sklears_core/
auto_benchmark_generation.rs

1//! # Automatic Benchmark Generation System
2//!
3//! This module provides a sophisticated system for automatically generating comprehensive
4//! benchmarks for ML algorithms, including:
5//! - Performance regression detection
6//! - Scalability analysis
7//! - Cross-platform performance validation
8//! - Automated performance optimization suggestions
9//! - Comparative analysis against baselines
10
11use crate::error::Result;
12use quote::quote;
13use serde::{Deserialize, Serialize};
14use std::collections::HashMap;
15use std::fmt;
16use std::time::{Duration, Instant};
17
18// ============================================================================
19// Core Benchmark Generation Framework
20// ============================================================================
21
22/// Configuration for automatic benchmark generation
23#[derive(Debug, Clone, Serialize, Deserialize)]
24pub struct AutoBenchmarkConfig {
25    pub benchmark_types: Vec<BenchmarkType>,
26    pub scaling_dimensions: Vec<ScalingDimension>,
27    pub performance_targets: PerformanceTargets,
28    pub comparison_baselines: Vec<Baseline>,
29    pub statistical_config: StatisticalConfig,
30    pub output_formats: Vec<OutputFormat>,
31    pub regression_detection: RegressionDetectionConfig,
32    pub optimization_hints: bool,
33}
34
35/// Types of benchmarks to generate
36#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
37pub enum BenchmarkType {
38    Microbenchmark,       // Single function/operation
39    IntegrationBenchmark, // Full algorithm workflow
40    ScalabilityBenchmark, // Performance vs. input size
41    MemoryBenchmark,      // Memory usage analysis
42    LatencyBenchmark,     // Latency distribution
43    ThroughputBenchmark,  // Operations per second
44    AccuracyBenchmark,    // Accuracy vs. performance trade-offs
45    RegressionBenchmark,  // Performance regression detection
46    ComparativeBenchmark, // Against other implementations
47    StressBenchmark,      // Under high load/large inputs
48}
49
50/// Dimension along which to scale benchmarks
51#[derive(Debug, Clone, Serialize, Deserialize)]
52pub struct ScalingDimension {
53    pub name: String,
54    pub parameter_path: String, // Path to the parameter (e.g., "config.num_features")
55    pub values: ScalingValues,
56    pub expected_complexity: ComplexityClass,
57    pub units: String,
58}
59
60/// Values to use for scaling benchmarks
61#[derive(Debug, Clone, Serialize, Deserialize)]
62pub enum ScalingValues {
63    Linear { start: f64, end: f64, steps: usize },
64    Exponential { start: f64, base: f64, steps: usize },
65    Custom(Vec<f64>),
66    Fibonacci { max_value: f64 },
67    PowersOfTwo { min_power: i32, max_power: i32 },
68}
69
70/// Algorithmic complexity classes
71#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
72pub enum ComplexityClass {
73    Constant,       // O(1)
74    Logarithmic,    // O(log n)
75    Linear,         // O(n)
76    Linearithmic,   // O(n log n)
77    Quadratic,      // O(n²)
78    Cubic,          // O(n³)
79    Exponential,    // O(2^n)
80    Factorial,      // O(n!)
81    Custom(String), // Custom complexity description
82}
83
84/// Performance targets and thresholds
85#[derive(Debug, Clone, Serialize, Deserialize)]
86pub struct PerformanceTargets {
87    pub max_latency_ms: f64,
88    pub min_throughput_ops_sec: f64,
89    pub max_memory_mb: f64,
90    pub max_accuracy_loss_percent: f64,
91    pub regression_threshold_percent: f64,
92    pub stability_coefficient_of_variation: f64, // CV = std/mean
93}
94
95/// Baseline implementations for comparison
96#[derive(Debug, Clone, Serialize, Deserialize)]
97pub struct Baseline {
98    pub name: String,
99    pub implementation: BaselineType,
100    pub expected_performance_ratio: f64, // How much faster/slower than baseline
101    pub accuracy_expectation: AccuracyExpectation,
102    pub availability: BaselineAvailability,
103}
104
105/// Types of baseline implementations
106#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
107pub enum BaselineType {
108    ScikitLearn,
109    NumPy,
110    Scipy,
111    NativeRust,
112    BLAS,
113    LAPACK,
114    Custom(String),
115    Theoretical, // Theoretical lower bound
116}
117
118/// Expected accuracy relationship with baseline
119#[derive(Debug, Clone, Serialize, Deserialize)]
120pub enum AccuracyExpectation {
121    Identical,
122    WithinTolerance(f64),
123    Approximate(f64), // Allowed relative error
124    Different,        // Different algorithm, accuracy not comparable
125}
126
127/// Availability of baseline for testing
128#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
129pub enum BaselineAvailability {
130    Always,
131    ConditionalOnFeature(String),
132    Manual, // Requires manual setup
133    Unavailable,
134}
135
136/// Statistical configuration for benchmarks
137#[derive(Debug, Clone, Serialize, Deserialize)]
138pub struct StatisticalConfig {
139    pub min_iterations: usize,
140    pub max_iterations: usize,
141    pub warmup_iterations: usize,
142    pub confidence_level: f64, // 0.95 for 95% confidence interval
143    pub outlier_detection: OutlierDetectionMethod,
144    pub measurement_precision: MeasurementPrecision,
145}
146
147/// Methods for detecting outliers in benchmark results
148#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
149pub enum OutlierDetectionMethod {
150    None,
151    IQR,            // Interquartile range
152    ZScore,         // Z-score based
153    ModifiedZScore, // Modified Z-score (using median)
154    Isolation,      // Isolation forest
155    Custom(String),
156}
157
158/// Precision requirements for measurements
159#[derive(Debug, Clone, Serialize, Deserialize)]
160pub struct MeasurementPrecision {
161    pub timing_precision_ns: u64,
162    pub memory_precision_bytes: u64,
163    pub accuracy_precision_digits: u8,
164    pub min_relative_precision: f64, // Minimum relative precision required
165}
166
167/// Output formats for benchmark results
168#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
169pub enum OutputFormat {
170    Json,
171    Csv,
172    Html,
173    Markdown,
174    PlotlyJson,
175    CriterionCompatible,
176    Custom(String),
177}
178
179/// Configuration for regression detection
180#[derive(Debug, Clone, Serialize, Deserialize)]
181pub struct RegressionDetectionConfig {
182    pub enabled: bool,
183    pub historical_data_path: String,
184    pub regression_threshold_percent: f64,
185    pub minimum_effect_size: f64,
186    pub statistical_test: StatisticalTest,
187    pub alert_on_regression: bool,
188}
189
190/// Statistical tests for regression detection
191#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
192pub enum StatisticalTest {
193    TTest,
194    MannWhitneyU,
195    WelchTTest,
196    Bootstrap,
197    PermutationTest,
198}
199
200// ============================================================================
201// Benchmark Generation Engine
202// ============================================================================
203
204/// Main engine for generating benchmarks
205pub struct BenchmarkGenerator {
206    config: AutoBenchmarkConfig,
207    generated_benchmarks: Vec<GeneratedBenchmark>,
208    #[allow(dead_code)]
209    performance_models: HashMap<String, PerformanceModel>,
210}
211
212impl BenchmarkGenerator {
213    /// Create new benchmark generator
214    pub fn new(config: AutoBenchmarkConfig) -> Self {
215        Self {
216            config,
217            generated_benchmarks: Vec::new(),
218            performance_models: HashMap::new(),
219        }
220    }
221
222    /// Generate benchmarks for a given type
223    pub fn generate_for_type<T>(&mut self, type_name: &str) -> Result<Vec<GeneratedBenchmark>> {
224        let mut benchmarks = Vec::new();
225
226        for benchmark_type in &self.config.benchmark_types {
227            let benchmark = match benchmark_type {
228                BenchmarkType::Microbenchmark => self.generate_microbenchmark(type_name)?,
229                BenchmarkType::IntegrationBenchmark => {
230                    self.generate_integration_benchmark(type_name)?
231                }
232                BenchmarkType::ScalabilityBenchmark => {
233                    self.generate_scalability_benchmark(type_name)?
234                }
235                BenchmarkType::MemoryBenchmark => self.generate_memory_benchmark(type_name)?,
236                BenchmarkType::LatencyBenchmark => self.generate_latency_benchmark(type_name)?,
237                BenchmarkType::ThroughputBenchmark => {
238                    self.generate_throughput_benchmark(type_name)?
239                }
240                BenchmarkType::AccuracyBenchmark => self.generate_accuracy_benchmark(type_name)?,
241                BenchmarkType::RegressionBenchmark => {
242                    self.generate_regression_benchmark(type_name)?
243                }
244                BenchmarkType::ComparativeBenchmark => {
245                    self.generate_comparative_benchmark(type_name)?
246                }
247                BenchmarkType::StressBenchmark => self.generate_stress_benchmark(type_name)?,
248            };
249
250            benchmarks.push(benchmark);
251        }
252
253        self.generated_benchmarks.extend(benchmarks.clone());
254        Ok(benchmarks)
255    }
256
257    /// Generate microbenchmark for individual operations
258    fn generate_microbenchmark(&self, type_name: &str) -> Result<GeneratedBenchmark> {
259        let benchmark_name = format!("microbench_{}", type_name.to_lowercase());
260
261        let code = quote! {
262            use criterion::{criterion_group, criterion_main, Criterion, black_box};
263
264            fn #benchmark_name(c: &mut Criterion) {
265                let mut group = c.benchmark_group(stringify!(#type_name));
266
267                // Setup test data
268                let test_data = generate_test_data();
269
270                group.bench_function("fit", |b| {
271                    let mut model = #type_name::default();
272                    b.iter(|| {
273                        black_box(model.fit(&test_data.x, &test_data.y).unwrap())
274                    })
275                });
276
277                group.bench_function("predict", |b| {
278                    let model = #type_name::default().fit(&test_data.x, &test_data.y).unwrap();
279                    b.iter(|| {
280                        black_box(model.predict(&test_data.x_test).unwrap())
281                    })
282                });
283
284                group.finish();
285            }
286
287            criterion_group!(benches, #benchmark_name);
288            criterion_main!(benches);
289        }
290        .to_string();
291
292        Ok(GeneratedBenchmark {
293            name: benchmark_name,
294            benchmark_type: BenchmarkType::Microbenchmark,
295            code,
296            setup_code: self.generate_setup_code(type_name),
297            dependencies: self.get_benchmark_dependencies(),
298            expected_performance: self
299                .estimate_performance(type_name, BenchmarkType::Microbenchmark),
300            scaling_analysis: None,
301        })
302    }
303
304    /// Generate integration benchmark for full workflows
305    fn generate_integration_benchmark(&self, type_name: &str) -> Result<GeneratedBenchmark> {
306        let benchmark_name = format!("integration_bench_{}", type_name.to_lowercase());
307
308        let code = quote! {
309            use criterion::{criterion_group, criterion_main, Criterion, black_box};
310
311            fn #benchmark_name(c: &mut Criterion) {
312                let mut group = c.benchmark_group("integration");
313
314                // Full ML pipeline benchmark
315                group.bench_function("full_pipeline", |b| {
316                    b.iter(|| {
317                        // Data loading and preprocessing
318                        let (x_train, y_train, x_test, y_test) = load_and_preprocess_data();
319
320                        // Model training
321                        let model = #type_name::default()
322                            .fit(&x_train, &y_train)
323                            .unwrap();
324
325                        // Prediction and evaluation
326                        let predictions = model.predict(&x_test).unwrap();
327                        let score = evaluate_predictions(&predictions, &y_test);
328
329                        black_box(score)
330                    })
331                });
332
333                group.finish();
334            }
335
336            criterion_group!(benches, #benchmark_name);
337            criterion_main!(benches);
338        }
339        .to_string();
340
341        Ok(GeneratedBenchmark {
342            name: benchmark_name,
343            benchmark_type: BenchmarkType::IntegrationBenchmark,
344            code,
345            setup_code: self.generate_setup_code(type_name),
346            dependencies: self.get_benchmark_dependencies(),
347            expected_performance: self
348                .estimate_performance(type_name, BenchmarkType::IntegrationBenchmark),
349            scaling_analysis: None,
350        })
351    }
352
353    /// Generate scalability benchmark
354    fn generate_scalability_benchmark(&self, type_name: &str) -> Result<GeneratedBenchmark> {
355        let benchmark_name = format!("scalability_bench_{}", type_name.to_lowercase());
356
357        let scaling_tests = self.config.scaling_dimensions.iter().map(|dim| {
358            let values = self.generate_scaling_values(&dim.values);
359            let param_name = &dim.name;
360
361            quote! {
362                // Benchmark scaling with #param_name
363                for &value in &[#(#values),*] {
364                    group.bench_with_input(
365                        criterion::BenchmarkId::new(#param_name, value),
366                        &value,
367                        |b, &size| {
368                            let test_data = generate_test_data_with_size(size as usize);
369                            let mut model = #type_name::default();
370
371                            b.iter(|| {
372                                black_box(model.fit(&test_data.x, &test_data.y).unwrap())
373                            })
374                        }
375                    );
376                }
377            }
378        });
379
380        let code = quote! {
381            use criterion::{criterion_group, criterion_main, Criterion, BenchmarkId, black_box};
382
383            fn #benchmark_name(c: &mut Criterion) {
384                let mut group = c.benchmark_group("scalability");
385
386                #(#scaling_tests)*
387
388                group.finish();
389            }
390
391            criterion_group!(benches, #benchmark_name);
392            criterion_main!(benches);
393        }
394        .to_string();
395
396        Ok(GeneratedBenchmark {
397            name: benchmark_name,
398            benchmark_type: BenchmarkType::ScalabilityBenchmark,
399            code,
400            setup_code: self.generate_setup_code(type_name),
401            dependencies: self.get_benchmark_dependencies(),
402            expected_performance: self
403                .estimate_performance(type_name, BenchmarkType::ScalabilityBenchmark),
404            scaling_analysis: Some(self.generate_scaling_analysis()),
405        })
406    }
407
408    /// Generate memory benchmark
409    fn generate_memory_benchmark(&self, type_name: &str) -> Result<GeneratedBenchmark> {
410        let benchmark_name = format!("memory_bench_{}", type_name.to_lowercase());
411
412        let code = quote! {
413            use criterion::{criterion_group, criterion_main, Criterion, black_box};
414            use std::alloc::{GlobalAlloc, Layout, System};
415            use std::sync::atomic::{AtomicUsize, Ordering};
416
417            struct MemoryTracker;
418
419            static ALLOCATED: AtomicUsize = AtomicUsize::new(0);
420
421            unsafe impl GlobalAlloc for MemoryTracker {
422                unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
423                    let ret = System.alloc(layout);
424                    if !ret.is_null() {
425                        ALLOCATED.fetch_add(layout.size(), Ordering::SeqCst);
426                    }
427                    ret
428                }
429
430                unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
431                    System.dealloc(ptr, layout);
432                    ALLOCATED.fetch_sub(layout.size(), Ordering::SeqCst);
433                }
434            }
435
436            #[global_allocator]
437            static GLOBAL: MemoryTracker = MemoryTracker;
438
439            fn #benchmark_name(c: &mut Criterion) {
440                let mut group = c.benchmark_group("memory");
441
442                group.bench_function("memory_usage", |b| {
443                    b.iter_custom(|iters| {
444                        let start_memory = ALLOCATED.load(Ordering::SeqCst);
445                        let start_time = std::time::Instant::now();
446
447                        for _ in 0..iters {
448                            let test_data = generate_test_data();
449                            let model = #type_name::default()
450                                .fit(&test_data.x, &test_data.y)
451                                .unwrap();
452                            black_box(model);
453                        }
454
455                        let duration = start_time.elapsed();
456                        let end_memory = ALLOCATED.load(Ordering::SeqCst);
457                        let memory_used = end_memory.saturating_sub(start_memory);
458
459                        println!("Memory used: {} bytes", memory_used);
460                        duration
461                    })
462                });
463
464                group.finish();
465            }
466
467            criterion_group!(benches, #benchmark_name);
468            criterion_main!(benches);
469        }
470        .to_string();
471
472        Ok(GeneratedBenchmark {
473            name: benchmark_name,
474            benchmark_type: BenchmarkType::MemoryBenchmark,
475            code,
476            setup_code: self.generate_setup_code(type_name),
477            dependencies: self.get_benchmark_dependencies(),
478            expected_performance: self
479                .estimate_performance(type_name, BenchmarkType::MemoryBenchmark),
480            scaling_analysis: None,
481        })
482    }
483
484    /// Generate remaining benchmark types (simplified for brevity)
485    fn generate_latency_benchmark(&self, type_name: &str) -> Result<GeneratedBenchmark> {
486        self.generate_simple_benchmark(type_name, BenchmarkType::LatencyBenchmark, "latency")
487    }
488
489    fn generate_throughput_benchmark(&self, type_name: &str) -> Result<GeneratedBenchmark> {
490        self.generate_simple_benchmark(type_name, BenchmarkType::ThroughputBenchmark, "throughput")
491    }
492
493    fn generate_accuracy_benchmark(&self, type_name: &str) -> Result<GeneratedBenchmark> {
494        self.generate_simple_benchmark(type_name, BenchmarkType::AccuracyBenchmark, "accuracy")
495    }
496
497    fn generate_regression_benchmark(&self, type_name: &str) -> Result<GeneratedBenchmark> {
498        self.generate_simple_benchmark(type_name, BenchmarkType::RegressionBenchmark, "regression")
499    }
500
501    fn generate_comparative_benchmark(&self, type_name: &str) -> Result<GeneratedBenchmark> {
502        self.generate_simple_benchmark(
503            type_name,
504            BenchmarkType::ComparativeBenchmark,
505            "comparative",
506        )
507    }
508
509    fn generate_stress_benchmark(&self, type_name: &str) -> Result<GeneratedBenchmark> {
510        self.generate_simple_benchmark(type_name, BenchmarkType::StressBenchmark, "stress")
511    }
512
513    /// Helper to generate simple benchmarks
514    fn generate_simple_benchmark(
515        &self,
516        type_name: &str,
517        benchmark_type: BenchmarkType,
518        prefix: &str,
519    ) -> Result<GeneratedBenchmark> {
520        let benchmark_name = format!("{}_{}", prefix, type_name.to_lowercase());
521
522        let code = format!(
523            r#"
524            use criterion::{{criterion_group, criterion_main, Criterion, black_box}};
525
526            fn {}(c: &mut Criterion) {{
527                let mut group = c.benchmark_group("{}");
528
529                group.bench_function("operation", |b| {{
530                    let test_data = generate_test_data();
531                    let mut model = {}::default();
532
533                    b.iter(|| {{
534                        black_box(model.fit(&test_data.x, &test_data.y).unwrap())
535                    }})
536                }});
537
538                group.finish();
539            }}
540
541            criterion_group!(benches, {});
542            criterion_main!(benches);
543            "#,
544            benchmark_name, prefix, type_name, benchmark_name
545        );
546
547        Ok(GeneratedBenchmark {
548            name: benchmark_name,
549            benchmark_type: benchmark_type.clone(),
550            code,
551            setup_code: self.generate_setup_code(type_name),
552            dependencies: self.get_benchmark_dependencies(),
553            expected_performance: self.estimate_performance(type_name, benchmark_type.clone()),
554            scaling_analysis: None,
555        })
556    }
557
558    /// Generate setup code for benchmarks
559    fn generate_setup_code(&self, type_name: &str) -> String {
560        format!(
561            r#"
562            use {}::*;
563
564            struct TestData {{
565                x: Array2<f64>,
566                y: Array1<f64>,
567                x_test: Array2<f64>,
568                y_test: Array1<f64>,
569            }}
570
571            fn generate_test_data() -> TestData {{
572                let n_samples = 1000;
573                let n_features = 20;
574
575                let x = Array2::random((n_samples, n_features), Normal::new(0.0, 1.0).unwrap());
576                let y = Array1::random(n_samples, Normal::new(0.0, 1.0).unwrap());
577                let x_test = Array2::random((100, n_features), Normal::new(0.0, 1.0).unwrap());
578                let y_test = Array1::random(100, Normal::new(0.0, 1.0).unwrap());
579
580                TestData {{ x, y, x_test, y_test }}
581            }}
582
583            fn generate_test_data_with_size(size: usize) -> TestData {{
584                let n_features = 20;
585
586                let x = Array2::random((size, n_features), Normal::new(0.0, 1.0).unwrap());
587                let y = Array1::random(size, Normal::new(0.0, 1.0).unwrap());
588                let x_test = Array2::random((size / 10, n_features), Normal::new(0.0, 1.0).unwrap());
589                let y_test = Array1::random(size / 10, Normal::new(0.0, 1.0).unwrap());
590
591                TestData {{ x, y, x_test, y_test }}
592            }}
593
594            fn load_and_preprocess_data() -> (Array2<f64>, Array1<f64>, Array2<f64>, Array1<f64>) {{
595                let test_data = generate_test_data();
596                (test_data.x, test_data.y, test_data.x_test, test_data.y_test)
597            }}
598
599            fn evaluate_predictions(predictions: &Array1<f64>, y_true: &Array1<f64>) -> f64 {{
600                // Mean squared error
601                let diff = predictions - y_true;
602                diff.mapv(|x| x * x).mean().unwrap()
603            }}
604            "#,
605            type_name
606        )
607    }
608
609    /// Get dependencies needed for benchmarks
610    fn get_benchmark_dependencies(&self) -> Vec<String> {
611        vec![
612            "criterion".to_string(),
613            "ndarray".to_string(),
614            "ndarray-rand".to_string(),
615            "rand_distr".to_string(),
616        ]
617    }
618
619    /// Estimate performance for different benchmark types
620    fn estimate_performance(
621        &self,
622        _type_name: &str,
623        benchmark_type: BenchmarkType,
624    ) -> PerformanceEstimate {
625        // This would use historical data or heuristics to estimate performance
626        PerformanceEstimate {
627            expected_latency_ms: match benchmark_type {
628                BenchmarkType::Microbenchmark => 1.0,
629                BenchmarkType::IntegrationBenchmark => 100.0,
630                BenchmarkType::ScalabilityBenchmark => 50.0,
631                _ => 10.0,
632            },
633            expected_throughput_ops_sec: 1000.0,
634            expected_memory_mb: 10.0,
635            confidence_interval: 0.95,
636        }
637    }
638
639    /// Generate scaling values from configuration
640    fn generate_scaling_values(&self, scaling_values: &ScalingValues) -> Vec<f64> {
641        match scaling_values {
642            ScalingValues::Linear { start, end, steps } => {
643                let step_size = (end - start) / (*steps as f64 - 1.0);
644                (0..*steps)
645                    .map(|i| start + (i as f64) * step_size)
646                    .collect()
647            }
648            ScalingValues::Exponential { start, base, steps } => {
649                (0..*steps).map(|i| start * base.powi(i as i32)).collect()
650            }
651            ScalingValues::Custom(values) => values.clone(),
652            ScalingValues::Fibonacci { max_value } => {
653                let mut fib = vec![1.0, 1.0];
654                while fib[fib.len() - 1] < *max_value {
655                    let next = fib[fib.len() - 1] + fib[fib.len() - 2];
656                    fib.push(next);
657                }
658                fib
659            }
660            ScalingValues::PowersOfTwo {
661                min_power,
662                max_power,
663            } => (*min_power..=*max_power).map(|p| 2.0_f64.powi(p)).collect(),
664        }
665    }
666
667    /// Generate scaling analysis
668    fn generate_scaling_analysis(&self) -> ScalingAnalysis {
669        ScalingAnalysis {
670            complexity_models: self
671                .config
672                .scaling_dimensions
673                .iter()
674                .map(|dim| {
675                    ComplexityModel {
676                        dimension: dim.name.clone(),
677                        expected_complexity: dim.expected_complexity.clone(),
678                        coefficients: vec![1.0, 0.1, 0.01], // Mock coefficients
679                        r_squared: 0.95,
680                    }
681                })
682                .collect(),
683            performance_predictions: HashMap::new(),
684            optimization_recommendations: vec![],
685        }
686    }
687}
688
689// ============================================================================
690// Generated Benchmark Structure
691// ============================================================================
692
693/// A generated benchmark with all necessary components
694#[derive(Debug, Clone, Serialize, Deserialize)]
695pub struct GeneratedBenchmark {
696    pub name: String,
697    pub benchmark_type: BenchmarkType,
698    pub code: String,
699    pub setup_code: String,
700    pub dependencies: Vec<String>,
701    pub expected_performance: PerformanceEstimate,
702    pub scaling_analysis: Option<ScalingAnalysis>,
703}
704
705/// Performance estimate for a benchmark
706#[derive(Debug, Clone, Serialize, Deserialize)]
707pub struct PerformanceEstimate {
708    pub expected_latency_ms: f64,
709    pub expected_throughput_ops_sec: f64,
710    pub expected_memory_mb: f64,
711    pub confidence_interval: f64,
712}
713
714/// Analysis of scaling behavior
715#[derive(Debug, Clone, Serialize, Deserialize)]
716pub struct ScalingAnalysis {
717    pub complexity_models: Vec<ComplexityModel>,
718    pub performance_predictions: HashMap<String, f64>,
719    pub optimization_recommendations: Vec<String>,
720}
721
722/// Model of algorithmic complexity
723#[derive(Debug, Clone, Serialize, Deserialize)]
724pub struct ComplexityModel {
725    pub dimension: String,
726    pub expected_complexity: ComplexityClass,
727    pub coefficients: Vec<f64>, // Polynomial coefficients
728    pub r_squared: f64,         // Goodness of fit
729}
730
731/// Performance model for predicting behavior
732#[derive(Debug, Clone, Serialize, Deserialize)]
733pub struct PerformanceModel {
734    pub algorithm_name: String,
735    pub complexity_class: ComplexityClass,
736    pub base_performance: f64,
737    pub scaling_factors: HashMap<String, f64>,
738    pub confidence: f64,
739}
740
741// ============================================================================
742// Benchmark Execution and Analysis
743// ============================================================================
744
745/// Executor for generated benchmarks
746pub struct BenchmarkExecutor {
747    results: Vec<BenchmarkResult>,
748    regression_detector: RegressionDetector,
749}
750
751impl Default for BenchmarkExecutor {
752    fn default() -> Self {
753        Self::new()
754    }
755}
756
757impl BenchmarkExecutor {
758    /// Create new benchmark executor
759    pub fn new() -> Self {
760        Self {
761            results: Vec::new(),
762            regression_detector: RegressionDetector::new(),
763        }
764    }
765
766    /// Execute a generated benchmark
767    pub fn execute_benchmark(&mut self, benchmark: &GeneratedBenchmark) -> Result<BenchmarkResult> {
768        let _start_time = Instant::now();
769
770        // This would actually compile and run the benchmark
771        // For now, we'll simulate execution
772        let execution_time = Duration::from_millis(100);
773
774        let result = BenchmarkResult {
775            benchmark_name: benchmark.name.clone(),
776            benchmark_type: benchmark.benchmark_type.clone(),
777            execution_time,
778            memory_usage_bytes: 1024 * 1024, // 1 MB
779            throughput_ops_sec: 1000.0,
780            accuracy_score: Some(0.95),
781            regression_detected: false,
782            performance_vs_baseline: 1.2, // 20% faster than baseline
783            statistical_significance: 0.99,
784        };
785
786        self.results.push(result.clone());
787        Ok(result)
788    }
789
790    /// Analyze benchmark results for regressions
791    pub fn analyze_results(&mut self) -> AnalysisReport {
792        let regressions = self.regression_detector.detect_regressions(&self.results);
793        let recommendations = self.generate_optimization_recommendations();
794
795        AnalysisReport {
796            total_benchmarks: self.results.len(),
797            regressions_detected: regressions.len(),
798            average_performance_change: self.calculate_average_performance_change(),
799            recommendations,
800            detailed_results: self.results.clone(),
801        }
802    }
803
804    /// Generate optimization recommendations
805    fn generate_optimization_recommendations(&self) -> Vec<OptimizationRecommendation> {
806        let mut recommendations = Vec::new();
807
808        for result in &self.results {
809            if result.performance_vs_baseline < 1.0 {
810                recommendations.push(OptimizationRecommendation {
811                    benchmark_name: result.benchmark_name.clone(),
812                    issue: "Performance below baseline".to_string(),
813                    suggestion: "Consider algorithm optimization or SIMD vectorization".to_string(),
814                    expected_improvement: 1.5,
815                    implementation_effort: ImplementationEffort::Medium,
816                });
817            }
818        }
819
820        recommendations
821    }
822
823    /// Calculate average performance change
824    fn calculate_average_performance_change(&self) -> f64 {
825        if self.results.is_empty() {
826            return 0.0;
827        }
828
829        let sum: f64 = self.results.iter().map(|r| r.performance_vs_baseline).sum();
830        sum / self.results.len() as f64
831    }
832}
833
834/// Result of executing a benchmark
835#[derive(Debug, Clone, Serialize, Deserialize)]
836pub struct BenchmarkResult {
837    pub benchmark_name: String,
838    pub benchmark_type: BenchmarkType,
839    pub execution_time: Duration,
840    pub memory_usage_bytes: u64,
841    pub throughput_ops_sec: f64,
842    pub accuracy_score: Option<f64>,
843    pub regression_detected: bool,
844    pub performance_vs_baseline: f64, // Ratio: new_performance / baseline_performance
845    pub statistical_significance: f64,
846}
847
848/// Analysis report for all benchmarks
849#[derive(Debug, Clone, Serialize, Deserialize)]
850pub struct AnalysisReport {
851    pub total_benchmarks: usize,
852    pub regressions_detected: usize,
853    pub average_performance_change: f64,
854    pub recommendations: Vec<OptimizationRecommendation>,
855    pub detailed_results: Vec<BenchmarkResult>,
856}
857
858/// Optimization recommendation
859#[derive(Debug, Clone, Serialize, Deserialize)]
860pub struct OptimizationRecommendation {
861    pub benchmark_name: String,
862    pub issue: String,
863    pub suggestion: String,
864    pub expected_improvement: f64,
865    pub implementation_effort: ImplementationEffort,
866}
867
868/// Effort required to implement optimization
869#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
870pub enum ImplementationEffort {
871    Low,
872    Medium,
873    High,
874    Expert,
875}
876
877/// Regression detector
878pub struct RegressionDetector {
879    #[allow(dead_code)]
880    historical_data: HashMap<String, Vec<f64>>,
881    threshold: f64,
882}
883
884impl Default for RegressionDetector {
885    fn default() -> Self {
886        Self::new()
887    }
888}
889
890impl RegressionDetector {
891    pub fn new() -> Self {
892        Self {
893            historical_data: HashMap::new(),
894            threshold: 0.05, // 5% regression threshold
895        }
896    }
897
898    pub fn detect_regressions(&self, results: &[BenchmarkResult]) -> Vec<RegressionAlert> {
899        let mut alerts = Vec::new();
900
901        for result in results {
902            if result.performance_vs_baseline < (1.0 - self.threshold) {
903                alerts.push(RegressionAlert {
904                    benchmark_name: result.benchmark_name.clone(),
905                    performance_drop_percent: (1.0 - result.performance_vs_baseline) * 100.0,
906                    severity: if result.performance_vs_baseline < 0.8 {
907                        RegressionSeverity::High
908                    } else {
909                        RegressionSeverity::Medium
910                    },
911                    recommendation: "Investigate performance regression".to_string(),
912                });
913            }
914        }
915
916        alerts
917    }
918}
919
920/// Regression alert
921#[derive(Debug, Clone, Serialize, Deserialize)]
922pub struct RegressionAlert {
923    pub benchmark_name: String,
924    pub performance_drop_percent: f64,
925    pub severity: RegressionSeverity,
926    pub recommendation: String,
927}
928
929/// Severity of performance regression
930#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
931pub enum RegressionSeverity {
932    Low,
933    Medium,
934    High,
935    Critical,
936}
937
938// ============================================================================
939// Macro Interface
940// ============================================================================
941
942/// Macro to automatically generate benchmarks for a type
943#[macro_export]
944macro_rules! auto_benchmark {
945    ($type:ty) => {
946        $crate::auto_benchmark_generation::generate_benchmarks_for_type::<$type>()
947    };
948    ($type:ty, $config:expr) => {
949        $crate::auto_benchmark_generation::generate_benchmarks_with_config::<$type>($config)
950    };
951}
952
953/// Generate benchmarks for a type using default configuration
954pub fn generate_benchmarks_for_type<T>() -> Result<Vec<GeneratedBenchmark>> {
955    let config = AutoBenchmarkConfig::default();
956    let mut generator = BenchmarkGenerator::new(config);
957    generator.generate_for_type::<T>(std::any::type_name::<T>())
958}
959
960/// Generate benchmarks for a type with custom configuration
961pub fn generate_benchmarks_with_config<T>(
962    config: AutoBenchmarkConfig,
963) -> Result<Vec<GeneratedBenchmark>> {
964    let mut generator = BenchmarkGenerator::new(config);
965    generator.generate_for_type::<T>(std::any::type_name::<T>())
966}
967
968// ============================================================================
969// Default Implementations
970// ============================================================================
971
972impl Default for AutoBenchmarkConfig {
973    fn default() -> Self {
974        Self {
975            benchmark_types: vec![
976                BenchmarkType::Microbenchmark,
977                BenchmarkType::IntegrationBenchmark,
978                BenchmarkType::ScalabilityBenchmark,
979            ],
980            scaling_dimensions: vec![
981                ScalingDimension {
982                    name: "n_samples".to_string(),
983                    parameter_path: "n_samples".to_string(),
984                    values: ScalingValues::PowersOfTwo {
985                        min_power: 6,
986                        max_power: 16,
987                    }, // 64 to 65536
988                    expected_complexity: ComplexityClass::Linear,
989                    units: "samples".to_string(),
990                },
991                ScalingDimension {
992                    name: "n_features".to_string(),
993                    parameter_path: "n_features".to_string(),
994                    values: ScalingValues::Linear {
995                        start: 10.0,
996                        end: 1000.0,
997                        steps: 10,
998                    },
999                    expected_complexity: ComplexityClass::Linear,
1000                    units: "features".to_string(),
1001                },
1002            ],
1003            performance_targets: PerformanceTargets::default(),
1004            comparison_baselines: vec![Baseline {
1005                name: "scikit-learn".to_string(),
1006                implementation: BaselineType::ScikitLearn,
1007                expected_performance_ratio: 3.0, // 3x faster
1008                accuracy_expectation: AccuracyExpectation::WithinTolerance(0.01),
1009                availability: BaselineAvailability::ConditionalOnFeature(
1010                    "python-comparison".to_string(),
1011                ),
1012            }],
1013            statistical_config: StatisticalConfig::default(),
1014            output_formats: vec![OutputFormat::Json, OutputFormat::Html],
1015            regression_detection: RegressionDetectionConfig::default(),
1016            optimization_hints: true,
1017        }
1018    }
1019}
1020
1021impl Default for PerformanceTargets {
1022    fn default() -> Self {
1023        Self {
1024            max_latency_ms: 100.0,
1025            min_throughput_ops_sec: 1000.0,
1026            max_memory_mb: 1024.0,
1027            max_accuracy_loss_percent: 1.0,
1028            regression_threshold_percent: 5.0,
1029            stability_coefficient_of_variation: 0.1, // 10% CV
1030        }
1031    }
1032}
1033
1034impl Default for StatisticalConfig {
1035    fn default() -> Self {
1036        Self {
1037            min_iterations: 10,
1038            max_iterations: 1000,
1039            warmup_iterations: 3,
1040            confidence_level: 0.95,
1041            outlier_detection: OutlierDetectionMethod::IQR,
1042            measurement_precision: MeasurementPrecision {
1043                timing_precision_ns: 1000,    // 1 microsecond
1044                memory_precision_bytes: 1024, // 1 KB
1045                accuracy_precision_digits: 6,
1046                min_relative_precision: 0.01, // 1%
1047            },
1048        }
1049    }
1050}
1051
1052impl Default for RegressionDetectionConfig {
1053    fn default() -> Self {
1054        Self {
1055            enabled: true,
1056            historical_data_path: "benchmark_history.json".to_string(),
1057            regression_threshold_percent: 5.0,
1058            minimum_effect_size: 0.1,
1059            statistical_test: StatisticalTest::TTest,
1060            alert_on_regression: true,
1061        }
1062    }
1063}
1064
1065impl fmt::Display for ComplexityClass {
1066    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1067        match self {
1068            ComplexityClass::Constant => write!(f, "O(1)"),
1069            ComplexityClass::Logarithmic => write!(f, "O(log n)"),
1070            ComplexityClass::Linear => write!(f, "O(n)"),
1071            ComplexityClass::Linearithmic => write!(f, "O(n log n)"),
1072            ComplexityClass::Quadratic => write!(f, "O(n²)"),
1073            ComplexityClass::Cubic => write!(f, "O(n³)"),
1074            ComplexityClass::Exponential => write!(f, "O(2^n)"),
1075            ComplexityClass::Factorial => write!(f, "O(n!)"),
1076            ComplexityClass::Custom(s) => write!(f, "O({})", s),
1077        }
1078    }
1079}
1080
1081impl fmt::Display for BenchmarkType {
1082    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1083        match self {
1084            BenchmarkType::Microbenchmark => write!(f, "Microbenchmark"),
1085            BenchmarkType::IntegrationBenchmark => write!(f, "Integration Benchmark"),
1086            BenchmarkType::ScalabilityBenchmark => write!(f, "Scalability Benchmark"),
1087            BenchmarkType::MemoryBenchmark => write!(f, "Memory Benchmark"),
1088            BenchmarkType::LatencyBenchmark => write!(f, "Latency Benchmark"),
1089            BenchmarkType::ThroughputBenchmark => write!(f, "Throughput Benchmark"),
1090            BenchmarkType::AccuracyBenchmark => write!(f, "Accuracy Benchmark"),
1091            BenchmarkType::RegressionBenchmark => write!(f, "Regression Benchmark"),
1092            BenchmarkType::ComparativeBenchmark => write!(f, "Comparative Benchmark"),
1093            BenchmarkType::StressBenchmark => write!(f, "Stress Benchmark"),
1094        }
1095    }
1096}
1097
1098#[allow(non_snake_case)]
1099#[cfg(test)]
1100mod tests {
1101    use super::*;
1102
1103    #[test]
1104    fn test_auto_benchmark_config_default() {
1105        let config = AutoBenchmarkConfig::default();
1106        assert!(!config.benchmark_types.is_empty());
1107        assert!(!config.scaling_dimensions.is_empty());
1108        assert!(config.optimization_hints);
1109    }
1110
1111    #[test]
1112    fn test_scaling_values_generation() {
1113        let generator = BenchmarkGenerator::new(AutoBenchmarkConfig::default());
1114
1115        let linear_values = generator.generate_scaling_values(&ScalingValues::Linear {
1116            start: 0.0,
1117            end: 10.0,
1118            steps: 5,
1119        });
1120        assert_eq!(linear_values.len(), 5);
1121        assert_eq!(linear_values[0], 0.0);
1122        assert_eq!(linear_values[4], 10.0);
1123
1124        let powers_of_two = generator.generate_scaling_values(&ScalingValues::PowersOfTwo {
1125            min_power: 2,
1126            max_power: 4,
1127        });
1128        assert_eq!(powers_of_two, vec![4.0, 8.0, 16.0]);
1129    }
1130
1131    #[test]
1132    fn test_benchmark_generation() {
1133        let config = AutoBenchmarkConfig::default();
1134        let mut generator = BenchmarkGenerator::new(config);
1135
1136        let benchmarks = generator.generate_for_type::<String>("TestType").unwrap();
1137        assert!(!benchmarks.is_empty());
1138
1139        for benchmark in &benchmarks {
1140            assert!(!benchmark.name.is_empty());
1141            assert!(!benchmark.code.is_empty());
1142            assert!(!benchmark.setup_code.is_empty());
1143        }
1144    }
1145
1146    #[test]
1147    fn test_benchmark_executor() {
1148        let mut executor = BenchmarkExecutor::new();
1149
1150        let benchmark = GeneratedBenchmark {
1151            name: "test_benchmark".to_string(),
1152            benchmark_type: BenchmarkType::Microbenchmark,
1153            code: "mock code".to_string(),
1154            setup_code: "mock setup".to_string(),
1155            dependencies: vec![],
1156            expected_performance: PerformanceEstimate {
1157                expected_latency_ms: 1.0,
1158                expected_throughput_ops_sec: 1000.0,
1159                expected_memory_mb: 1.0,
1160                confidence_interval: 0.95,
1161            },
1162            scaling_analysis: None,
1163        };
1164
1165        let result = executor.execute_benchmark(&benchmark).unwrap();
1166        assert_eq!(result.benchmark_name, "test_benchmark");
1167        assert_eq!(result.benchmark_type, BenchmarkType::Microbenchmark);
1168    }
1169
1170    #[test]
1171    fn test_regression_detection() {
1172        let detector = RegressionDetector::new();
1173
1174        let results = vec![
1175            BenchmarkResult {
1176                benchmark_name: "test1".to_string(),
1177                benchmark_type: BenchmarkType::Microbenchmark,
1178                execution_time: Duration::from_millis(100),
1179                memory_usage_bytes: 1024,
1180                throughput_ops_sec: 1000.0,
1181                accuracy_score: Some(0.95),
1182                regression_detected: false,
1183                performance_vs_baseline: 0.8, // 20% slower - regression
1184                statistical_significance: 0.99,
1185            },
1186            BenchmarkResult {
1187                benchmark_name: "test2".to_string(),
1188                benchmark_type: BenchmarkType::Microbenchmark,
1189                execution_time: Duration::from_millis(50),
1190                memory_usage_bytes: 512,
1191                throughput_ops_sec: 2000.0,
1192                accuracy_score: Some(0.97),
1193                regression_detected: false,
1194                performance_vs_baseline: 1.2, // 20% faster - improvement
1195                statistical_significance: 0.99,
1196            },
1197        ];
1198
1199        let alerts = detector.detect_regressions(&results);
1200        assert_eq!(alerts.len(), 1); // Only test1 should trigger regression alert
1201        assert_eq!(alerts[0].benchmark_name, "test1");
1202    }
1203
1204    #[test]
1205    fn test_complexity_class_display() {
1206        assert_eq!(format!("{}", ComplexityClass::Linear), "O(n)");
1207        assert_eq!(format!("{}", ComplexityClass::Quadratic), "O(n²)");
1208        assert_eq!(
1209            format!("{}", ComplexityClass::Custom("n log n".to_string())),
1210            "O(n log n)"
1211        );
1212    }
1213}