
207/// # Returns
208/// TokenStream containing a compile_error! with formatted error message
209pub fn handle_macro_error(error: syn::Error, context: &str) -> TokenStream {
210    let error_msg = format!("DSL macro error in {}: {}", context, error);
211    quote::quote! {
212        compile_error!(#error_msg);
213    }
214}
215
216/// Macro implementation registry for dynamic dispatch
217///
218/// Allows for runtime selection of macro implementations based on
219/// macro name or other criteria.
220pub struct MacroRegistry {
221    implementations: std::collections::HashMap<String, fn(TokenStream) -> TokenStream>,
222}
223
224impl MacroRegistry {
225    /// Create a new macro registry with default implementations
226    pub fn new() -> Self {
227        let mut registry = Self {
228            implementations: std::collections::HashMap::new(),
229        };
230
231        // Register core macro implementations
232        registry.register("ml_pipeline", ml_pipeline_impl);
233        registry.register("feature_engineering", feature_engineering_impl);
234        registry.register("hyperparameter_config", hyperparameter_config_impl);
235        registry.register("model_evaluation", model_evaluation_impl);
236        registry.register("data_pipeline", data_pipeline_impl);
237        registry.register("experiment_config", experiment_config_impl);
238
239        registry
240    }
241
242    /// Register a new macro implementation
243    ///
244    /// # Arguments
245    /// * `name` - Name of the macro
246    /// * `implementation` - Function implementing the macro logic
247    pub fn register(&mut self, name: &str, implementation: fn(TokenStream) -> TokenStream) {
248        self.implementations
249            .insert(name.to_string(), implementation);
250    }
251
252    /// Execute a macro by name
253    ///
254    /// # Arguments
255    /// * `name` - Name of the macro to execute
256    /// * `input` - Input tokens for the macro
257    ///
258    /// # Returns
259    /// Generated TokenStream or error if macro not found
260    pub fn execute(&self, name: &str, input: TokenStream) -> TokenStream {
261        if let Some(implementation) = self.implementations.get(name) {
262            implementation(input)
263        } else {
264            let error_msg = format!("Unknown macro: {}", name);
265            quote::quote! {
266                compile_error!(#error_msg);
267            }
268        }
269    }
270
271    /// List all registered macro names
272    pub fn list_macros(&self) -> Vec<String> {
273        self.implementations.keys().cloned().collect()
274    }
275}
276
277impl Default for MacroRegistry {
278    fn default() -> Self {
279        Self::new()
280    }
281}
282
283#[allow(non_snake_case)]
284#[cfg(test)]
285mod tests {
286    use super::*;
287    use quote::quote;
288
289    #[test]
290    fn test_macro_registry_creation() {
291        let registry = MacroRegistry::new();
292        let macros = registry.list_macros();
293
294        assert!(macros.contains(&"ml_pipeline".to_string()));
295        assert!(macros.contains(&"feature_engineering".to_string()));
296        assert!(macros.contains(&"hyperparameter_config".to_string()));
297    }
298
299    #[test]
300    fn test_macro_registry_custom_registration() {
301        let mut registry = MacroRegistry::new();
302
303        fn test_macro(_input: TokenStream) -> TokenStream {
304            quote! { println!("test macro executed"); }
305        }
306
307        registry.register("test_macro", test_macro);
308        let macros = registry.list_macros();
309
310        assert!(macros.contains(&"test_macro".to_string()));
311    }
312
313    #[test]
314    fn test_unknown_macro_execution() {
315        let registry = MacroRegistry::new();
316        let result = registry.execute("unknown_macro", TokenStream::new());
317
318        // Should return a compile_error
319        let result_str = result.to_string();
320        assert!(result_str.contains("compile_error"));
321        assert!(result_str.contains("Unknown macro"));
322    }
323}