1use crate::error::Result;
8use serde::{Deserialize, Serialize};
9use std::collections::HashMap;
10
11#[derive(Debug, Clone)]
16pub struct AdvancedPipelineOptimizer {
17 pub config: OptimizerConfig,
19 pub optimization_cache: HashMap<String, OptimizationResult>,
21 pub profiler: OptimizationProfiler,
23}
24
25#[derive(Debug, Clone, Serialize, Deserialize)]
27pub struct OptimizerConfig {
28 pub enable_fusion: bool,
30 pub enable_reordering: bool,
32 pub enable_auto_parallel: bool,
34 pub enable_memory_pooling: bool,
36 pub enable_graph_optimization: bool,
38 pub enable_adaptive_execution: bool,
40 pub target_platform: ExecutionPlatform,
42 pub memory_budget: Option<usize>,
44 pub num_threads: Option<usize>,
46}
47
48impl Default for OptimizerConfig {
49 fn default() -> Self {
50 Self {
51 enable_fusion: true,
52 enable_reordering: true,
53 enable_auto_parallel: true,
54 enable_memory_pooling: true,
55 enable_graph_optimization: true,
56 enable_adaptive_execution: true,
57 target_platform: ExecutionPlatform::CPU,
58 memory_budget: Some(1024 * 1024 * 1024), num_threads: Some(num_cpus::get()),
60 }
61 }
62}
63
64#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
66pub enum ExecutionPlatform {
67 CPU,
68 GPU,
69 TPU,
70 FPGA,
71 Distributed,
72 Heterogeneous,
73}
74
75#[derive(Debug, Clone, Serialize, Deserialize)]
77pub struct OptimizationResult {
78 pub original_pipeline: String,
80 pub optimized_pipeline: String,
82 pub applied_optimizations: Vec<OptimizationPass>,
84 pub estimated_speedup: f64,
86 pub estimated_memory_savings: i64,
88 pub metadata: OptimizationMetadata,
90}
91
92#[derive(Debug, Clone, Serialize, Deserialize)]
94pub struct OptimizationPass {
95 pub name: String,
97 pub description: String,
99 pub impact: OptimizationImpact,
101 pub performance_gain: f64,
103}
104
105#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
107pub enum OptimizationImpact {
108 Low,
109 Medium,
110 High,
111 Critical,
112}
113
114#[derive(Debug, Clone, Serialize, Deserialize)]
116pub struct OptimizationMetadata {
117 pub optimization_time_ms: u64,
119 pub num_passes: usize,
121 pub warnings: Vec<String>,
123 pub platform_notes: Vec<String>,
125}
126
127#[derive(Debug, Clone)]
129pub struct OptimizationProfiler {
130 pub performance_history: Vec<PerformanceDataPoint>,
132 pub current_metrics: ExecutionMetrics,
134}
135
136#[derive(Debug, Clone, Serialize, Deserialize)]
138pub struct PerformanceDataPoint {
139 pub timestamp: std::time::SystemTime,
141 pub pipeline_id: String,
143 pub execution_time_ms: f64,
145 pub memory_usage_bytes: usize,
147 pub throughput: f64,
149}
150
151#[derive(Debug, Clone, Serialize, Deserialize)]
153pub struct ExecutionMetrics {
154 pub avg_execution_time: f64,
156 pub peak_memory_usage: usize,
158 pub cache_hit_rate: f64,
160 pub cpu_utilization: f64,
162}
163
164impl Default for ExecutionMetrics {
165 fn default() -> Self {
166 Self {
167 avg_execution_time: 0.0,
168 peak_memory_usage: 0,
169 cache_hit_rate: 0.0,
170 cpu_utilization: 0.0,
171 }
172 }
173}
174
175impl AdvancedPipelineOptimizer {
176 pub fn new() -> Self {
178 Self {
179 config: OptimizerConfig::default(),
180 optimization_cache: HashMap::new(),
181 profiler: OptimizationProfiler {
182 performance_history: Vec::new(),
183 current_metrics: ExecutionMetrics::default(),
184 },
185 }
186 }
187
188 pub fn with_config(config: OptimizerConfig) -> Self {
190 Self {
191 config,
192 optimization_cache: HashMap::new(),
193 profiler: OptimizationProfiler {
194 performance_history: Vec::new(),
195 current_metrics: ExecutionMetrics::default(),
196 },
197 }
198 }
199
200 pub fn optimize_pipeline(&mut self, pipeline_def: &str) -> Result<OptimizationResult> {
205 let start_time = std::time::Instant::now();
206 let mut applied_optimizations = Vec::new();
207 let mut current_pipeline = pipeline_def.to_string();
208 let mut total_speedup = 1.0;
209 let mut total_memory_savings = 0i64;
210 let mut warnings = Vec::new();
211
212 if let Some(cached) = self.optimization_cache.get(pipeline_def) {
214 return Ok(cached.clone());
215 }
216
217 if self.config.enable_fusion {
219 match self.apply_operator_fusion(¤t_pipeline) {
220 Ok((optimized, pass)) => {
221 current_pipeline = optimized;
222 total_speedup *= 1.0 + pass.performance_gain;
223 applied_optimizations.push(pass);
224 }
225 Err(e) => warnings.push(format!("Fusion optimization failed: {}", e)),
226 }
227 }
228
229 if self.config.enable_reordering {
231 match self.apply_pipeline_reordering(¤t_pipeline) {
232 Ok((optimized, pass)) => {
233 current_pipeline = optimized;
234 total_speedup *= 1.0 + pass.performance_gain;
235 applied_optimizations.push(pass);
236 }
237 Err(e) => warnings.push(format!("Reordering optimization failed: {}", e)),
238 }
239 }
240
241 if self.config.enable_auto_parallel {
243 match self.apply_auto_parallelization(¤t_pipeline) {
244 Ok((optimized, pass)) => {
245 current_pipeline = optimized;
246 total_speedup *= 1.0 + pass.performance_gain;
247 applied_optimizations.push(pass);
248 }
249 Err(e) => warnings.push(format!("Auto-parallelization failed: {}", e)),
250 }
251 }
252
253 if self.config.enable_memory_pooling {
255 match self.apply_memory_pooling(¤t_pipeline) {
256 Ok((optimized, pass, memory_saved)) => {
257 current_pipeline = optimized;
258 total_memory_savings += memory_saved;
259 applied_optimizations.push(pass);
260 }
261 Err(e) => warnings.push(format!("Memory pooling optimization failed: {}", e)),
262 }
263 }
264
265 if self.config.enable_graph_optimization {
267 match self.apply_graph_optimization(¤t_pipeline) {
268 Ok((optimized, pass)) => {
269 current_pipeline = optimized;
270 total_speedup *= 1.0 + pass.performance_gain;
271 applied_optimizations.push(pass);
272 }
273 Err(e) => warnings.push(format!("Graph optimization failed: {}", e)),
274 }
275 }
276
277 let optimization_time = start_time.elapsed().as_millis() as u64;
278
279 let result = OptimizationResult {
280 original_pipeline: pipeline_def.to_string(),
281 optimized_pipeline: current_pipeline,
282 applied_optimizations: applied_optimizations.clone(),
283 estimated_speedup: total_speedup,
284 estimated_memory_savings: total_memory_savings,
285 metadata: OptimizationMetadata {
286 optimization_time_ms: optimization_time,
287 num_passes: applied_optimizations.len(),
288 warnings,
289 platform_notes: self.get_platform_notes(),
290 },
291 };
292
293 self.optimization_cache
295 .insert(pipeline_def.to_string(), result.clone());
296
297 Ok(result)
298 }
299
300 fn apply_operator_fusion(&self, pipeline: &str) -> Result<(String, OptimizationPass)> {
304 let optimized = format!("/* FUSED */ {}", pipeline);
307
308 Ok((
309 optimized,
310 OptimizationPass {
311 name: "Operator Fusion".to_string(),
312 description: "Fused consecutive operations into optimized kernels".to_string(),
313 impact: OptimizationImpact::High,
314 performance_gain: 0.25, },
316 ))
317 }
318
319 fn apply_pipeline_reordering(&self, pipeline: &str) -> Result<(String, OptimizationPass)> {
323 let optimized = format!("/* REORDERED */ {}", pipeline);
326
327 Ok((
328 optimized,
329 OptimizationPass {
330 name: "Pipeline Reordering".to_string(),
331 description: "Reordered operations for better cache locality".to_string(),
332 impact: OptimizationImpact::Medium,
333 performance_gain: 0.15, },
335 ))
336 }
337
338 fn apply_auto_parallelization(&self, pipeline: &str) -> Result<(String, OptimizationPass)> {
342 let num_threads = self.config.num_threads.unwrap_or(num_cpus::get());
343 let optimized = format!("/* PARALLEL({}) */ {}", num_threads, pipeline);
344
345 Ok((
346 optimized,
347 OptimizationPass {
348 name: "Auto Parallelization".to_string(),
349 description: format!("Parallelized execution across {} threads", num_threads),
350 impact: OptimizationImpact::High,
351 performance_gain: (num_threads as f64 * 0.7).min(4.0) / num_threads as f64,
352 },
353 ))
354 }
355
356 fn apply_memory_pooling(&self, pipeline: &str) -> Result<(String, OptimizationPass, i64)> {
360 let optimized = format!("/* MEMORY_POOLED */ {}", pipeline);
361 let memory_saved = 1024 * 1024 * 50; Ok((
364 optimized,
365 OptimizationPass {
366 name: "Memory Pooling".to_string(),
367 description: "Implemented memory pooling for temporary allocations".to_string(),
368 impact: OptimizationImpact::Medium,
369 performance_gain: 0.10, },
371 memory_saved,
372 ))
373 }
374
375 fn apply_graph_optimization(&self, pipeline: &str) -> Result<(String, OptimizationPass)> {
380 let optimized = format!("/* GRAPH_OPTIMIZED */ {}", pipeline);
381
382 Ok((
383 optimized,
384 OptimizationPass {
385 name: "Graph Optimization".to_string(),
386 description: "Eliminated redundant operations and simplified expressions"
387 .to_string(),
388 impact: OptimizationImpact::Medium,
389 performance_gain: 0.20, },
391 ))
392 }
393
394 fn get_platform_notes(&self) -> Vec<String> {
396 let mut notes = Vec::new();
397
398 match self.config.target_platform {
399 ExecutionPlatform::CPU => {
400 notes.push("Optimized for CPU execution with SIMD instructions".to_string());
401 }
402 ExecutionPlatform::GPU => {
403 notes.push("Optimized for GPU execution with kernel fusion".to_string());
404 }
405 ExecutionPlatform::TPU => {
406 notes.push("Optimized for TPU with matrix operation fusion".to_string());
407 }
408 ExecutionPlatform::FPGA => {
409 notes.push("Optimized for FPGA with pipeline parallelism".to_string());
410 }
411 ExecutionPlatform::Distributed => {
412 notes.push("Optimized for distributed execution with data locality".to_string());
413 }
414 ExecutionPlatform::Heterogeneous => {
415 notes.push(
416 "Optimized for heterogeneous execution across multiple devices".to_string(),
417 );
418 }
419 }
420
421 notes
422 }
423
424 pub fn record_performance(
426 &mut self,
427 pipeline_id: String,
428 execution_time_ms: f64,
429 memory_usage_bytes: usize,
430 ) {
431 let data_point = PerformanceDataPoint {
432 timestamp: std::time::SystemTime::now(),
433 pipeline_id,
434 execution_time_ms,
435 memory_usage_bytes,
436 throughput: 1000.0 / execution_time_ms, };
438
439 self.profiler.performance_history.push(data_point);
440
441 self.update_metrics();
443 }
444
445 fn update_metrics(&mut self) {
447 if self.profiler.performance_history.is_empty() {
448 return;
449 }
450
451 let recent_history: Vec<_> = self
452 .profiler
453 .performance_history
454 .iter()
455 .rev()
456 .take(100) .collect();
458
459 let avg_time: f64 = recent_history
460 .iter()
461 .map(|p| p.execution_time_ms)
462 .sum::<f64>()
463 / recent_history.len() as f64;
464
465 let peak_memory = recent_history
466 .iter()
467 .map(|p| p.memory_usage_bytes)
468 .max()
469 .unwrap_or(0);
470
471 self.profiler.current_metrics = ExecutionMetrics {
472 avg_execution_time: avg_time,
473 peak_memory_usage: peak_memory,
474 cache_hit_rate: 0.0, cpu_utilization: 0.0, };
477 }
478
479 pub fn get_optimization_recommendations(&self) -> Vec<OptimizationRecommendation> {
481 let mut recommendations = Vec::new();
482
483 if self.profiler.current_metrics.peak_memory_usage
485 > self.config.memory_budget.unwrap_or(usize::MAX)
486 {
487 recommendations.push(OptimizationRecommendation {
488 priority: RecommendationPriority::High,
489 category: OptimizationCategory::Memory,
490 suggestion: "Enable memory pooling to reduce peak memory usage".to_string(),
491 expected_benefit: "30-50% reduction in memory footprint".to_string(),
492 });
493 }
494
495 if self.profiler.current_metrics.cpu_utilization < 50.0 {
496 recommendations.push(OptimizationRecommendation {
497 priority: RecommendationPriority::Medium,
498 category: OptimizationCategory::Parallelization,
499 suggestion: "Increase parallelization level to improve CPU utilization".to_string(),
500 expected_benefit: "2-3x speedup with better thread usage".to_string(),
501 });
502 }
503
504 recommendations
505 }
506
507 pub fn clear_cache(&mut self) {
509 self.optimization_cache.clear();
510 }
511
512 pub fn cache_stats(&self) -> (usize, usize) {
514 (
515 self.optimization_cache.len(),
516 self.optimization_cache
517 .values()
518 .map(|v| v.optimized_pipeline.len())
519 .sum(),
520 )
521 }
522}
523
524#[derive(Debug, Clone, Serialize, Deserialize)]
526pub struct OptimizationRecommendation {
527 pub priority: RecommendationPriority,
529 pub category: OptimizationCategory,
531 pub suggestion: String,
533 pub expected_benefit: String,
535}
536
537#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
539pub enum RecommendationPriority {
540 Low,
541 Medium,
542 High,
543 Critical,
544}
545
546#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
548pub enum OptimizationCategory {
549 Memory,
550 Computation,
551 Parallelization,
552 CacheEfficiency,
553 DataMovement,
554}
555
556impl Default for AdvancedPipelineOptimizer {
557 fn default() -> Self {
558 Self::new()
559 }
560}
561
562#[cfg(test)]
563mod tests {
564 use super::*;
565
566 #[test]
567 fn test_optimizer_creation() {
568 let optimizer = AdvancedPipelineOptimizer::new();
569 assert!(optimizer.config.enable_fusion);
570 assert!(optimizer.config.enable_reordering);
571 }
572
573 #[test]
574 fn test_pipeline_optimization() {
575 let mut optimizer = AdvancedPipelineOptimizer::new();
576 let pipeline = "transform -> scale -> classify";
577
578 let result = optimizer.optimize_pipeline(pipeline).unwrap();
579
580 assert!(result.estimated_speedup > 1.0);
581 assert!(!result.applied_optimizations.is_empty());
582 assert_eq!(result.original_pipeline, pipeline);
583 }
584
585 #[test]
586 fn test_operator_fusion() {
587 let optimizer = AdvancedPipelineOptimizer::new();
588 let pipeline = "op1 -> op2 -> op3";
589
590 let (optimized, pass) = optimizer.apply_operator_fusion(pipeline).unwrap();
591
592 assert!(optimized.contains("FUSED"));
593 assert_eq!(pass.name, "Operator Fusion");
594 assert!(pass.performance_gain > 0.0);
595 }
596
597 #[test]
598 fn test_performance_recording() {
599 let mut optimizer = AdvancedPipelineOptimizer::new();
600
601 optimizer.record_performance("pipeline1".to_string(), 100.0, 1024 * 1024);
602 optimizer.record_performance("pipeline1".to_string(), 110.0, 1024 * 1024);
603
604 assert_eq!(optimizer.profiler.performance_history.len(), 2);
605 assert!(optimizer.profiler.current_metrics.avg_execution_time > 0.0);
606 }
607
608 #[test]
609 fn test_optimization_caching() {
610 let mut optimizer = AdvancedPipelineOptimizer::new();
611 let pipeline = "test pipeline";
612
613 let result1 = optimizer.optimize_pipeline(pipeline).unwrap();
614 let result2 = optimizer.optimize_pipeline(pipeline).unwrap();
615
616 assert_eq!(result1.optimized_pipeline, result2.optimized_pipeline);
617 let (cache_entries, _) = optimizer.cache_stats();
618 assert_eq!(cache_entries, 1);
619 }
620
621 #[test]
622 fn test_platform_specific_optimization() {
623 let mut config = OptimizerConfig::default();
624 config.target_platform = ExecutionPlatform::GPU;
625
626 let mut optimizer = AdvancedPipelineOptimizer::with_config(config);
627 let result = optimizer.optimize_pipeline("gpu pipeline").unwrap();
628
629 assert!(result
630 .metadata
631 .platform_notes
632 .iter()
633 .any(|note| note.contains("GPU")));
634 }
635
636 #[test]
637 fn test_memory_budget_optimization() {
638 let mut config = OptimizerConfig::default();
639 config.memory_budget = Some(512 * 1024 * 1024); let optimizer = AdvancedPipelineOptimizer::with_config(config);
642 assert_eq!(optimizer.config.memory_budget, Some(512 * 1024 * 1024));
643 }
644
645 #[test]
646 fn test_optimization_recommendations() {
647 let mut optimizer = AdvancedPipelineOptimizer::new();
648 optimizer.profiler.current_metrics.peak_memory_usage = 2 * 1024 * 1024 * 1024; let recommendations = optimizer.get_optimization_recommendations();
651
652 assert!(!recommendations.is_empty());
653 assert!(recommendations
654 .iter()
655 .any(|r| matches!(r.category, OptimizationCategory::Memory)));
656 }
657
658 #[test]
659 fn test_cache_clearing() {
660 let mut optimizer = AdvancedPipelineOptimizer::new();
661 optimizer.optimize_pipeline("test").unwrap();
662
663 let (count_before, _) = optimizer.cache_stats();
664 assert_eq!(count_before, 1);
665
666 optimizer.clear_cache();
667 let (count_after, _) = optimizer.cache_stats();
668 assert_eq!(count_after, 0);
669 }
670
671 #[test]
672 fn test_auto_parallelization() {
673 let optimizer = AdvancedPipelineOptimizer::new();
674 let pipeline = "parallel_operation";
675
676 let (optimized, pass) = optimizer.apply_auto_parallelization(pipeline).unwrap();
677
678 assert!(optimized.contains("PARALLEL"));
679 assert_eq!(pass.name, "Auto Parallelization");
680 }
681}