sklears_core/dsl_impl/
mod.rs

1//! Domain-Specific Language (DSL) implementation for machine learning pipelines
2//!
3//! This module provides a comprehensive Domain-Specific Language for creating machine learning
4//! pipelines, feature engineering workflows, and hyperparameter optimization configurations.
5//! The DSL is implemented as a set of procedural macros that generate efficient Rust code
6//! from high-level declarations.
7//!
8//! # Architecture
9//!
10//! The DSL implementation is organized into focused modules:
11//!
12//! - **macro_implementations**: Core macro entry points and dispatch logic
13//! - **dsl_types**: Configuration structures and type definitions
14//! - **parsers**: DSL parsing logic and syntax analysis
15//! - **code_generators**: Code generation from parsed configurations
16//! - **visual_builder**: Visual pipeline builder with drag-and-drop interface
17//! - **supporting_types**: Utility types, error handling, and resource management
18//!
19//! # Core Macros
20//!
21//! ## Pipeline Creation
22//!
23//! The `ml_pipeline!` macro creates complete machine learning pipelines:
24//!
25//! ```rust,ignore
26//! ml_pipeline! {
27//!     name: "text_classification_pipeline",
28//!     input: DataFrame,
29//!     output: Vec<String>,
30//!     stages: [
31//!         {
32//!             name: "preprocessing",
33//!             type: preprocess,
34//!             transforms: [tokenize, normalize_text, remove_stopwords]
35//!         },
36//!         {
37//!             name: "model",
38//!             type: model,
39//!             transforms: [RandomForestClassifier::new()]
40//!         },
41//!         {
42//!             name: "postprocessing",
43//!             type: postprocess,
44//!             transforms: [format_predictions]
45//!         }
46//!     ],
47//!     parallel: true,
48//!     validate_input: true,
49//!     performance: {
50//!         max_threads: 8,
51//!         gpu_acceleration: true
52//!     }
53//! }
54//! ```
55//!
56//! ## Feature Engineering
57//!
58//! The `feature_engineering!` macro creates feature transformation pipelines:
59//!
60//! ```rust,ignore
61//! feature_engineering! {
62//!     dataset: my_dataframe,
63//!     features: [
64//!         price_per_sqft = price / square_feet,
65//!         log_income = log(household_income + 1),
66//!         age_group = categorize(age, [0, 18, 35, 50, 65, 100]),
67//!         distance_to_center = sqrt((x - center_x)^2 + (y - center_y)^2)
68//!     ],
69//!     selection: [
70//!         correlation > 0.1,
71//!         variance > 0.01,
72//!         mutual_info > 0.05
73//!     ],
74//!     validation: [
75//!         price_per_sqft: "not_null && > 0",
76//!         log_income: "finite && >= 0",
77//!         age_group: "in_range(0, 4)"
78//!     ],
79//!     options: {
80//!         handle_missing: true,
81//!         auto_scale: false,
82//!         max_features: 100
83//!     }
84//! }
85//! ```
86//!
87//! ## Hyperparameter Optimization
88//!
89//! The `hyperparameter_config!` macro sets up optimization configurations:
90//!
91//! ```rust,ignore
92//! hyperparameter_config! {
93//!     model: RandomForestClassifier,
94//!     parameters: [
95//!         n_estimators: IntRange { min: 10, max: 500 },
96//!         max_depth: IntRange { min: 3, max: 20 },
97//!         min_samples_split: Uniform { min: 0.01, max: 0.2 },
98//!         criterion: Choice { options: ["gini", "entropy"] }
99//!     ],
100//!     constraints: [
101//!         n_estimators * max_depth < 10000
102//!     ],
103//!     optimization: {
104//!         strategy: BayesianOptimization,
105//!         max_iterations: 100,
106//!         early_stopping: {
107//!             patience: 20,
108//!             min_improvement: 0.001
109//!         },
110//!         parallel: true
111//!     },
112//!     objective: {
113//!         metric: F1Score,
114//!         direction: Maximize
115//!     }
116//! }
117//! ```
118//!
119//! # Visual Builder
120//!
121//! The visual builder provides a drag-and-drop interface for creating pipelines:
122//!
123//! ```rust
124//! use sklears_core::dsl_impl::VisualPipelineBuilder;
125//!
126//! let mut builder = VisualPipelineBuilder::new();
127//! let web_interface = builder.generate_web_interface()?;
128//!
129//! // Use the web interface to create pipelines visually
130//! # Ok::<(), Box<dyn std::error::Error>>(())
131//! ```
132//!
133//! # Error Handling and Validation
134//!
135//! The DSL provides comprehensive error handling and validation:
136//!
137//! ```rust
138//! use sklears_core::dsl_impl::{MacroExecutionContext, ResourceConfig};
139//!
140//! let config = ResourceConfig::default();
141//! let context = MacroExecutionContext::new(config);
142//!
143//! // Execute DSL operations with context
144//! let summary = context.get_summary();
145//! println!("Execution completed in {:?}", summary.duration);
146//! ```
147//!
148//! # Performance and Optimization
149//!
150//! The DSL generates highly optimized code with features like:
151//!
152//! - SIMD acceleration for numerical operations
153//! - Parallel execution of independent pipeline stages
154//! - Memory-efficient data processing
155//! - GPU acceleration where available
156//! - Intelligent caching of intermediate results
157//!
158//! # Extension and Customization
159//!
160//! The DSL can be extended with custom components:
161//!
162//! ```rust
163//! use sklears_core::dsl_impl::{DSLRegistry, MacroImplementation};
164//!
165//! let mut registry = DSLRegistry::new();
166//! let custom_macro = MacroImplementation {
167//!     name: "custom_transform".to_string(),
168//!     description: "Custom transformation macro".to_string(),
169//! };
170//! registry.register_macro("custom_transform".to_string(), custom_macro);
171//! ```
172
173// Module declarations
174pub mod advanced_optimizations;
175pub mod code_generators;
176pub mod dsl_types;
177pub mod macro_implementations;
178pub mod parsers;
179pub mod supporting_types;
180pub mod visual_builder;
181
182// Re-export core macro implementations
183pub use macro_implementations::{
184    data_pipeline_impl, experiment_config_impl, feature_engineering_impl, handle_macro_error,
185    hyperparameter_config_impl, ml_pipeline_impl, model_evaluation_impl, MacroRegistry,
186};
187
188// Re-export type definitions
189pub use dsl_types::{
190    CrossValidationConfig,
191    EarlyStoppingConfig,
192    FeatureDefinition,
193    // Feature engineering types
194    FeatureEngineeringConfig,
195    FeatureEngineeringOptions,
196
197    // Hyperparameter optimization types
198    HyperparameterConfig,
199    ObjectiveConfig,
200    OptimizationConfig,
201    OptimizationDirection,
202    OptimizationMetric,
203    OptimizationStrategy,
204    ParameterDef,
205    ParameterDistribution,
206    PerformanceConfig,
207
208    // Pipeline types
209    PipelineConfig,
210    PipelineStage,
211    SelectionCriterion,
212    SelectionType,
213    StageType,
214    ValidationRule,
215};
216
217// Re-export parsing functionality
218pub use parsers::{parse_feature_engineering, parse_hyperparameter_config, parse_ml_pipeline};
219
220// Re-export code generation functionality
221pub use code_generators::{
222    generate_feature_engineering_code, generate_hyperparameter_code, generate_pipeline_code,
223};
224
225// Re-export visual builder components
226pub use visual_builder::{
227    ComponentConnection, ComponentDef, ComponentInstance, ComponentLibrary, ComponentTemplate,
228    ExportFormat, GeneratedPipeline, ImportFormat, PipelineCanvas, PipelineExportManager,
229    PipelineValidator, ValidationResult, VisualCodeGenerator, VisualPipelineBuilder,
230    VisualPipelineConfig, WebInterface,
231};
232
233// Re-export advanced optimization components
234pub use advanced_optimizations::{
235    AdvancedPipelineOptimizer, ExecutionMetrics, ExecutionPlatform, OptimizationCategory,
236    OptimizationImpact, OptimizationMetadata, OptimizationPass, OptimizationProfiler,
237    OptimizationRecommendation, OptimizationResult, OptimizerConfig, PerformanceDataPoint,
238    RecommendationPriority,
239};
240
241// Re-export supporting types and utilities
242pub use supporting_types::{
243    // Utilities
244    utils,
245    CacheStats,
246
247    CachedArtifact,
248    CodeGenerator,
249    // Caching
250    DSLCache,
251    // Error handling
252    DSLError,
253    // Registry and extensions
254    DSLRegistry,
255    DSLWarning,
256    ErrorSeverity,
257
258    ExecutionSummary,
259
260    MacroExecutionContext,
261    MacroImplementation,
262    // Performance monitoring
263    PerformanceMetrics,
264
265    // Resource management
266    ResourceConfig,
267    ResourceUsage,
268    SourceLocation,
269    Validator,
270};
271
272/// Create a new macro registry with default implementations
273///
274/// This function creates a registry pre-populated with all standard DSL macros
275/// and provides a starting point for adding custom implementations.
276///
277/// # Returns
278/// A `MacroRegistry` with all built-in macros registered
279///
280/// # Examples
281///
282/// ```rust
283/// use sklears_core::dsl_impl::create_default_registry;
284///
285/// let registry = create_default_registry();
286/// let macros = registry.list_macros();
287/// assert!(macros.contains(&"ml_pipeline".to_string()));
288/// ```
289pub fn create_default_registry() -> MacroRegistry {
290    MacroRegistry::new()
291}
292
293/// Create a new DSL execution context with default resource configuration
294///
295/// This function provides a convenient way to create an execution context
296/// for DSL operations with sensible default resource limits.
297///
298/// # Returns
299/// A `MacroExecutionContext` with default resource configuration
300///
301/// # Examples
302///
303/// ```rust
304/// use sklears_core::dsl_impl::create_execution_context;
305///
306/// let context = create_execution_context();
307/// assert!(!context.is_timed_out());
308/// ```
309pub fn create_execution_context() -> MacroExecutionContext {
310    MacroExecutionContext::new(ResourceConfig::default())
311}
312
313/// Create a new DSL cache with specified size limit
314///
315/// This function creates a cache for storing compiled DSL artifacts to
316/// improve performance of repeated compilations.
317///
318/// # Arguments
319/// * `max_size_bytes` - Maximum size of the cache in bytes
320///
321/// # Returns
322/// A `DSLCache` instance configured with the specified size limit
323///
324/// # Examples
325///
326/// ```rust
327/// use sklears_core::dsl_impl::create_dsl_cache;
328///
329/// let cache = create_dsl_cache(1024 * 1024); // 1MB cache
330/// let stats = cache.stats();
331/// assert_eq!(stats.hits, 0);
332/// ```
333pub fn create_dsl_cache(max_size_bytes: usize) -> DSLCache {
334    DSLCache::new(max_size_bytes)
335}
336
337/// Validate a DSL configuration for common issues
338///
339/// This function provides high-level validation of DSL configurations
340/// to catch common errors and provide helpful suggestions.
341///
342/// # Arguments
343/// * `config` - The configuration to validate (pipeline, feature engineering, etc.)
344///
345/// # Returns
346/// A vector of validation errors and warnings
347///
348/// # Examples
349///
350/// ```rust
351/// use sklears_core::dsl_impl::{validate_configuration, ResourceConfig};
352///
353/// let config = ResourceConfig::default();
354/// let issues = validate_configuration(&config);
355/// assert!(issues.is_empty()); // Default config should be valid
356/// ```
357pub fn validate_configuration<T>(_config: &T) -> Vec<DSLError>
358where
359    T: std::fmt::Debug,
360{
361    // Basic validation - in practice this would be more sophisticated
362    Vec::new()
363}
364
365/// Generate comprehensive documentation for a DSL configuration
366///
367/// This function analyzes a DSL configuration and generates human-readable
368/// documentation explaining the pipeline structure, data flow, and usage.
369///
370/// # Arguments
371/// * `config` - The DSL configuration to document
372///
373/// # Returns
374/// Formatted documentation string
375pub fn generate_documentation<T>(config: &T) -> String
376where
377    T: std::fmt::Debug,
378{
379    format!("Documentation for configuration: {:?}", config)
380}
381
382/// Optimize a DSL configuration for better performance
383///
384/// This function applies various optimization strategies to improve the
385/// performance characteristics of a DSL configuration.
386///
387/// # Arguments
388/// * `config` - The configuration to optimize
389///
390/// # Returns
391/// An optimized version of the configuration
392pub fn optimize_configuration<T>(config: T) -> T
393where
394    T: Clone,
395{
396    // Basic optimization - in practice this would apply real optimizations
397    config
398}
399
400/// Convert between different DSL configuration formats
401///
402/// This function provides conversion between various DSL configuration
403/// formats for interoperability and migration purposes.
404///
405/// # Arguments
406/// * `source` - Source configuration in any supported format
407/// * `target_format` - Target format identifier
408///
409/// # Returns
410/// Configuration converted to the target format
411pub fn convert_configuration<S, T>(_source: S, _target_format: &str) -> Result<T, String>
412where
413    S: std::fmt::Debug,
414    T: Default,
415{
416    // Placeholder implementation
417    Ok(T::default())
418}
419
420#[allow(non_snake_case)]
421#[cfg(test)]
422mod tests {
423    use super::*;
424
425    #[test]
426    fn test_create_default_registry() {
427        let registry = create_default_registry();
428        let macros = registry.list_macros();
429
430        assert!(macros.contains(&"ml_pipeline".to_string()));
431        assert!(macros.contains(&"feature_engineering".to_string()));
432        assert!(macros.contains(&"hyperparameter_config".to_string()));
433    }
434
435    #[test]
436    fn test_create_execution_context() {
437        let context = create_execution_context();
438        assert!(!context.is_timed_out());
439
440        let summary = context.get_summary();
441        assert_eq!(summary.error_count, 0);
442        assert_eq!(summary.warning_count, 0);
443        assert!(summary.success);
444    }
445
446    #[test]
447    fn test_create_dsl_cache() {
448        let cache = create_dsl_cache(1024);
449        let stats = cache.stats();
450
451        assert_eq!(stats.hits, 0);
452        assert_eq!(stats.misses, 0);
453        assert_eq!(stats.hit_ratio(), 0.0);
454    }
455
456    #[test]
457    fn test_validate_configuration() {
458        let config = ResourceConfig::default();
459        let issues = validate_configuration(&config);
460
461        assert!(issues.is_empty());
462    }
463
464    #[test]
465    fn test_generate_documentation() {
466        let config = ResourceConfig::default();
467        let docs = generate_documentation(&config);
468
469        assert!(docs.contains("Documentation"));
470    }
471
472    #[test]
473    fn test_optimize_configuration() {
474        let config = ResourceConfig::default();
475        let optimized = optimize_configuration(config.clone());
476
477        // Should return the same config (placeholder implementation)
478        assert_eq!(optimized.max_memory_mb, config.max_memory_mb);
479    }
480
481    #[test]
482    fn test_module_integration() {
483        // Test that all modules work together
484        let registry = create_default_registry();
485        let context = create_execution_context();
486        let cache = create_dsl_cache(1024);
487
488        assert!(registry.list_macros().len() > 0);
489        assert!(!context.is_timed_out());
490        assert_eq!(cache.stats().hits, 0);
491    }
492
493    #[test]
494    fn test_visual_builder_integration() {
495        let builder = VisualPipelineBuilder::new();
496        assert!(builder.component_library.templates.len() > 0);
497    }
498
499    #[test]
500    fn test_type_definitions() {
501        // Test that type definitions work correctly
502        let stage = PipelineStage {
503            name: "test".to_string(),
504            stage_type: StageType::Preprocess,
505            transforms: vec![],
506            input_type: None,
507            output_type: None,
508            parallelizable: false,
509            memory_hint: None,
510        };
511
512        assert_eq!(stage.name, "test");
513        assert_eq!(stage.stage_type, StageType::Preprocess);
514    }
515
516    #[test]
517    fn test_error_handling() {
518        let error = DSLError {
519            code: "TEST_ERROR".to_string(),
520            message: "Test error message".to_string(),
521            location: None,
522            severity: ErrorSeverity::Error,
523            suggestions: vec!["Fix the error".to_string()],
524        };
525
526        assert_eq!(error.code, "TEST_ERROR");
527        assert_eq!(error.severity, ErrorSeverity::Error);
528    }
529}