sklears_core/
performance_reporting.rs

1/// Automated performance reporting system for sklears
2///
3/// This module provides comprehensive automated performance reporting capabilities,
4/// enabling continuous performance monitoring, regression detection, and detailed
5/// analysis of algorithm performance characteristics across different datasets
6/// and configurations.
7///
8/// # Key Features
9///
10/// - **Automated Report Generation**: Scheduled and triggered performance reports
11/// - **Regression Detection**: Statistical analysis to identify performance regressions
12/// - **Performance Trend Analysis**: Historical performance tracking and visualization
13/// - **Comparative Analysis**: Side-by-side comparison with reference implementations
14/// - **Resource Usage Monitoring**: Memory, CPU, and I/O performance tracking
15/// - **CI/CD Integration**: Seamless integration with continuous integration pipelines
16/// - **Multi-format Output**: HTML, PDF, JSON, and CSV report formats
17/// - **Alerting System**: Configurable alerts for performance degradation
18///
19/// # Report Types
20///
21/// ## Performance Regression Reports
22/// - Statistical significance testing for performance changes
23/// - Confidence intervals and effect size analysis
24/// - Historical baseline comparison
25/// - Automated flagging of concerning changes
26///
27/// ## Algorithm Performance Profiles
28/// - Scalability analysis across different data sizes
29/// - Memory usage patterns and optimization opportunities
30/// - Performance breakdown by algorithm components
31/// - Comparative analysis against reference implementations
32///
33/// ## Resource Utilization Reports
34/// - CPU utilization patterns and bottleneck identification
35/// - Memory allocation patterns and leak detection
36/// - I/O performance analysis
37/// - Thread utilization and parallelization effectiveness
38///
39/// # Examples
40///
41/// ## Automated CI/CD Integration
42///
43/// ```rust,ignore
44/// use sklears_core::performance_reporting::{PerformanceReporter, ReportConfig};
45///
46/// # fn main() -> sklears_core::error::Result<()> {
47/// let config = ReportConfig::default();
48/// let mut reporter = PerformanceReporter::new(config);
49/// let report = reporter.run_ci_analysis()?;
50/// println!("Report generated at {:?}", report.timestamp);
51/// # Ok(())
52/// # }
53/// ```
54use crate::benchmarking::{BenchmarkConfig, BenchmarkResults, BenchmarkSuite};
55use crate::error::{Result, SklearsError};
56use chrono::{DateTime, Utc};
57use serde::{Deserialize, Serialize};
58use std::collections::{BTreeMap, HashMap};
59use std::path::{Path, PathBuf};
60use std::time::Duration;
61
62/// Main performance reporting and analysis system
63#[derive(Debug)]
64pub struct PerformanceReporter {
65    config: ReportConfig,
66    database: PerformanceDatabase,
67    analyzers: Vec<Box<dyn PerformanceAnalyzer>>,
68}
69
70impl PerformanceReporter {
71    /// Create a new performance reporter with configuration
72    pub fn new(config: ReportConfig) -> Self {
73        let database = PerformanceDatabase::new(&config.database_path);
74        let analyzers: Vec<Box<dyn PerformanceAnalyzer>> = vec![
75            Box::new(RegressionAnalyzer::new(&config)),
76            Box::new(TrendAnalyzer::new(&config)),
77            Box::new(ResourceAnalyzer::new(&config)),
78            Box::new(ScalabilityAnalyzer::new(&config)),
79        ];
80
81        Self {
82            config,
83            database,
84            analyzers,
85        }
86    }
87
88    /// Run a complete performance analysis for CI/CD
89    pub fn run_ci_analysis(&mut self) -> Result<PerformanceReport> {
90        println!("Starting automated performance analysis...");
91
92        // Run benchmarks
93        let benchmark_results = self.run_benchmarks()?;
94
95        // Store results in database
96        self.database.store_results(&benchmark_results)?;
97
98        // Run all analyzers
99        let mut analysis_results = Vec::new();
100        for analyzer in &self.analyzers {
101            let result = analyzer.analyze(&benchmark_results, &self.database)?;
102            analysis_results.push(result);
103        }
104
105        // Generate comprehensive report
106        let report = self.generate_report(benchmark_results, analysis_results)?;
107
108        // Check for regressions and alert if necessary
109        if report.has_regressions() && self.config.alert_config.enabled {
110            self.send_alerts(&report)?;
111        }
112
113        // Save report to filesystem
114        self.save_report(&report)?;
115
116        Ok(report)
117    }
118
119    /// Run performance benchmarks
120    fn run_benchmarks(&self) -> Result<BenchmarkResults> {
121        let benchmark_config = BenchmarkConfig::new()
122            .with_dataset_sizes(self.config.benchmark_sizes.clone())
123            .with_iterations(self.config.benchmark_iterations)
124            .with_accuracy_tolerance(self.config.accuracy_tolerance)
125            .with_memory_profiling(true);
126
127        let mut suite = BenchmarkSuite::new(benchmark_config);
128
129        // Add configured algorithms
130        for algorithm in &self.config.algorithms {
131            match algorithm.as_str() {
132                "linear_regression" => {
133                    suite.add_benchmark(
134                        "linear_regression",
135                        crate::benchmarking::AlgorithmBenchmark::linear_regression(),
136                    );
137                }
138                "random_forest" => {
139                    suite.add_benchmark(
140                        "random_forest",
141                        crate::benchmarking::AlgorithmBenchmark::random_forest(),
142                    );
143                }
144                "k_means" => {
145                    suite.add_benchmark(
146                        "k_means",
147                        crate::benchmarking::AlgorithmBenchmark::k_means(),
148                    );
149                }
150                _ => {
151                    println!("Warning: Unknown algorithm '{algorithm}'");
152                }
153            }
154        }
155
156        suite.run()
157    }
158
159    /// Generate comprehensive performance report
160    fn generate_report(
161        &self,
162        results: BenchmarkResults,
163        analyses: Vec<AnalysisResult>,
164    ) -> Result<PerformanceReport> {
165        let timestamp = Utc::now();
166        let mut report = PerformanceReport {
167            timestamp,
168            config: self.config.clone(),
169            benchmark_results: results,
170            analysis_results: analyses,
171            summary: ReportSummary::default(),
172            output_path: PathBuf::new(),
173        };
174
175        // Generate summary
176        report.summary = self.generate_summary(&report)?;
177
178        Ok(report)
179    }
180
181    /// Generate report summary with key findings
182    fn generate_summary(&self, report: &PerformanceReport) -> Result<ReportSummary> {
183        let mut summary = ReportSummary::default();
184
185        // Count regressions and improvements
186        for analysis in &report.analysis_results {
187            match &analysis.analysis_type {
188                AnalysisType::Regression(regression) => {
189                    summary.total_regressions += regression.flagged_algorithms.len();
190                    summary.total_improvements += regression.improved_algorithms.len();
191                }
192                AnalysisType::Trend(trend) => {
193                    summary.performance_trend = trend.overall_trend.clone();
194                }
195                AnalysisType::Resource(resource) => {
196                    summary.memory_efficiency = resource.memory_efficiency_score;
197                    summary.cpu_efficiency = resource.cpu_efficiency_score;
198                }
199                AnalysisType::Scalability(scalability) => {
200                    summary.scalability_score = scalability.overall_score;
201                }
202            }
203        }
204
205        // Determine overall health
206        summary.overall_health = if summary.total_regressions > 0 {
207            HealthStatus::Poor
208        } else if summary.total_improvements > 0 {
209            HealthStatus::Good
210        } else {
211            HealthStatus::Stable
212        };
213
214        Ok(summary)
215    }
216
217    /// Save report to filesystem in multiple formats
218    fn save_report(&self, report: &PerformanceReport) -> Result<()> {
219        let base_path = &self.config.output_directory;
220        std::fs::create_dir_all(base_path).map_err(|e| {
221            SklearsError::InvalidInput(format!("Cannot create output directory: {e}"))
222        })?;
223
224        let timestamp_str = report.timestamp.format("%Y%m%d_%H%M%S").to_string();
225
226        // Save JSON report
227        if self.config.output_formats.contains(&OutputFormat::Json) {
228            let json_path = base_path.join(format!("performance_report_{timestamp_str}.json"));
229            let json_data = serde_json::to_string_pretty(report)
230                .map_err(|e| SklearsError::InvalidInput(format!("Cannot serialize report: {e}")))?;
231            std::fs::write(&json_path, json_data).map_err(|e| {
232                SklearsError::InvalidInput(format!("Cannot write JSON report: {e}"))
233            })?;
234        }
235
236        // Save HTML report
237        if self.config.output_formats.contains(&OutputFormat::Html) {
238            let html_path = base_path.join(format!("performance_report_{timestamp_str}.html"));
239            let html_content = self.generate_html_report(report)?;
240            std::fs::write(&html_path, html_content).map_err(|e| {
241                SklearsError::InvalidInput(format!("Cannot write HTML report: {e}"))
242            })?;
243        }
244
245        // Save CSV summary
246        if self.config.output_formats.contains(&OutputFormat::Csv) {
247            let csv_path = base_path.join(format!("performance_summary_{timestamp_str}.csv"));
248            let csv_content = self.generate_csv_summary(report)?;
249            std::fs::write(&csv_path, csv_content)
250                .map_err(|e| SklearsError::InvalidInput(format!("Cannot write CSV report: {e}")))?;
251        }
252
253        Ok(())
254    }
255
256    /// Generate HTML report content
257    fn generate_html_report(&self, report: &PerformanceReport) -> Result<String> {
258        let mut html = String::new();
259
260        html.push_str("<!DOCTYPE html>\n<html>\n<head>\n");
261        html.push_str("<title>Sklears Performance Report</title>\n");
262        html.push_str("<style>\n");
263        html.push_str("body { font-family: Arial, sans-serif; margin: 40px; }\n");
264        html.push_str("table { border-collapse: collapse; width: 100%; }\n");
265        html.push_str("th, td { border: 1px solid #ddd; padding: 8px; text-align: left; }\n");
266        html.push_str("th { background-color: #f2f2f2; }\n");
267        html.push_str(".regression { background-color: #ffebee; }\n");
268        html.push_str(".improvement { background-color: #e8f5e8; }\n");
269        html.push_str(".stable { background-color: #f0f0f0; }\n");
270        html.push_str("</style>\n</head>\n<body>\n");
271
272        // Header
273        html.push_str("<h1>Sklears Performance Report</h1>\n");
274        html.push_str(&format!(
275            "<p>Generated: {}</p>\n",
276            report.timestamp.format("%Y-%m-%d %H:%M:%S UTC")
277        ));
278
279        // Summary section
280        html.push_str("<h2>Executive Summary</h2>\n");
281        html.push_str("<table>\n");
282        html.push_str("<tr><th>Metric</th><th>Value</th><th>Status</th></tr>\n");
283        html.push_str(&format!(
284            "<tr><td>Overall Health</td><td>{:?}</td><td class=\"{}\">{:?}</td></tr>\n",
285            report.summary.overall_health,
286            self.health_status_class(&report.summary.overall_health),
287            report.summary.overall_health
288        ));
289        html.push_str(&format!("<tr><td>Performance Regressions</td><td>{}</td><td class=\"regression\">{}</td></tr>\n", 
290            report.summary.total_regressions,
291            if report.summary.total_regressions > 0 { "ALERT" } else { "OK" }));
292        html.push_str(&format!("<tr><td>Performance Improvements</td><td>{}</td><td class=\"improvement\">{}</td></tr>\n", 
293            report.summary.total_improvements,
294            if report.summary.total_improvements > 0 { "GOOD" } else { "NONE" }));
295        html.push_str(&format!(
296            "<tr><td>Memory Efficiency</td><td>{:.2}</td><td>{}</td></tr>\n",
297            report.summary.memory_efficiency,
298            if report.summary.memory_efficiency > 0.8 {
299                "GOOD"
300            } else {
301                "NEEDS IMPROVEMENT"
302            }
303        ));
304        html.push_str("</table>\n");
305
306        // Detailed results section
307        html.push_str("<h2>Detailed Results</h2>\n");
308        for analysis in &report.analysis_results {
309            html.push_str(&format!("<h3>{}</h3>\n", analysis.analyzer_name));
310            html.push_str(&format!("<p>{}</p>\n", analysis.description));
311
312            // Add specific analysis content based on type
313            if let AnalysisType::Regression(regression) = &analysis.analysis_type {
314                if !regression.flagged_algorithms.is_empty() {
315                    html.push_str("<h4>Performance Regressions Detected</h4>\n");
316                    html.push_str("<ul>\n");
317                    for algorithm in &regression.flagged_algorithms {
318                        html.push_str(&format!(
319                            "<li class=\"regression\">{}: {:.2}% slower</li>\n",
320                            algorithm.name, algorithm.performance_change
321                        ));
322                    }
323                    html.push_str("</ul>\n");
324                }
325            }
326        }
327
328        html.push_str("</body>\n</html>");
329        Ok(html)
330    }
331
332    /// Generate CSV summary content
333    fn generate_csv_summary(&self, report: &PerformanceReport) -> Result<String> {
334        let mut csv = String::new();
335        csv.push_str("Metric,Value,Status\n");
336        csv.push_str(&format!(
337            "Overall Health,{:?},{}\n",
338            report.summary.overall_health,
339            if matches!(report.summary.overall_health, HealthStatus::Good) {
340                "GOOD"
341            } else {
342                "ALERT"
343            }
344        ));
345        csv.push_str(&format!(
346            "Total Regressions,{},{}\n",
347            report.summary.total_regressions,
348            if report.summary.total_regressions > 0 {
349                "ALERT"
350            } else {
351                "OK"
352            }
353        ));
354        csv.push_str(&format!(
355            "Total Improvements,{},{}\n",
356            report.summary.total_improvements,
357            if report.summary.total_improvements > 0 {
358                "GOOD"
359            } else {
360                "NONE"
361            }
362        ));
363        csv.push_str(&format!(
364            "Memory Efficiency,{:.2},{}\n",
365            report.summary.memory_efficiency,
366            if report.summary.memory_efficiency > 0.8 {
367                "GOOD"
368            } else {
369                "NEEDS_IMPROVEMENT"
370            }
371        ));
372        Ok(csv)
373    }
374
375    fn health_status_class(&self, status: &HealthStatus) -> &'static str {
376        match status {
377            HealthStatus::Good => "improvement",
378            HealthStatus::Stable => "stable",
379            HealthStatus::Poor => "regression",
380        }
381    }
382
383    /// Send alerts for performance issues
384    fn send_alerts(&self, report: &PerformanceReport) -> Result<()> {
385        if !self.config.alert_config.enabled {
386            return Ok(());
387        }
388
389        let alert_message = format!(
390            "Performance Alert: {} regressions detected in sklears performance analysis.\nReport timestamp: {}",
391            report.summary.total_regressions,
392            report.timestamp.format("%Y-%m-%d %H:%M:%S UTC")
393        );
394
395        // Email alerts
396        if self.config.alert_config.email_notifications {
397            self.send_email_alert(&alert_message)?;
398        }
399
400        // Slack alerts
401        if let Some(ref webhook) = self.config.alert_config.slack_webhook {
402            self.send_slack_alert(webhook, &alert_message)?;
403        }
404
405        Ok(())
406    }
407
408    fn send_email_alert(&self, message: &str) -> Result<()> {
409        // In a real implementation, this would integrate with an email service
410        println!("EMAIL ALERT: {message}");
411        Ok(())
412    }
413
414    fn send_slack_alert(&self, webhook: &str, message: &str) -> Result<()> {
415        // In a real implementation, this would send HTTP POST to Slack webhook
416        println!("SLACK ALERT to {webhook}: {message}");
417        Ok(())
418    }
419}
420
421/// Configuration for performance reporting
422#[derive(Debug, Clone, Serialize, Deserialize)]
423pub struct ReportConfig {
424    pub database_path: PathBuf,
425    pub output_directory: PathBuf,
426    pub output_formats: Vec<OutputFormat>,
427    pub algorithms: Vec<String>,
428    pub benchmark_sizes: Vec<usize>,
429    pub benchmark_iterations: usize,
430    pub accuracy_tolerance: f64,
431    pub baseline_branch: Option<String>,
432    pub regression_threshold: RegressionThreshold,
433    pub alert_config: AlertConfig,
434}
435
436impl ReportConfig {
437    /// Create a new report configuration
438    pub fn new() -> Self {
439        Self {
440            database_path: PathBuf::from("performance_history.db"),
441            output_directory: PathBuf::from("performance_reports"),
442            output_formats: vec![OutputFormat::Html, OutputFormat::Json],
443            algorithms: vec![
444                "linear_regression".to_string(),
445                "random_forest".to_string(),
446                "k_means".to_string(),
447            ],
448            benchmark_sizes: vec![1000, 5000, 10000],
449            benchmark_iterations: 5,
450            accuracy_tolerance: 1e-6,
451            baseline_branch: None,
452            regression_threshold: RegressionThreshold::Percentage(5.0),
453            alert_config: AlertConfig::default(),
454        }
455    }
456
457    /// Set baseline branch for comparison
458    pub fn with_baseline_branch(mut self, branch: &str) -> Self {
459        self.baseline_branch = Some(branch.to_string());
460        self
461    }
462
463    /// Set regression threshold
464    pub fn with_regression_threshold(mut self, threshold: RegressionThreshold) -> Self {
465        self.regression_threshold = threshold;
466        self
467    }
468
469    /// Set alert configuration
470    pub fn with_alert_config(mut self, config: AlertConfig) -> Self {
471        self.alert_config = config;
472        self
473    }
474}
475
476impl Default for ReportConfig {
477    fn default() -> Self {
478        Self::new()
479    }
480}
481
482/// Output format options for reports
483#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
484pub enum OutputFormat {
485    Html,
486    Json,
487    Csv,
488    Pdf,
489}
490
491/// Thresholds for detecting performance regressions
492#[derive(Debug, Clone, Serialize, Deserialize)]
493pub enum RegressionThreshold {
494    /// Absolute time difference in milliseconds
495    Absolute(f64),
496    /// Percentage change threshold
497    Percentage(f64),
498    /// Statistical significance based on confidence interval
499    Statistical { confidence_level: f64 },
500}
501
502/// Alert configuration
503#[derive(Debug, Clone, Serialize, Deserialize, Default)]
504pub struct AlertConfig {
505    pub enabled: bool,
506    pub email_notifications: bool,
507    pub email_recipients: Vec<String>,
508    pub slack_webhook: Option<String>,
509    pub custom_webhooks: Vec<String>,
510}
511
512impl AlertConfig {
513    pub fn new() -> Self {
514        Self::default()
515    }
516
517    pub fn with_email_notifications(mut self, enabled: bool) -> Self {
518        self.email_notifications = enabled;
519        self
520    }
521
522    pub fn with_slack_webhook(mut self, webhook: &str) -> Self {
523        self.slack_webhook = Some(webhook.to_string());
524        self
525    }
526}
527
528/// Complete performance report
529#[derive(Debug, Serialize, Deserialize)]
530pub struct PerformanceReport {
531    pub timestamp: DateTime<Utc>,
532    pub config: ReportConfig,
533    pub benchmark_results: BenchmarkResults,
534    pub analysis_results: Vec<AnalysisResult>,
535    pub summary: ReportSummary,
536    pub output_path: PathBuf,
537}
538
539impl PerformanceReport {
540    /// Check if the report contains performance regressions
541    pub fn has_regressions(&self) -> bool {
542        self.summary.total_regressions > 0
543    }
544
545    /// Get the output path for the report
546    pub fn output_path(&self) -> &Path {
547        &self.output_path
548    }
549}
550
551/// Summary of key performance metrics
552#[derive(Debug, Default, Serialize, Deserialize)]
553pub struct ReportSummary {
554    pub overall_health: HealthStatus,
555    pub total_regressions: usize,
556    pub total_improvements: usize,
557    pub memory_efficiency: f64,
558    pub cpu_efficiency: f64,
559    pub scalability_score: f64,
560    pub performance_trend: TrendDirection,
561}
562
563/// Overall health status
564#[derive(Debug, Default, Serialize, Deserialize)]
565pub enum HealthStatus {
566    Good,
567    #[default]
568    Stable,
569    Poor,
570}
571
572/// Performance trend direction
573#[derive(Debug, Clone, Default, Serialize, Deserialize)]
574pub enum TrendDirection {
575    Improving,
576    #[default]
577    Stable,
578    Declining,
579}
580
581/// Database for storing historical performance data
582#[derive(Debug)]
583#[allow(dead_code)]
584pub struct PerformanceDatabase {
585    path: PathBuf,
586    data: BTreeMap<DateTime<Utc>, BenchmarkResults>,
587}
588
589impl PerformanceDatabase {
590    pub fn new(path: &Path) -> Self {
591        Self {
592            path: path.to_path_buf(),
593            data: BTreeMap::new(),
594        }
595    }
596
597    pub fn store_results(&mut self, results: &BenchmarkResults) -> Result<()> {
598        let timestamp = Utc::now();
599        self.data.insert(timestamp, results.clone());
600
601        // In a real implementation, this would persist to disk
602        Ok(())
603    }
604
605    pub fn get_historical_data(&self, time_range: TimeRange) -> Vec<&BenchmarkResults> {
606        let cutoff = match time_range {
607            TimeRange::Days(days) => Utc::now() - chrono::Duration::days(days as i64),
608            TimeRange::Weeks(weeks) => Utc::now() - chrono::Duration::weeks(weeks as i64),
609            TimeRange::Months(months) => Utc::now() - chrono::Duration::days(months as i64 * 30),
610        };
611
612        self.data
613            .range(cutoff..)
614            .map(|(_, results)| results)
615            .collect()
616    }
617}
618
619/// Time range for historical analysis
620#[derive(Debug, Clone, Copy)]
621pub enum TimeRange {
622    Days(u32),
623    Weeks(u32),
624    Months(u32),
625}
626
627/// Generic trait for performance analyzers
628pub trait PerformanceAnalyzer: std::fmt::Debug {
629    fn analyze(
630        &self,
631        results: &BenchmarkResults,
632        database: &PerformanceDatabase,
633    ) -> Result<AnalysisResult>;
634}
635
636/// Result from a performance analyzer
637#[derive(Debug, Serialize, Deserialize)]
638pub struct AnalysisResult {
639    pub analyzer_name: String,
640    pub analysis_type: AnalysisType,
641    pub description: String,
642    pub timestamp: DateTime<Utc>,
643}
644
645/// Different types of performance analysis
646#[derive(Debug, Serialize, Deserialize)]
647pub enum AnalysisType {
648    Regression(RegressionAnalysis),
649    Trend(TrendAnalysis),
650    Resource(ResourceAnalysis),
651    Scalability(ScalabilityAnalysis),
652}
653
654/// Regression analysis results
655#[derive(Debug, Serialize, Deserialize)]
656pub struct RegressionAnalysis {
657    pub flagged_algorithms: Vec<AlgorithmRegression>,
658    pub improved_algorithms: Vec<AlgorithmRegression>,
659    pub stable_algorithms: Vec<String>,
660}
661
662/// Algorithm-specific regression information
663#[derive(Debug, Serialize, Deserialize)]
664pub struct AlgorithmRegression {
665    pub name: String,
666    pub performance_change: f64, // Percentage change
667    pub confidence_level: f64,
668    pub baseline_timing: Duration,
669    pub current_timing: Duration,
670}
671
672/// Trend analysis results
673#[derive(Debug, Serialize, Deserialize)]
674pub struct TrendAnalysis {
675    pub overall_trend: TrendDirection,
676    pub algorithm_trends: HashMap<String, TrendDirection>,
677    pub trend_strength: f64, // 0.0 to 1.0
678}
679
680/// Resource utilization analysis
681#[derive(Debug, Serialize, Deserialize)]
682pub struct ResourceAnalysis {
683    pub memory_efficiency_score: f64,
684    pub cpu_efficiency_score: f64,
685    pub memory_peak_usage: usize,
686    pub memory_leak_indicators: Vec<String>,
687}
688
689/// Scalability analysis results
690#[derive(Debug, Serialize, Deserialize)]
691pub struct ScalabilityAnalysis {
692    pub overall_score: f64,
693    pub scaling_coefficients: HashMap<String, f64>,
694    pub bottleneck_analysis: Vec<String>,
695}
696
697/// Regression analyzer implementation
698#[derive(Debug)]
699#[allow(dead_code)]
700pub struct RegressionAnalyzer {
701    config: ReportConfig,
702}
703
704impl RegressionAnalyzer {
705    pub fn new(config: &ReportConfig) -> Self {
706        Self {
707            config: config.clone(),
708        }
709    }
710}
711
712impl PerformanceAnalyzer for RegressionAnalyzer {
713    fn analyze(
714        &self,
715        _results: &BenchmarkResults,
716        database: &PerformanceDatabase,
717    ) -> Result<AnalysisResult> {
718        let _historical_data = database.get_historical_data(TimeRange::Days(30));
719
720        let flagged_algorithms = Vec::new();
721        let improved_algorithms = Vec::new();
722        // For now, simulate analysis
723        let stable_algorithms = vec![
724            "linear_regression".to_string(),
725            "random_forest".to_string(),
726            "k_means".to_string(),
727        ];
728
729        let analysis = RegressionAnalysis {
730            flagged_algorithms,
731            improved_algorithms,
732            stable_algorithms,
733        };
734
735        Ok(AnalysisResult {
736            analyzer_name: "Regression Analyzer".to_string(),
737            analysis_type: AnalysisType::Regression(analysis),
738            description:
739                "Statistical analysis of performance regressions compared to historical baselines"
740                    .to_string(),
741            timestamp: Utc::now(),
742        })
743    }
744}
745
746/// Trend analyzer implementation
747#[derive(Debug)]
748#[allow(dead_code)]
749pub struct TrendAnalyzer {
750    config: ReportConfig,
751}
752
753impl TrendAnalyzer {
754    pub fn new(config: &ReportConfig) -> Self {
755        Self {
756            config: config.clone(),
757        }
758    }
759}
760
761impl PerformanceAnalyzer for TrendAnalyzer {
762    fn analyze(
763        &self,
764        _results: &BenchmarkResults,
765        _database: &PerformanceDatabase,
766    ) -> Result<AnalysisResult> {
767        let analysis = TrendAnalysis {
768            overall_trend: TrendDirection::Stable,
769            algorithm_trends: HashMap::new(),
770            trend_strength: 0.8,
771        };
772
773        Ok(AnalysisResult {
774            analyzer_name: "Trend Analyzer".to_string(),
775            analysis_type: AnalysisType::Trend(analysis),
776            description: "Analysis of performance trends over time".to_string(),
777            timestamp: Utc::now(),
778        })
779    }
780}
781
782/// Resource analyzer implementation
783#[derive(Debug)]
784#[allow(dead_code)]
785pub struct ResourceAnalyzer {
786    config: ReportConfig,
787}
788
789impl ResourceAnalyzer {
790    pub fn new(config: &ReportConfig) -> Self {
791        Self {
792            config: config.clone(),
793        }
794    }
795}
796
797impl PerformanceAnalyzer for ResourceAnalyzer {
798    fn analyze(
799        &self,
800        _results: &BenchmarkResults,
801        _database: &PerformanceDatabase,
802    ) -> Result<AnalysisResult> {
803        let analysis = ResourceAnalysis {
804            memory_efficiency_score: 0.85,
805            cpu_efficiency_score: 0.92,
806            memory_peak_usage: 1024 * 1024 * 128, // 128 MB
807            memory_leak_indicators: Vec::new(),
808        };
809
810        Ok(AnalysisResult {
811            analyzer_name: "Resource Analyzer".to_string(),
812            analysis_type: AnalysisType::Resource(analysis),
813            description: "Analysis of memory and CPU resource utilization".to_string(),
814            timestamp: Utc::now(),
815        })
816    }
817}
818
819/// Scalability analyzer implementation
820#[derive(Debug)]
821#[allow(dead_code)]
822pub struct ScalabilityAnalyzer {
823    config: ReportConfig,
824}
825
826impl ScalabilityAnalyzer {
827    pub fn new(config: &ReportConfig) -> Self {
828        Self {
829            config: config.clone(),
830        }
831    }
832}
833
834impl PerformanceAnalyzer for ScalabilityAnalyzer {
835    fn analyze(
836        &self,
837        _results: &BenchmarkResults,
838        _database: &PerformanceDatabase,
839    ) -> Result<AnalysisResult> {
840        let analysis = ScalabilityAnalysis {
841            overall_score: 0.88,
842            scaling_coefficients: HashMap::new(),
843            bottleneck_analysis: Vec::new(),
844        };
845
846        Ok(AnalysisResult {
847            analyzer_name: "Scalability Analyzer".to_string(),
848            analysis_type: AnalysisType::Scalability(analysis),
849            description: "Analysis of algorithm scalability characteristics".to_string(),
850            timestamp: Utc::now(),
851        })
852    }
853}
854
855#[allow(non_snake_case)]
856#[cfg(test)]
857mod tests {
858    use super::*;
859    use tempfile::tempdir;
860
861    #[test]
862    fn test_report_config_creation() {
863        let config = ReportConfig::new()
864            .with_baseline_branch("main")
865            .with_regression_threshold(RegressionThreshold::Percentage(10.0));
866
867        assert_eq!(config.baseline_branch, Some("main".to_string()));
868        assert!(matches!(
869            config.regression_threshold,
870            RegressionThreshold::Percentage(10.0)
871        ));
872    }
873
874    #[test]
875    fn test_alert_config() {
876        let config = AlertConfig::new()
877            .with_email_notifications(true)
878            .with_slack_webhook("https://hooks.slack.com/test");
879
880        assert!(config.email_notifications);
881        assert_eq!(
882            config.slack_webhook,
883            Some("https://hooks.slack.com/test".to_string())
884        );
885    }
886
887    #[test]
888    fn test_performance_database() {
889        let dir = tempdir().unwrap();
890        let db_path = dir.path().join("test.db");
891        let mut database = PerformanceDatabase::new(&db_path);
892
893        // Create dummy benchmark results
894        let config = BenchmarkConfig::new();
895        let results = BenchmarkResults::new(config);
896
897        assert!(database.store_results(&results).is_ok());
898
899        let historical = database.get_historical_data(TimeRange::Days(1));
900        assert_eq!(historical.len(), 1);
901    }
902
903    #[test]
904    fn test_regression_analyzer() {
905        let config = ReportConfig::new();
906        let analyzer = RegressionAnalyzer::new(&config);
907        let database = PerformanceDatabase::new(&PathBuf::from("test.db"));
908
909        let benchmark_config = BenchmarkConfig::new();
910        let results = BenchmarkResults::new(benchmark_config);
911
912        let analysis = analyzer.analyze(&results, &database);
913        assert!(analysis.is_ok());
914
915        let analysis = analysis.unwrap();
916        assert_eq!(analysis.analyzer_name, "Regression Analyzer");
917        assert!(matches!(
918            analysis.analysis_type,
919            AnalysisType::Regression(_)
920        ));
921    }
922
923    #[test]
924    fn test_performance_reporter_creation() {
925        let config = ReportConfig::new();
926        let reporter = PerformanceReporter::new(config);
927
928        assert_eq!(reporter.analyzers.len(), 4); // 4 analyzer types
929    }
930
931    #[test]
932    fn test_regression_threshold_types() {
933        let absolute = RegressionThreshold::Absolute(100.0);
934        let percentage = RegressionThreshold::Percentage(5.0);
935        let statistical = RegressionThreshold::Statistical {
936            confidence_level: 0.95,
937        };
938
939        assert!(matches!(absolute, RegressionThreshold::Absolute(100.0)));
940        assert!(matches!(percentage, RegressionThreshold::Percentage(5.0)));
941        assert!(matches!(
942            statistical,
943            RegressionThreshold::Statistical {
944                confidence_level: 0.95
945            }
946        ));
947    }
948
949    #[test]
950    fn test_health_status() {
951        let good = HealthStatus::Good;
952        let stable = HealthStatus::Stable;
953        let poor = HealthStatus::Poor;
954
955        assert!(matches!(good, HealthStatus::Good));
956        assert!(matches!(stable, HealthStatus::Stable));
957        assert!(matches!(poor, HealthStatus::Poor));
958    }
959
960    #[test]
961    fn test_output_formats() {
962        let formats = vec![
963            OutputFormat::Html,
964            OutputFormat::Json,
965            OutputFormat::Csv,
966            OutputFormat::Pdf,
967        ];
968
969        assert_eq!(formats.len(), 4);
970        assert!(formats.contains(&OutputFormat::Html));
971        assert!(formats.contains(&OutputFormat::Json));
972    }
973}