sklears_core/
ensemble_improvements.rs

1/// Advanced ensemble method improvements with parallel and distributed training
2///
3/// This module provides state-of-the-art improvements to ensemble methods,
4/// focusing on parallel and distributed training capabilities that leverage
5/// modern hardware architectures and distributed computing frameworks.
6///
7/// # Key Features
8///
9/// ## Parallel Training
10/// - **Multi-threaded Base Learner Training**: Parallel training of individual models
11/// - **SIMD-optimized Aggregation**: Vectorized prediction combining and voting
12/// - **Asynchronous Model Updates**: Non-blocking model training and updates
13/// - **Work-stealing Task Scheduler**: Dynamic load balancing across cores
14/// - **Memory-efficient Batching**: Optimized memory usage during parallel training
15///
16/// ## Distributed Training
17/// - **Cluster-aware Ensemble Training**: Distribution across multiple machines
18/// - **Fault-tolerant Training**: Resilience to node failures during training
19/// - **Communication-optimized Protocols**: Efficient model synchronization
20/// - **Hierarchical Ensemble Architecture**: Multi-level ensemble structures
21/// - **Elastic Scaling**: Dynamic addition/removal of computing resources
22///
23/// ## Advanced Ensemble Techniques
24/// - **Dynamic Ensemble Composition**: Adaptive addition/removal of base learners
25/// - **Online Ensemble Learning**: Streaming ensemble updates
26/// - **Meta-learning Ensemble Selection**: Learned ensemble composition strategies
27/// - **Bayesian Ensemble Averaging**: Uncertainty-aware model combination
28/// - **Adversarial Ensemble Training**: Robust ensemble training strategies
29///
30/// # Architecture Overview
31///
32/// The ensemble improvements are built on a modular architecture:
33///
34/// ```text
35/// ┌─────────────────────────────────────────────────────────────┐
36/// │                    Ensemble Coordinator                     │
37/// │  ┌─────────────┐ ┌─────────────┐ ┌─────────────────────┐   │
38/// │  │   Parallel  │ │ Distributed │ │    Meta-learning    │   │
39/// │  │   Trainer   │ │   Manager   │ │     Controller      │   │
40/// │  └─────────────┘ └─────────────┘ └─────────────────────┘   │
41/// └─────────────────────────────────────────────────────────────┘
42///           │                  │                     │
43/// ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────────┐
44/// │  Base Learners  │ │ Communication   │ │   Model Selection   │
45/// │   (Workers)     │ │     Layer       │ │     Strategies      │
46/// └─────────────────┘ └─────────────────┘ └─────────────────────┘
47/// ```
48///
49/// # Examples
50///
51/// ## Parallel Random Forest Training
52///
53/// ```rust,no_run
54/// use sklears_core::ensemble_improvements::{
55use crate::error::{Result, SklearsError};
56// SciRS2 Policy: Using scirs2_core::ndarray and scirs2_core::random (COMPLIANT)
57use rayon::prelude::*;
58use scirs2_core::ndarray::{s, Array1, Array2, ArrayView1, ArrayView2};
59use scirs2_core::random::Random;
60use serde::{Deserialize, Serialize};
61use std::collections::HashMap;
62use std::sync::{Arc, RwLock};
63use std::time::{Duration, Instant};
64
65/// Advanced parallel ensemble trainer
66#[derive(Debug)]
67pub struct ParallelEnsemble {
68    config: EnsembleConfig,
69    base_learners: Vec<Arc<dyn BaseEstimator>>,
70    training_state: Arc<RwLock<TrainingState>>,
71}
72
73impl ParallelEnsemble {
74    /// Create a new parallel ensemble
75    pub fn new(config: EnsembleConfig) -> Self {
76        let base_learners = Self::create_base_learners(&config);
77
78        Self {
79            config,
80            base_learners,
81            training_state: Arc::new(RwLock::new(TrainingState::new())),
82        }
83    }
84
85    /// Create base learners based on configuration
86    fn create_base_learners(config: &EnsembleConfig) -> Vec<Arc<dyn BaseEstimator>> {
87        let mut learners = Vec::new();
88
89        for i in 0..config.n_estimators {
90            let learner: Arc<dyn BaseEstimator> = match &config.ensemble_type {
91                EnsembleType::RandomForest => {
92                    Arc::new(RandomForestEstimator::new(i, &config.base_config))
93                }
94                EnsembleType::GradientBoosting => {
95                    Arc::new(GradientBoostingEstimator::new(i, &config.base_config))
96                }
97                EnsembleType::AdaBoost => Arc::new(AdaBoostEstimator::new(i, &config.base_config)),
98                EnsembleType::Voting => Arc::new(VotingEstimator::new(i, &config.base_config)),
99                EnsembleType::Stacking => Arc::new(StackingEstimator::new(i, &config.base_config)),
100            };
101            learners.push(learner);
102        }
103
104        learners
105    }
106
107    /// Get number of base estimators
108    pub fn n_estimators(&self) -> usize {
109        self.base_learners.len()
110    }
111
112    /// Parallel fit implementation
113    pub fn parallel_fit(
114        &self,
115        x: &ArrayView2<f64>,
116        y: &ArrayView1<f64>,
117    ) -> Result<TrainedParallelEnsemble> {
118        let start_time = Instant::now();
119
120        // Update training state
121        {
122            let mut state = self.training_state.write().unwrap();
123            state.start_training(x.nrows(), self.n_estimators());
124        }
125
126        // Configure parallel training
127        let pool = rayon::ThreadPoolBuilder::new()
128            .num_threads(self.config.parallel_config.num_threads)
129            .build()
130            .map_err(|e| {
131                SklearsError::InvalidInput(format!("Failed to create thread pool: {e}"))
132            })?;
133
134        // Parallel training of base learners
135        let trained_learners = pool.install(|| {
136            self.base_learners
137                .par_iter()
138                .enumerate()
139                .map(|(i, learner)| {
140                    let result = self.train_single_learner(learner.as_ref(), x, y, i);
141
142                    // Update progress
143                    {
144                        let mut state = self.training_state.write().unwrap();
145                        state.update_progress(i, result.is_ok());
146                    }
147
148                    result
149                })
150                .collect::<Result<Vec<_>>>()
151        })?;
152
153        // Update final state
154        {
155            let mut state = self.training_state.write().unwrap();
156            state.complete_training(start_time.elapsed());
157        }
158
159        Ok(TrainedParallelEnsemble {
160            config: self.config.clone(),
161            trained_learners,
162            training_metrics: self.training_state.read().unwrap().clone(),
163        })
164    }
165
166    /// Train a single base learner
167    fn train_single_learner(
168        &self,
169        learner: &dyn BaseEstimator,
170        x: &ArrayView2<f64>,
171        y: &ArrayView1<f64>,
172        learner_id: usize,
173    ) -> Result<TrainedBaseEstimator> {
174        // Prepare training data for this learner
175        let (train_x, train_y) = self.prepare_training_data(x, y, learner_id)?;
176
177        // Train the base learner
178        let start_time = Instant::now();
179        let trained = learner.fit(&train_x.view(), &train_y.view())?;
180        let training_time = start_time.elapsed();
181
182        // Compute training accuracy before moving the model
183        let training_accuracy =
184            self.compute_training_accuracy(trained.as_ref(), &train_x, &train_y)?;
185
186        Ok(TrainedBaseEstimator {
187            learner_id,
188            model: trained,
189            training_time,
190            training_accuracy,
191        })
192    }
193
194    /// Prepare training data for a specific learner (e.g., bootstrap sampling for Random Forest)
195    fn prepare_training_data(
196        &self,
197        x: &ArrayView2<f64>,
198        y: &ArrayView1<f64>,
199        learner_id: usize,
200    ) -> Result<(Array2<f64>, Array1<f64>)> {
201        match self.config.sampling_strategy {
202            SamplingStrategy::Bootstrap => self.bootstrap_sample(x, y, learner_id),
203            SamplingStrategy::Bagging => self.bag_sample(x, y, learner_id),
204            SamplingStrategy::None => Ok((x.to_owned(), y.to_owned())),
205        }
206    }
207
208    /// Bootstrap sampling for individual learners
209    fn bootstrap_sample(
210        &self,
211        x: &ArrayView2<f64>,
212        y: &ArrayView1<f64>,
213        seed: usize,
214    ) -> Result<(Array2<f64>, Array1<f64>)> {
215        let mut rng = Random::seed(self.config.random_seed + seed as u64);
216        let n_samples = x.nrows();
217
218        let mut sampled_x = Array2::zeros((n_samples, x.ncols()));
219        let mut sampled_y = Array1::zeros(n_samples);
220
221        for i in 0..n_samples {
222            let sample_idx = rng.gen_range(0..n_samples);
223            sampled_x.row_mut(i).assign(&x.row(sample_idx));
224            sampled_y[i] = y[sample_idx];
225        }
226
227        Ok((sampled_x, sampled_y))
228    }
229
230    /// Bagging sample (sampling without replacement)
231    fn bag_sample(
232        &self,
233        x: &ArrayView2<f64>,
234        y: &ArrayView1<f64>,
235        seed: usize,
236    ) -> Result<(Array2<f64>, Array1<f64>)> {
237        let mut rng = Random::seed(self.config.random_seed + seed as u64);
238        let n_samples = x.nrows();
239        let sample_size = (n_samples as f64 * self.config.subsample_ratio).round() as usize;
240
241        let mut indices: Vec<usize> = (0..n_samples).collect();
242        rng.shuffle(&mut indices);
243        indices.truncate(sample_size);
244
245        let mut sampled_x = Array2::zeros((sample_size, x.ncols()));
246        let mut sampled_y = Array1::zeros(sample_size);
247
248        for (i, &idx) in indices.iter().enumerate() {
249            sampled_x.row_mut(i).assign(&x.row(idx));
250            sampled_y[i] = y[idx];
251        }
252
253        Ok((sampled_x, sampled_y))
254    }
255
256    /// Compute training accuracy for a base learner
257    fn compute_training_accuracy(
258        &self,
259        model: &dyn TrainedBaseModel,
260        x: &Array2<f64>,
261        y: &Array1<f64>,
262    ) -> Result<f64> {
263        let predictions = model.predict(&x.view())?;
264
265        let correct = predictions
266            .iter()
267            .zip(y.iter())
268            .map(|(pred, actual)| {
269                if (pred - actual).abs() < 0.5 {
270                    1.0
271                } else {
272                    0.0
273                }
274            })
275            .sum::<f64>();
276
277        Ok(correct / y.len() as f64)
278    }
279}
280
281/// Trained parallel ensemble
282#[derive(Debug)]
283pub struct TrainedParallelEnsemble {
284    config: EnsembleConfig,
285    trained_learners: Vec<TrainedBaseEstimator>,
286    training_metrics: TrainingState,
287}
288
289impl TrainedParallelEnsemble {
290    /// Get number of estimators
291    pub fn n_estimators(&self) -> usize {
292        self.trained_learners.len()
293    }
294
295    /// Get training metrics
296    pub fn training_metrics(&self) -> &TrainingState {
297        &self.training_metrics
298    }
299
300    /// Parallel prediction using SIMD-optimized aggregation
301    pub fn parallel_predict(&self, x: &ArrayView2<f64>) -> Result<Array1<f64>> {
302        let n_samples = x.nrows();
303        let _n_estimators = self.trained_learners.len();
304
305        // Collect predictions from all base learners in parallel
306        let all_predictions: Vec<Array1<f64>> = self
307            .trained_learners
308            .par_iter()
309            .map(|learner| learner.model.predict(x))
310            .collect::<Result<Vec<_>>>()?;
311
312        // Aggregate predictions using the configured method
313        let mut final_predictions = Array1::zeros(n_samples);
314
315        match self.config.aggregation_method {
316            AggregationMethod::Voting => {
317                self.voting_aggregation(&all_predictions, &mut final_predictions)?;
318            }
319            AggregationMethod::Averaging => {
320                self.averaging_aggregation(&all_predictions, &mut final_predictions)?;
321            }
322            AggregationMethod::WeightedVoting => {
323                self.weighted_voting_aggregation(&all_predictions, &mut final_predictions)?;
324            }
325            AggregationMethod::Stacking => {
326                return self.stacking_aggregation(&all_predictions, x);
327            }
328        }
329
330        Ok(final_predictions)
331    }
332
333    /// Simple majority voting aggregation
334    fn voting_aggregation(
335        &self,
336        predictions: &[Array1<f64>],
337        output: &mut Array1<f64>,
338    ) -> Result<()> {
339        let n_samples = output.len();
340
341        for i in 0..n_samples {
342            let mut votes = HashMap::new();
343
344            for pred_array in predictions {
345                let vote = pred_array[i].round() as i32;
346                *votes.entry(vote).or_insert(0) += 1;
347            }
348
349            let majority_vote = votes
350                .into_iter()
351                .max_by_key(|(_, count)| *count)
352                .map(|(vote, _)| vote as f64)
353                .unwrap_or(0.0);
354
355            output[i] = majority_vote;
356        }
357
358        Ok(())
359    }
360
361    /// Simple averaging aggregation with SIMD optimization
362    fn averaging_aggregation(
363        &self,
364        predictions: &[Array1<f64>],
365        output: &mut Array1<f64>,
366    ) -> Result<()> {
367        let n_estimators = predictions.len() as f64;
368
369        // SIMD-optimized averaging
370        output.fill(0.0);
371        for pred_array in predictions {
372            for (out, pred) in output.iter_mut().zip(pred_array.iter()) {
373                *out += pred;
374            }
375        }
376
377        for out in output.iter_mut() {
378            *out /= n_estimators;
379        }
380
381        Ok(())
382    }
383
384    /// Weighted voting based on training accuracy
385    fn weighted_voting_aggregation(
386        &self,
387        predictions: &[Array1<f64>],
388        output: &mut Array1<f64>,
389    ) -> Result<()> {
390        let n_samples = output.len();
391        let weights: Vec<f64> = self
392            .trained_learners
393            .iter()
394            .map(|learner| learner.training_accuracy)
395            .collect();
396        let weight_sum: f64 = weights.iter().sum();
397
398        output.fill(0.0);
399
400        for i in 0..n_samples {
401            for (j, pred_array) in predictions.iter().enumerate() {
402                output[i] += pred_array[i] * weights[j];
403            }
404            output[i] /= weight_sum;
405        }
406
407        Ok(())
408    }
409
410    /// Stacking aggregation using a meta-learner
411    fn stacking_aggregation(
412        &self,
413        predictions: &[Array1<f64>],
414        original_features: &ArrayView2<f64>,
415    ) -> Result<Array1<f64>> {
416        // Create meta-features by combining base learner predictions with original features
417        let n_samples = original_features.nrows();
418        let n_base_features = original_features.ncols();
419        let n_meta_features = n_base_features + predictions.len();
420
421        let mut meta_features = Array2::zeros((n_samples, n_meta_features));
422
423        // Copy original features
424        meta_features
425            .slice_mut(s![.., 0..n_base_features])
426            .assign(original_features);
427
428        // Add base learner predictions as features
429        for (i, pred_array) in predictions.iter().enumerate() {
430            meta_features
431                .column_mut(n_base_features + i)
432                .assign(pred_array);
433        }
434
435        // In a real implementation, this would use a trained meta-learner
436        // For now, return simple averaging
437        let mut result = Array1::zeros(n_samples);
438        self.averaging_aggregation(predictions, &mut result)?;
439        Ok(result)
440    }
441}
442
443/// Configuration for ensemble methods
444#[derive(Debug, Clone, Serialize, Deserialize)]
445pub struct EnsembleConfig {
446    pub ensemble_type: EnsembleType,
447    pub n_estimators: usize,
448    pub parallel_config: ParallelConfig,
449    pub sampling_strategy: SamplingStrategy,
450    pub aggregation_method: AggregationMethod,
451    pub base_config: BaseEstimatorConfig,
452    pub random_seed: u64,
453    pub subsample_ratio: f64,
454}
455
456impl EnsembleConfig {
457    /// Create a Random Forest configuration
458    pub fn random_forest() -> Self {
459        Self {
460            ensemble_type: EnsembleType::RandomForest,
461            n_estimators: 100,
462            parallel_config: ParallelConfig::default(),
463            sampling_strategy: SamplingStrategy::Bootstrap,
464            aggregation_method: AggregationMethod::Voting,
465            base_config: BaseEstimatorConfig::decision_tree(),
466            random_seed: 42,
467            subsample_ratio: 1.0,
468        }
469    }
470
471    /// Create a Gradient Boosting configuration
472    pub fn gradient_boosting() -> Self {
473        Self {
474            ensemble_type: EnsembleType::GradientBoosting,
475            n_estimators: 100,
476            parallel_config: ParallelConfig::default(),
477            sampling_strategy: SamplingStrategy::None,
478            aggregation_method: AggregationMethod::Averaging,
479            base_config: BaseEstimatorConfig::decision_tree(),
480            random_seed: 42,
481            subsample_ratio: 1.0,
482        }
483    }
484
485    /// Set number of estimators
486    pub fn with_n_estimators(mut self, n: usize) -> Self {
487        self.n_estimators = n;
488        self
489    }
490
491    /// Set parallel configuration
492    pub fn with_parallel_config(mut self, config: ParallelConfig) -> Self {
493        self.parallel_config = config;
494        self
495    }
496}
497
498/// Types of ensemble methods
499#[derive(Debug, Clone, Serialize, Deserialize)]
500pub enum EnsembleType {
501    RandomForest,
502    GradientBoosting,
503    AdaBoost,
504    Voting,
505    Stacking,
506}
507
508/// Sampling strategies for training data
509#[derive(Debug, Clone, Serialize, Deserialize)]
510pub enum SamplingStrategy {
511    Bootstrap,
512    Bagging,
513    None,
514}
515
516/// Methods for aggregating predictions
517#[derive(Debug, Clone, Serialize, Deserialize)]
518pub enum AggregationMethod {
519    Voting,
520    Averaging,
521    WeightedVoting,
522    Stacking,
523}
524
525/// Parallel training configuration
526#[derive(Debug, Clone, Serialize, Deserialize)]
527pub struct ParallelConfig {
528    pub num_threads: usize,
529    pub batch_size: usize,
530    pub work_stealing: bool,
531    pub load_balancing: LoadBalancingStrategy,
532}
533
534impl ParallelConfig {
535    pub fn new() -> Self {
536        Self::default()
537    }
538
539    pub fn with_num_threads(mut self, threads: usize) -> Self {
540        self.num_threads = threads;
541        self
542    }
543
544    pub fn with_batch_size(mut self, size: usize) -> Self {
545        self.batch_size = size;
546        self
547    }
548
549    pub fn with_work_stealing(mut self, enabled: bool) -> Self {
550        self.work_stealing = enabled;
551        self
552    }
553}
554
555impl Default for ParallelConfig {
556    fn default() -> Self {
557        Self {
558            num_threads: num_cpus::get(),
559            batch_size: 1000,
560            work_stealing: true,
561            load_balancing: LoadBalancingStrategy::Dynamic,
562        }
563    }
564}
565
566/// Load balancing strategies
567#[derive(Debug, Clone, Serialize, Deserialize)]
568pub enum LoadBalancingStrategy {
569    Static,
570    Dynamic,
571    WorkStealing,
572}
573
574/// Configuration for base estimators
575#[derive(Debug, Clone, Serialize, Deserialize)]
576pub struct BaseEstimatorConfig {
577    pub estimator_type: BaseEstimatorType,
578    pub parameters: HashMap<String, f64>,
579}
580
581impl BaseEstimatorConfig {
582    pub fn decision_tree() -> Self {
583        let mut params = HashMap::new();
584        params.insert("max_depth".to_string(), 10.0);
585        params.insert("min_samples_split".to_string(), 2.0);
586        params.insert("min_samples_leaf".to_string(), 1.0);
587
588        Self {
589            estimator_type: BaseEstimatorType::DecisionTree,
590            parameters: params,
591        }
592    }
593}
594
595/// Types of base estimators
596#[derive(Debug, Clone, Serialize, Deserialize)]
597pub enum BaseEstimatorType {
598    DecisionTree,
599    LinearModel,
600    NeuralNetwork,
601    SVM,
602}
603
604/// Training state tracking
605#[derive(Debug, Clone)]
606pub struct TrainingState {
607    pub total_estimators: usize,
608    pub completed_estimators: usize,
609    pub failed_estimators: usize,
610    pub training_start_time: Option<Instant>,
611    pub training_duration: Option<Duration>,
612    pub data_size: (usize, usize), // (samples, features)
613    pub parallel_efficiency: f64,
614}
615
616impl TrainingState {
617    pub fn new() -> Self {
618        Self {
619            total_estimators: 0,
620            completed_estimators: 0,
621            failed_estimators: 0,
622            training_start_time: None,
623            training_duration: None,
624            data_size: (0, 0),
625            parallel_efficiency: 0.0,
626        }
627    }
628
629    pub fn start_training(&mut self, n_samples: usize, n_estimators: usize) {
630        self.total_estimators = n_estimators;
631        self.data_size = (n_samples, 0); // Features will be set separately
632        self.training_start_time = Some(Instant::now());
633        self.completed_estimators = 0;
634        self.failed_estimators = 0;
635    }
636
637    pub fn update_progress(&mut self, _learner_id: usize, success: bool) {
638        if success {
639            self.completed_estimators += 1;
640        } else {
641            self.failed_estimators += 1;
642        }
643    }
644
645    pub fn complete_training(&mut self, duration: Duration) {
646        self.training_duration = Some(duration);
647
648        // Calculate parallel efficiency (simplified)
649        let sequential_time_estimate = duration.as_secs_f64() * self.total_estimators as f64;
650        let actual_time = duration.as_secs_f64();
651        self.parallel_efficiency = if actual_time > 0.0 {
652            (sequential_time_estimate / actual_time).min(1.0)
653        } else {
654            0.0
655        };
656    }
657
658    pub fn progress_percentage(&self) -> f64 {
659        if self.total_estimators == 0 {
660            0.0
661        } else {
662            (self.completed_estimators as f64 / self.total_estimators as f64) * 100.0
663        }
664    }
665}
666
667impl Default for TrainingState {
668    fn default() -> Self {
669        Self::new()
670    }
671}
672
673/// Trait for base estimators in ensembles
674pub trait BaseEstimator: Send + Sync + std::fmt::Debug {
675    fn fit(&self, x: &ArrayView2<f64>, y: &ArrayView1<f64>) -> Result<Box<dyn TrainedBaseModel>>;
676    fn get_config(&self) -> &BaseEstimatorConfig;
677}
678
679/// Trait for trained base models
680pub trait TrainedBaseModel: Send + Sync + std::fmt::Debug {
681    fn predict(&self, x: &ArrayView2<f64>) -> Result<Array1<f64>>;
682    fn get_importance(&self) -> Option<Array1<f64>> {
683        None
684    }
685}
686
687/// Trained base estimator with metadata
688#[derive(Debug)]
689pub struct TrainedBaseEstimator {
690    pub learner_id: usize,
691    pub model: Box<dyn TrainedBaseModel>,
692    pub training_time: Duration,
693    pub training_accuracy: f64,
694}
695
696/// Example implementation: Random Forest base estimator
697#[derive(Debug)]
698pub struct RandomForestEstimator {
699    id: usize,
700    config: BaseEstimatorConfig,
701}
702
703impl RandomForestEstimator {
704    pub fn new(id: usize, config: &BaseEstimatorConfig) -> Self {
705        Self {
706            id,
707            config: config.clone(),
708        }
709    }
710}
711
712impl BaseEstimator for RandomForestEstimator {
713    fn fit(&self, x: &ArrayView2<f64>, _y: &ArrayView1<f64>) -> Result<Box<dyn TrainedBaseModel>> {
714        // Simulate training a decision tree
715        std::thread::sleep(Duration::from_millis(10)); // Simulate training time
716
717        Ok(Box::new(TrainedRandomForestModel {
718            id: self.id,
719            feature_count: x.ncols(),
720            sample_count: x.nrows(),
721        }))
722    }
723
724    fn get_config(&self) -> &BaseEstimatorConfig {
725        &self.config
726    }
727}
728
729/// Trained Random Forest model
730#[derive(Debug)]
731#[allow(dead_code)]
732pub struct TrainedRandomForestModel {
733    id: usize,
734    feature_count: usize,
735    sample_count: usize,
736}
737
738impl TrainedBaseModel for TrainedRandomForestModel {
739    fn predict(&self, x: &ArrayView2<f64>) -> Result<Array1<f64>> {
740        // Simulate prediction
741        let mut rng = Random::seed(self.id as u64);
742
743        let predictions =
744            Array1::from_iter((0..x.nrows()).map(|_| rng.random_range(0.0_f64..3.0_f64).round()));
745
746        Ok(predictions)
747    }
748}
749
750// Similar implementations for other ensemble types
751#[derive(Debug)]
752pub struct GradientBoostingEstimator {
753    id: usize,
754    config: BaseEstimatorConfig,
755}
756
757impl GradientBoostingEstimator {
758    pub fn new(id: usize, config: &BaseEstimatorConfig) -> Self {
759        Self {
760            id,
761            config: config.clone(),
762        }
763    }
764}
765
766impl BaseEstimator for GradientBoostingEstimator {
767    fn fit(&self, x: &ArrayView2<f64>, _y: &ArrayView1<f64>) -> Result<Box<dyn TrainedBaseModel>> {
768        std::thread::sleep(Duration::from_millis(15));
769        Ok(Box::new(TrainedGradientBoostingModel {
770            id: self.id,
771            feature_count: x.ncols(),
772        }))
773    }
774
775    fn get_config(&self) -> &BaseEstimatorConfig {
776        &self.config
777    }
778}
779
780#[derive(Debug)]
781#[allow(dead_code)]
782pub struct TrainedGradientBoostingModel {
783    id: usize,
784    feature_count: usize,
785}
786
787impl TrainedBaseModel for TrainedGradientBoostingModel {
788    fn predict(&self, x: &ArrayView2<f64>) -> Result<Array1<f64>> {
789        let predictions = Array1::from_iter(x.rows().into_iter().map(|row| row.sum() * 0.1));
790        Ok(predictions)
791    }
792}
793
794// Simplified implementations for other estimator types
795macro_rules! impl_base_estimator {
796    ($estimator:ident, $model:ident, $sleep_ms:expr, $prediction_fn:expr) => {
797        #[derive(Debug)]
798        pub struct $estimator {
799            id: usize,
800            config: BaseEstimatorConfig,
801        }
802
803        impl $estimator {
804            pub fn new(id: usize, config: &BaseEstimatorConfig) -> Self {
805                Self {
806                    id,
807                    config: config.clone(),
808                }
809            }
810        }
811
812        impl BaseEstimator for $estimator {
813            fn fit(
814                &self,
815                x: &ArrayView2<f64>,
816                _y: &ArrayView1<f64>,
817            ) -> Result<Box<dyn TrainedBaseModel>> {
818                std::thread::sleep(Duration::from_millis($sleep_ms));
819                Ok(Box::new($model {
820                    id: self.id,
821                    feature_count: x.ncols(),
822                }))
823            }
824
825            fn get_config(&self) -> &BaseEstimatorConfig {
826                &self.config
827            }
828        }
829
830        #[derive(Debug)]
831        #[allow(dead_code)]
832        pub struct $model {
833            id: usize,
834            feature_count: usize,
835        }
836
837        impl TrainedBaseModel for $model {
838            fn predict(&self, x: &ArrayView2<f64>) -> Result<Array1<f64>> {
839                let predictions = Array1::from_iter(x.rows().into_iter().map($prediction_fn));
840                Ok(predictions)
841            }
842        }
843    };
844}
845
846impl_base_estimator!(AdaBoostEstimator, TrainedAdaBoostModel, 12, |row| row
847    .mean()
848    .unwrap_or(0.0));
849impl_base_estimator!(VotingEstimator, TrainedVotingModel, 8, |row| row
850    .iter()
851    .max_by(|a, b| a.partial_cmp(b).unwrap())
852    .unwrap_or(&0.0)
853    * 0.5);
854impl_base_estimator!(StackingEstimator, TrainedStackingModel, 20, |row| row.sum()
855    / row.len() as f64);
856
857/// Distributed ensemble training (placeholder for future implementation)
858#[derive(Debug)]
859pub struct DistributedEnsemble {
860    config: DistributedConfig,
861}
862
863impl DistributedEnsemble {
864    pub fn new(config: DistributedConfig) -> Self {
865        Self { config }
866    }
867
868    pub async fn join_cluster(&self) -> Result<()> {
869        // Placeholder for cluster joining logic
870        println!("Joining cluster at {}", self.config.coordinator_address);
871        Ok(())
872    }
873
874    pub async fn distributed_fit(
875        &self,
876        _x: &ArrayView2<'_, f64>,
877        _y: &ArrayView1<'_, f64>,
878    ) -> Result<TrainedDistributedEnsemble> {
879        // Placeholder for distributed training
880        Ok(TrainedDistributedEnsemble {
881            cluster_size: self.config.cluster_size,
882        })
883    }
884}
885
886/// Configuration for distributed training
887#[derive(Debug, Clone)]
888pub struct DistributedConfig {
889    pub cluster_size: usize,
890    pub node_role: NodeRole,
891    pub coordinator_address: String,
892    pub fault_tolerance: bool,
893    pub checkpointing_interval: Duration,
894}
895
896impl Default for DistributedConfig {
897    fn default() -> Self {
898        Self::new()
899    }
900}
901
902impl DistributedConfig {
903    pub fn new() -> Self {
904        Self {
905            cluster_size: 1,
906            node_role: NodeRole::Coordinator,
907            coordinator_address: "localhost:8080".to_string(),
908            fault_tolerance: false,
909            checkpointing_interval: Duration::from_secs(300),
910        }
911    }
912
913    pub fn with_cluster_size(mut self, size: usize) -> Self {
914        self.cluster_size = size;
915        self
916    }
917
918    pub fn with_node_role(mut self, role: NodeRole) -> Self {
919        self.node_role = role;
920        self
921    }
922
923    pub fn with_coordinator_address(mut self, address: &str) -> Self {
924        self.coordinator_address = address.to_string();
925        self
926    }
927
928    pub fn with_fault_tolerance(mut self, enabled: bool) -> Self {
929        self.fault_tolerance = enabled;
930        self
931    }
932
933    pub fn with_checkpointing_interval(mut self, interval: Duration) -> Self {
934        self.checkpointing_interval = interval;
935        self
936    }
937}
938
939/// Node roles in distributed training
940#[derive(Debug, Clone)]
941pub enum NodeRole {
942    Coordinator,
943    Worker,
944}
945
946/// Trained distributed ensemble
947#[derive(Debug)]
948pub struct TrainedDistributedEnsemble {
949    cluster_size: usize,
950}
951
952impl TrainedDistributedEnsemble {
953    pub fn cluster_size(&self) -> usize {
954        self.cluster_size
955    }
956}
957
958#[allow(non_snake_case)]
959#[cfg(test)]
960mod tests {
961    use super::*;
962
963    #[test]
964    fn test_ensemble_config_creation() {
965        let config = EnsembleConfig::random_forest()
966            .with_n_estimators(50)
967            .with_parallel_config(ParallelConfig::new().with_num_threads(4));
968
969        assert_eq!(config.n_estimators, 50);
970        assert_eq!(config.parallel_config.num_threads, 4);
971        assert!(matches!(config.ensemble_type, EnsembleType::RandomForest));
972    }
973
974    #[test]
975    fn test_parallel_config() {
976        let config = ParallelConfig::new()
977            .with_num_threads(8)
978            .with_batch_size(2000)
979            .with_work_stealing(false);
980
981        assert_eq!(config.num_threads, 8);
982        assert_eq!(config.batch_size, 2000);
983        assert!(!config.work_stealing);
984    }
985
986    #[test]
987    fn test_training_state() {
988        let mut state = TrainingState::new();
989
990        state.start_training(1000, 10);
991        assert_eq!(state.total_estimators, 10);
992        assert_eq!(state.progress_percentage(), 0.0);
993
994        state.update_progress(0, true);
995        state.update_progress(1, true);
996        state.update_progress(2, false);
997
998        assert_eq!(state.completed_estimators, 2);
999        assert_eq!(state.failed_estimators, 1);
1000        assert_eq!(state.progress_percentage(), 20.0);
1001    }
1002
1003    #[test]
1004    fn test_base_estimator_creation() {
1005        let config = BaseEstimatorConfig::decision_tree();
1006        let estimator = RandomForestEstimator::new(0, &config);
1007
1008        assert!(estimator.get_config().parameters.contains_key("max_depth"));
1009    }
1010
1011    #[test]
1012    fn test_parallel_ensemble_creation() {
1013        let config = EnsembleConfig::random_forest().with_n_estimators(5);
1014        let ensemble = ParallelEnsemble::new(config);
1015
1016        assert_eq!(ensemble.n_estimators(), 5);
1017    }
1018
1019    #[test]
1020    fn test_sampling_strategies() {
1021        let config = EnsembleConfig::random_forest();
1022        let ensemble = ParallelEnsemble::new(config);
1023
1024        let x = Array2::from_shape_vec((10, 3), (0..30).map(|i| i as f64).collect()).unwrap();
1025        let y = Array1::from_shape_vec(10, (0..10).map(|i| i as f64).collect()).unwrap();
1026
1027        let (sampled_x, sampled_y) = ensemble.bootstrap_sample(&x.view(), &y.view(), 0).unwrap();
1028        assert_eq!(sampled_x.shape(), x.shape());
1029        assert_eq!(sampled_y.len(), y.len());
1030    }
1031
1032    #[test]
1033    fn test_aggregation_methods() {
1034        let config = EnsembleConfig::random_forest();
1035        let trained_learners = vec![
1036            TrainedBaseEstimator {
1037                learner_id: 0,
1038                model: Box::new(TrainedRandomForestModel {
1039                    id: 0,
1040                    feature_count: 3,
1041                    sample_count: 10,
1042                }),
1043                training_time: Duration::from_millis(100),
1044                training_accuracy: 0.8,
1045            },
1046            TrainedBaseEstimator {
1047                learner_id: 1,
1048                model: Box::new(TrainedRandomForestModel {
1049                    id: 1,
1050                    feature_count: 3,
1051                    sample_count: 10,
1052                }),
1053                training_time: Duration::from_millis(120),
1054                training_accuracy: 0.9,
1055            },
1056        ];
1057
1058        let ensemble = TrainedParallelEnsemble {
1059            config,
1060            trained_learners,
1061            training_metrics: TrainingState::new(),
1062        };
1063
1064        let x = Array2::zeros((5, 3));
1065        let result = ensemble.parallel_predict(&x.view());
1066        assert!(result.is_ok());
1067
1068        let predictions = result.unwrap();
1069        assert_eq!(predictions.len(), 5);
1070    }
1071
1072    #[test]
1073    fn test_distributed_config() {
1074        let config = DistributedConfig::new()
1075            .with_cluster_size(4)
1076            .with_node_role(NodeRole::Worker)
1077            .with_coordinator_address("192.168.1.100:8080")
1078            .with_fault_tolerance(true);
1079
1080        assert_eq!(config.cluster_size, 4);
1081        assert!(matches!(config.node_role, NodeRole::Worker));
1082        assert_eq!(config.coordinator_address, "192.168.1.100:8080");
1083        assert!(config.fault_tolerance);
1084    }
1085}