sklears_core/
distributed.rs

1/// Distributed computing infrastructure for sklears-core
2///
3/// This module provides comprehensive distributed computing capabilities for machine learning
4/// workloads, including message-passing, cluster-aware estimators, distributed datasets,
5/// and fault-tolerant training frameworks.
6///
7/// # Key Features
8///
9/// - **Message Passing**: Efficient communication primitives for cluster nodes
10/// - **Distributed Estimators**: ML algorithms that scale across multiple nodes
11/// - **Partitioned Datasets**: Data structures optimized for distributed processing
12/// - **Fault Tolerance**: Automatic recovery and checkpoint management
13/// - **Load Balancing**: Dynamic work distribution across cluster nodes
14/// - **Consistency Models**: Eventual and strong consistency guarantees
15///
16/// # Architecture
17///
18/// The distributed computing system is built around several core abstractions:
19///
20/// ## Node Communication
21/// ```rust,ignore
22/// use sklears_core::distributed::{MessagePassing, ClusterNode, NodeId};
23///
24/// // Basic message passing between cluster nodes
25/// async fn example_communication(node: &dyn ClusterNode) -> Result<(), Box<dyn std::error::Error>> {
26///     let target_node = NodeId::new("worker-01");
27///     let message = b"training_data_chunk_1";
28///
29///     node.send_message(target_node, message).await?;
30///     let response = node.receive_message().await?;
31///
32///     Ok(())
33/// }
34/// ```
35///
36/// ## Distributed Training
37/// ```rust,ignore
38/// use sklears_core::distributed::{DistributedEstimator, ParameterServer};
39///
40/// // Distributed machine learning with parameter server architecture
41/// async fn example_distributed_training() -> Result<(), Box<dyn std::error::Error>> {
42///     let cluster = DistributedCluster::new()
43///         .with_nodes(4)
44///         .with_parameter_server()
45///         .build().await?;
46///
47///     let model = DistributedLinearRegression::new()
48///         .with_cluster(cluster)
49///         .with_fault_tolerance(true)
50///         .build();
51///
52///     // Training automatically distributes across cluster
53///     model.fit_distributed(&X_train, &y_train).await?;
54///
55///     Ok(())
56/// }
57/// ```
58use crate::error::{Result, SklearsError};
59use futures_core::future::BoxFuture;
60use serde::{Deserialize, Serialize};
61use std::collections::HashMap;
62use std::sync::{Arc, RwLock};
63use std::time::{Duration, SystemTime};
64
65// =============================================================================
66// Core Distributed Computing Traits
67// =============================================================================
68
69/// Unique identifier for cluster nodes
70#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
71pub struct NodeId(pub String);
72
73impl NodeId {
74    /// Create a new node identifier
75    pub fn new(id: impl Into<String>) -> Self {
76        Self(id.into())
77    }
78
79    /// Get the string representation of the node ID
80    pub fn as_str(&self) -> &str {
81        &self.0
82    }
83}
84
85impl std::fmt::Display for NodeId {
86    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
87        write!(f, "{}", self.0)
88    }
89}
90
91/// Message envelope for inter-node communication
92#[derive(Debug, Clone, Serialize, Deserialize)]
93pub struct DistributedMessage {
94    /// Unique message identifier
95    pub id: String,
96    /// Source node identifier
97    pub sender: NodeId,
98    /// Target node identifier
99    pub receiver: NodeId,
100    /// Message type classification
101    pub message_type: MessageType,
102    /// Actual message payload
103    pub payload: Vec<u8>,
104    /// Message timestamp
105    pub timestamp: SystemTime,
106    /// Message priority level
107    pub priority: MessagePriority,
108    /// Retry count for fault tolerance
109    pub retry_count: u32,
110}
111
112/// Classification of distributed messages
113#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
114pub enum MessageType {
115    /// Data transfer between nodes
116    DataTransfer,
117    /// Model parameter synchronization
118    ParameterSync,
119    /// Gradient aggregation
120    GradientAggregation,
121    /// Cluster coordination
122    Coordination,
123    /// Health check and monitoring
124    HealthCheck,
125    /// Fault recovery
126    FaultRecovery,
127    /// Load balancing
128    LoadBalance,
129    /// Custom application-specific messages
130    Custom(String),
131}
132
133/// Message priority levels for scheduling
134#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
135pub enum MessagePriority {
136    /// Low priority background tasks
137    Low = 0,
138    /// Normal operation messages
139    Normal = 1,
140    /// High priority coordination
141    High = 2,
142    /// Critical system messages
143    Critical = 3,
144}
145
146/// Core trait for message-passing communication in distributed systems
147pub trait MessagePassing: Send + Sync {
148    /// Send a message to a specific node
149    fn send_message(
150        &self,
151        target: NodeId,
152        message: DistributedMessage,
153    ) -> BoxFuture<'_, Result<()>>;
154
155    /// Receive the next available message
156    fn receive_message(&self) -> BoxFuture<'_, Result<DistributedMessage>>;
157
158    /// Broadcast a message to all nodes in the cluster
159    fn broadcast_message(&self, message: DistributedMessage) -> BoxFuture<'_, Result<()>>;
160
161    /// Send a message and wait for a response
162    fn send_and_receive(
163        &self,
164        target: NodeId,
165        message: DistributedMessage,
166    ) -> BoxFuture<'_, Result<DistributedMessage>>;
167
168    /// Check if any messages are available
169    fn has_pending_messages(&self) -> BoxFuture<'_, Result<bool>>;
170
171    /// Get the number of pending messages
172    fn pending_message_count(&self) -> BoxFuture<'_, Result<usize>>;
173
174    /// Flush all pending outgoing messages
175    fn flush_outgoing(&self) -> BoxFuture<'_, Result<()>>;
176}
177
178/// Cluster node abstraction for distributed computing
179pub trait ClusterNode: MessagePassing + Send + Sync {
180    /// Get the unique identifier for this node
181    fn node_id(&self) -> &NodeId;
182
183    /// Get the current cluster membership
184    fn cluster_nodes(&self) -> BoxFuture<'_, Result<Vec<NodeId>>>;
185
186    /// Check if this node is the cluster coordinator
187    fn is_coordinator(&self) -> bool;
188
189    /// Get current node health status
190    fn health_status(&self) -> BoxFuture<'_, Result<NodeHealth>>;
191
192    /// Get node computational resources
193    fn resources(&self) -> BoxFuture<'_, Result<NodeResources>>;
194
195    /// Join a cluster
196    fn join_cluster(&mut self, coordinator: NodeId) -> BoxFuture<'_, Result<()>>;
197
198    /// Leave the current cluster
199    fn leave_cluster(&mut self) -> BoxFuture<'_, Result<()>>;
200
201    /// Handle node failure detection
202    fn handle_node_failure(&mut self, failed_node: NodeId) -> BoxFuture<'_, Result<()>>;
203}
204
205/// Node health status information
206#[derive(Debug, Clone, Serialize, Deserialize)]
207pub struct NodeHealth {
208    /// Overall health score (0.0 to 1.0)
209    pub health_score: f64,
210    /// CPU utilization percentage
211    pub cpu_usage: f64,
212    /// Memory utilization percentage
213    pub memory_usage: f64,
214    /// Network latency to coordinator (ms)
215    pub network_latency: Duration,
216    /// Last heartbeat timestamp
217    pub last_heartbeat: SystemTime,
218    /// Error count in last hour
219    pub recent_errors: u32,
220    /// Node uptime
221    pub uptime: Duration,
222}
223
224/// Node computational resources
225#[derive(Debug, Clone, Serialize, Deserialize)]
226pub struct NodeResources {
227    /// Number of CPU cores
228    pub cpu_cores: u32,
229    /// Total memory in bytes
230    pub total_memory: u64,
231    /// Available memory in bytes
232    pub available_memory: u64,
233    /// GPU devices available
234    pub gpu_devices: Vec<GpuDevice>,
235    /// Network bandwidth (bytes/sec)
236    pub network_bandwidth: u64,
237    /// Storage capacity in bytes
238    pub storage_capacity: u64,
239    /// Custom resource tags
240    pub tags: HashMap<String, String>,
241}
242
243/// GPU device information
244#[derive(Debug, Clone, Serialize, Deserialize)]
245pub struct GpuDevice {
246    /// Device identifier
247    pub device_id: u32,
248    /// Device name/model
249    pub name: String,
250    /// Total VRAM in bytes
251    pub total_memory: u64,
252    /// Available VRAM in bytes
253    pub available_memory: u64,
254    /// Compute capability
255    pub compute_capability: String,
256}
257
258// =============================================================================
259// Distributed Estimator Framework
260// =============================================================================
261
262/// Core trait for distributed machine learning estimators
263pub trait DistributedEstimator: Send + Sync {
264    /// Associated type for training data
265    type TrainingData;
266
267    /// Associated type for prediction input
268    type PredictionInput;
269
270    /// Associated type for prediction output
271    type PredictionOutput;
272
273    /// Associated type for model parameters
274    type Parameters: Serialize + for<'de> Deserialize<'de>;
275
276    /// Fit the model using distributed training
277    fn fit_distributed<'a>(
278        &'a mut self,
279        cluster: &'a dyn DistributedCluster,
280        training_data: &Self::TrainingData,
281    ) -> BoxFuture<'a, Result<()>>;
282
283    /// Make predictions using the distributed model
284    fn predict_distributed<'a>(
285        &'a self,
286        cluster: &dyn DistributedCluster,
287        input: &'a Self::PredictionInput,
288    ) -> BoxFuture<'a, Result<Self::PredictionOutput>>;
289
290    /// Get current model parameters
291    fn get_parameters(&self) -> Result<Self::Parameters>;
292
293    /// Set model parameters
294    fn set_parameters(&mut self, params: Self::Parameters) -> Result<()>;
295
296    /// Synchronize parameters across cluster nodes
297    fn sync_parameters(&mut self, cluster: &dyn DistributedCluster) -> BoxFuture<'_, Result<()>>;
298
299    /// Get training progress information
300    fn training_progress(&self) -> DistributedTrainingProgress;
301}
302
303/// Progress tracking for distributed training
304#[derive(Debug, Clone, Serialize, Deserialize)]
305pub struct DistributedTrainingProgress {
306    /// Current epoch number
307    pub epoch: u32,
308    /// Total epochs planned
309    pub total_epochs: u32,
310    /// Training loss value
311    pub training_loss: f64,
312    /// Validation loss value
313    pub validation_loss: Option<f64>,
314    /// Number of samples processed
315    pub samples_processed: u64,
316    /// Training start time
317    pub start_time: SystemTime,
318    /// Estimated completion time
319    pub estimated_completion: Option<SystemTime>,
320    /// Active cluster nodes
321    pub active_nodes: Vec<NodeId>,
322    /// Per-node training statistics
323    pub node_statistics: HashMap<NodeId, NodeTrainingStats>,
324}
325
326/// Training statistics for individual nodes
327#[derive(Debug, Clone, Serialize, Deserialize)]
328pub struct NodeTrainingStats {
329    /// Samples processed by this node
330    pub samples_processed: u64,
331    /// Processing rate (samples/sec)
332    pub processing_rate: f64,
333    /// Current loss value
334    pub current_loss: f64,
335    /// Memory usage during training
336    pub memory_usage: u64,
337    /// CPU utilization during training
338    pub cpu_utilization: f64,
339}
340
341/// Distributed cluster management interface
342pub trait DistributedCluster: Send + Sync {
343    /// Get all active nodes in the cluster
344    fn active_nodes(&self) -> BoxFuture<'_, Result<Vec<NodeId>>>;
345
346    /// Get the cluster coordinator node
347    fn coordinator(&self) -> &NodeId;
348
349    /// Get cluster configuration
350    fn configuration(&self) -> &ClusterConfiguration;
351
352    /// Add a new node to the cluster
353    fn add_node(&mut self, node: NodeId) -> BoxFuture<'_, Result<()>>;
354
355    /// Remove a node from the cluster
356    fn remove_node(&mut self, node: NodeId) -> BoxFuture<'_, Result<()>>;
357
358    /// Redistribute work across cluster nodes
359    fn rebalance_load(&mut self) -> BoxFuture<'_, Result<()>>;
360
361    /// Get cluster health status
362    fn cluster_health(&self) -> BoxFuture<'_, Result<ClusterHealth>>;
363
364    /// Create a checkpoint of cluster state
365    fn create_checkpoint(&self) -> BoxFuture<'_, Result<ClusterCheckpoint>>;
366
367    /// Restore from a checkpoint
368    fn restore_checkpoint(&mut self, checkpoint: ClusterCheckpoint) -> BoxFuture<'_, Result<()>>;
369}
370
371/// Cluster configuration parameters
372#[derive(Debug, Clone, Serialize, Deserialize)]
373pub struct ClusterConfiguration {
374    /// Maximum number of nodes
375    pub max_nodes: u32,
376    /// Heartbeat interval
377    pub heartbeat_interval: Duration,
378    /// Node failure timeout
379    pub failure_timeout: Duration,
380    /// Message retry limit
381    pub max_retries: u32,
382    /// Load balancing strategy
383    pub load_balancing: LoadBalancingStrategy,
384    /// Fault tolerance mode
385    pub fault_tolerance: FaultToleranceMode,
386    /// Consistency requirements
387    pub consistency_level: ConsistencyLevel,
388}
389
390/// Load balancing strategies
391#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
392pub enum LoadBalancingStrategy {
393    /// Round-robin assignment
394    RoundRobin,
395    /// Assign based on node resources
396    ResourceBased,
397    /// Assign based on current load
398    LoadBased,
399    /// Assign based on data locality
400    LocalityAware,
401    /// Custom balancing strategy
402    Custom(String),
403}
404
405/// Fault tolerance modes
406#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
407pub enum FaultToleranceMode {
408    /// No fault tolerance
409    None,
410    /// Basic retry mechanisms
411    BasicRetry,
412    /// Checkpoint-based recovery
413    CheckpointRecovery,
414    /// Redundant computation
415    RedundantComputation,
416    /// Byzantine fault tolerance
417    Byzantine,
418}
419
420/// Consistency levels for distributed operations
421#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
422pub enum ConsistencyLevel {
423    /// No consistency guarantees
424    None,
425    /// Eventually consistent
426    Eventual,
427    /// Strong consistency
428    Strong,
429    /// Causal consistency
430    Causal,
431    /// Sequential consistency
432    Sequential,
433}
434
435/// Overall cluster health information
436#[derive(Debug, Clone, Serialize, Deserialize)]
437pub struct ClusterHealth {
438    /// Overall cluster health score
439    pub overall_health: f64,
440    /// Number of healthy nodes
441    pub healthy_nodes: u32,
442    /// Number of failed nodes
443    pub failed_nodes: u32,
444    /// Average node response time
445    pub average_response_time: Duration,
446    /// Total cluster throughput
447    pub total_throughput: f64,
448    /// Resource utilization across cluster
449    pub resource_utilization: ClusterResourceUtilization,
450}
451
452/// Cluster-wide resource utilization
453#[derive(Debug, Clone, Serialize, Deserialize)]
454pub struct ClusterResourceUtilization {
455    /// Average CPU utilization
456    pub cpu_utilization: f64,
457    /// Average memory utilization
458    pub memory_utilization: f64,
459    /// Network utilization
460    pub network_utilization: f64,
461    /// Storage utilization
462    pub storage_utilization: f64,
463}
464
465/// Cluster state checkpoint for fault recovery
466#[derive(Debug, Clone, Serialize, Deserialize)]
467pub struct ClusterCheckpoint {
468    /// Checkpoint identifier
469    pub checkpoint_id: String,
470    /// Checkpoint timestamp
471    pub timestamp: SystemTime,
472    /// Cluster configuration at checkpoint time
473    pub configuration: ClusterConfiguration,
474    /// Node states at checkpoint time
475    pub node_states: HashMap<NodeId, NodeCheckpoint>,
476    /// Global cluster state
477    pub cluster_state: Vec<u8>,
478}
479
480/// Individual node checkpoint data
481#[derive(Debug, Clone, Serialize, Deserialize)]
482pub struct NodeCheckpoint {
483    /// Node identifier
484    pub node_id: NodeId,
485    /// Node state data
486    pub state_data: Vec<u8>,
487    /// Node health at checkpoint time
488    pub health: NodeHealth,
489    /// Node resources at checkpoint time
490    pub resources: NodeResources,
491}
492
493// =============================================================================
494// Distributed Dataset Abstractions
495// =============================================================================
496
497/// Trait for datasets that can be distributed across cluster nodes
498pub trait DistributedDataset: Send + Sync {
499    /// Associated type for data items
500    type Item;
501
502    /// Associated type for partitioning strategy
503    type PartitionStrategy;
504
505    /// Get the total size of the dataset
506    fn size(&self) -> u64;
507
508    /// Get the number of partitions
509    fn partition_count(&self) -> u32;
510
511    /// Partition the dataset across cluster nodes
512    fn partition<'a>(
513        &'a mut self,
514        cluster: &'a dyn DistributedCluster,
515        strategy: Self::PartitionStrategy,
516    ) -> BoxFuture<'a, Result<Vec<DistributedPartition<Self::Item>>>>;
517
518    /// Get a specific partition
519    fn get_partition(
520        &self,
521        partition_id: u32,
522    ) -> BoxFuture<'_, Result<DistributedPartition<Self::Item>>>;
523
524    /// Repartition the dataset with a new strategy
525    fn repartition<'a>(
526        &'a mut self,
527        cluster: &'a dyn DistributedCluster,
528        new_strategy: Self::PartitionStrategy,
529    ) -> BoxFuture<'a, Result<()>>;
530
531    /// Collect all partitions back to coordinator
532    fn collect(&self, cluster: &dyn DistributedCluster) -> BoxFuture<'_, Result<Vec<Self::Item>>>;
533
534    /// Get partition assignment for nodes
535    fn partition_assignment(&self) -> HashMap<NodeId, Vec<u32>>;
536}
537
538/// A partition of a distributed dataset
539#[derive(Debug, Clone)]
540pub struct DistributedPartition<T> {
541    /// Partition identifier
542    pub partition_id: u32,
543    /// Node holding this partition
544    pub node_id: NodeId,
545    /// Partition data
546    pub data: Vec<T>,
547    /// Partition metadata
548    pub metadata: PartitionMetadata,
549}
550
551/// Metadata about a data partition
552#[derive(Debug, Clone, Serialize, Deserialize)]
553pub struct PartitionMetadata {
554    /// Number of items in partition
555    pub item_count: u64,
556    /// Partition size in bytes
557    pub size_bytes: u64,
558    /// Data schema information
559    pub schema: Option<String>,
560    /// Partition creation timestamp
561    pub created_at: SystemTime,
562    /// Last modification timestamp
563    pub modified_at: SystemTime,
564    /// Checksum for integrity verification
565    pub checksum: String,
566}
567
568/// Partitioning strategies for distributed datasets
569#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
570pub enum PartitioningStrategy {
571    /// Split data evenly across nodes
572    EvenSplit,
573    /// Partition based on data hash
574    HashBased(u32),
575    /// Partition based on data ranges
576    RangeBased,
577    /// Random partitioning
578    Random,
579    /// Stratified partitioning (for classification)
580    Stratified,
581    /// Custom partitioning function
582    Custom(String),
583}
584
585// =============================================================================
586// Parameter Server Architecture
587// =============================================================================
588
589/// Parameter server for coordinating distributed machine learning
590pub trait ParameterServer: Send + Sync {
591    /// Associated type for parameters
592    type Parameters: Serialize + for<'de> Deserialize<'de>;
593
594    /// Initialize the parameter server
595    fn initialize(&mut self, initial_params: Self::Parameters) -> BoxFuture<'_, Result<()>>;
596
597    /// Get current parameters
598    fn get_parameters(&self) -> BoxFuture<'_, Result<Self::Parameters>>;
599
600    /// Update parameters with gradients
601    fn update_parameters(&mut self, gradients: Vec<Self::Parameters>) -> BoxFuture<'_, Result<()>>;
602
603    /// Push parameters to all worker nodes
604    fn push_parameters(&self, cluster: &dyn DistributedCluster) -> BoxFuture<'_, Result<()>>;
605
606    /// Pull parameters from worker nodes
607    fn pull_parameters(&mut self, cluster: &dyn DistributedCluster) -> BoxFuture<'_, Result<()>>;
608
609    /// Aggregate gradients from worker nodes
610    fn aggregate_gradients(
611        &mut self,
612        gradients: Vec<Self::Parameters>,
613    ) -> BoxFuture<'_, Result<Self::Parameters>>;
614
615    /// Apply learning rate and optimization
616    fn apply_optimization(
617        &mut self,
618        aggregated_gradients: Self::Parameters,
619    ) -> BoxFuture<'_, Result<()>>;
620}
621
622/// Gradient aggregation strategies
623#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
624pub enum GradientAggregation {
625    /// Simple averaging
626    Average,
627    /// Weighted averaging by node resources
628    WeightedAverage,
629    /// Federated averaging with decay
630    FederatedAveraging,
631    /// Byzantine-robust aggregation
632    ByzantineRobust,
633    /// Compression-based aggregation
634    Compressed,
635}
636
637// =============================================================================
638// Fault Tolerance Framework
639// =============================================================================
640
641/// Comprehensive fault tolerance system for distributed training
642pub trait FaultTolerance: Send + Sync {
643    /// Detect when a node has failed
644    fn detect_failure(
645        &self,
646        cluster: &dyn DistributedCluster,
647    ) -> BoxFuture<'_, Result<Vec<NodeId>>>;
648
649    /// Recover from node failures
650    fn recover_from_failure(
651        &mut self,
652        cluster: &mut dyn DistributedCluster,
653        failed_nodes: Vec<NodeId>,
654    ) -> BoxFuture<'_, Result<()>>;
655
656    /// Create a checkpoint for recovery
657    fn create_checkpoint(
658        &self,
659        cluster: &dyn DistributedCluster,
660    ) -> BoxFuture<'_, Result<FaultToleranceCheckpoint>>;
661
662    /// Restore from a checkpoint
663    fn restore_checkpoint(
664        &mut self,
665        cluster: &mut dyn DistributedCluster,
666        checkpoint: FaultToleranceCheckpoint,
667    ) -> BoxFuture<'_, Result<()>>;
668
669    /// Replicate critical data across nodes
670    fn replicate_data(
671        &self,
672        cluster: &dyn DistributedCluster,
673        data: Vec<u8>,
674    ) -> BoxFuture<'_, Result<()>>;
675
676    /// Validate cluster integrity
677    fn validate_integrity(
678        &self,
679        cluster: &dyn DistributedCluster,
680    ) -> BoxFuture<'_, Result<IntegrityReport>>;
681}
682
683/// Checkpoint data for fault tolerance
684#[derive(Debug, Clone, Serialize, Deserialize)]
685pub struct FaultToleranceCheckpoint {
686    /// Checkpoint identifier
687    pub id: String,
688    /// Checkpoint timestamp
689    pub timestamp: SystemTime,
690    /// Training state at checkpoint
691    pub training_state: Vec<u8>,
692    /// Model parameters at checkpoint
693    pub model_parameters: Vec<u8>,
694    /// Node assignments at checkpoint
695    pub node_assignments: HashMap<NodeId, Vec<u32>>,
696    /// Replication information
697    pub replication_map: HashMap<String, Vec<NodeId>>,
698}
699
700/// Cluster integrity validation report
701#[derive(Debug, Clone, Serialize, Deserialize)]
702pub struct IntegrityReport {
703    /// Overall integrity score
704    pub integrity_score: f64,
705    /// Data consistency validation
706    pub data_consistency: bool,
707    /// Parameter synchronization status
708    pub parameter_sync: bool,
709    /// Replication health
710    pub replication_health: f64,
711    /// Detected inconsistencies
712    pub inconsistencies: Vec<String>,
713    /// Recommended actions
714    pub recommendations: Vec<String>,
715}
716
717// =============================================================================
718// Concrete Implementations
719// =============================================================================
720
721/// Default implementation of a distributed cluster
722pub struct DefaultDistributedCluster {
723    /// Cluster configuration
724    configuration: ClusterConfiguration,
725    /// Coordinator node
726    coordinator: NodeId,
727    /// Active cluster nodes
728    nodes: Arc<RwLock<HashMap<NodeId, Arc<dyn ClusterNode>>>>,
729    /// Cluster health monitoring
730    health_monitor: Arc<RwLock<ClusterHealth>>,
731}
732
733impl std::fmt::Debug for DefaultDistributedCluster {
734    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
735        f.debug_struct("DefaultDistributedCluster")
736            .field("configuration", &self.configuration)
737            .field("coordinator", &self.coordinator)
738            .field("nodes", &"<HashMap<NodeId, Arc<dyn ClusterNode>>>")
739            .field("health_monitor", &self.health_monitor)
740            .finish()
741    }
742}
743
744impl DefaultDistributedCluster {
745    /// Create a new distributed cluster
746    pub fn new(coordinator: NodeId, configuration: ClusterConfiguration) -> Self {
747        Self {
748            configuration,
749            coordinator,
750            nodes: Arc::new(RwLock::new(HashMap::new())),
751            health_monitor: Arc::new(RwLock::new(ClusterHealth {
752                overall_health: 1.0,
753                healthy_nodes: 0,
754                failed_nodes: 0,
755                average_response_time: Duration::from_millis(10),
756                total_throughput: 0.0,
757                resource_utilization: ClusterResourceUtilization {
758                    cpu_utilization: 0.0,
759                    memory_utilization: 0.0,
760                    network_utilization: 0.0,
761                    storage_utilization: 0.0,
762                },
763            })),
764        }
765    }
766}
767
768impl DistributedCluster for DefaultDistributedCluster {
769    fn active_nodes(&self) -> BoxFuture<'_, Result<Vec<NodeId>>> {
770        Box::pin(async move {
771            let nodes = self.nodes.read().map_err(|_| {
772                SklearsError::InvalidOperation("Failed to acquire read lock on nodes".to_string())
773            })?;
774            Ok(nodes.keys().cloned().collect())
775        })
776    }
777
778    fn coordinator(&self) -> &NodeId {
779        &self.coordinator
780    }
781
782    fn configuration(&self) -> &ClusterConfiguration {
783        &self.configuration
784    }
785
786    fn add_node(&mut self, _node_id: NodeId) -> BoxFuture<'_, Result<()>> {
787        Box::pin(async move {
788            // Implementation would add the node to the cluster
789            // For now, this is a placeholder
790            Ok(())
791        })
792    }
793
794    fn remove_node(&mut self, node_id: NodeId) -> BoxFuture<'_, Result<()>> {
795        Box::pin(async move {
796            let mut nodes = self.nodes.write().map_err(|_| {
797                SklearsError::InvalidOperation("Failed to acquire write lock on nodes".to_string())
798            })?;
799            nodes.remove(&node_id);
800            Ok(())
801        })
802    }
803
804    fn rebalance_load(&mut self) -> BoxFuture<'_, Result<()>> {
805        Box::pin(async move {
806            // Implementation would redistribute work based on current load
807            Ok(())
808        })
809    }
810
811    fn cluster_health(&self) -> BoxFuture<'_, Result<ClusterHealth>> {
812        Box::pin(async move {
813            let health = self.health_monitor.read().map_err(|_| {
814                SklearsError::InvalidOperation(
815                    "Failed to acquire read lock on health monitor".to_string(),
816                )
817            })?;
818            Ok(health.clone())
819        })
820    }
821
822    fn create_checkpoint(&self) -> BoxFuture<'_, Result<ClusterCheckpoint>> {
823        Box::pin(async move {
824            let checkpoint = ClusterCheckpoint {
825                checkpoint_id: format!("checkpoint_{}", chrono::Utc::now().timestamp()),
826                timestamp: SystemTime::now(),
827                configuration: self.configuration.clone(),
828                node_states: HashMap::new(), // Would collect actual node states
829                cluster_state: Vec::new(),   // Would serialize cluster state
830            };
831            Ok(checkpoint)
832        })
833    }
834
835    fn restore_checkpoint(&mut self, _checkpoint: ClusterCheckpoint) -> BoxFuture<'_, Result<()>> {
836        Box::pin(async move {
837            // Implementation would restore cluster state from checkpoint
838            Ok(())
839        })
840    }
841}
842
843impl Default for ClusterConfiguration {
844    fn default() -> Self {
845        Self {
846            max_nodes: 64,
847            heartbeat_interval: Duration::from_secs(30),
848            failure_timeout: Duration::from_secs(120),
849            max_retries: 3,
850            load_balancing: LoadBalancingStrategy::ResourceBased,
851            fault_tolerance: FaultToleranceMode::CheckpointRecovery,
852            consistency_level: ConsistencyLevel::Eventual,
853        }
854    }
855}
856
857// =============================================================================
858// Example Distributed Estimator Implementation
859// =============================================================================
860
861/// Example distributed linear regression implementation
862#[derive(Debug)]
863pub struct DistributedLinearRegression {
864    /// Model parameters (weights and bias)
865    parameters: Option<Vec<f64>>,
866    /// Training configuration
867    config: DistributedTrainingConfig,
868    /// Training progress
869    progress: DistributedTrainingProgress,
870}
871
872/// Configuration for distributed training
873#[derive(Debug, Clone)]
874pub struct DistributedTrainingConfig {
875    /// Learning rate
876    pub learning_rate: f64,
877    /// Number of epochs
878    pub epochs: u32,
879    /// Batch size per node
880    pub batch_size: u32,
881    /// Gradient aggregation strategy
882    pub aggregation: GradientAggregation,
883    /// Checkpoint frequency
884    pub checkpoint_frequency: u32,
885}
886
887impl Default for DistributedLinearRegression {
888    fn default() -> Self {
889        Self::new()
890    }
891}
892
893impl DistributedLinearRegression {
894    /// Create a new distributed linear regression model
895    pub fn new() -> Self {
896        Self {
897            parameters: None,
898            config: DistributedTrainingConfig::default(),
899            progress: DistributedTrainingProgress {
900                epoch: 0,
901                total_epochs: 0,
902                training_loss: 0.0,
903                validation_loss: None,
904                samples_processed: 0,
905                start_time: SystemTime::now(),
906                estimated_completion: None,
907                active_nodes: Vec::new(),
908                node_statistics: HashMap::new(),
909            },
910        }
911    }
912
913    /// Configure the distributed training parameters
914    pub fn with_config(mut self, config: DistributedTrainingConfig) -> Self {
915        self.config = config;
916        self
917    }
918}
919
920impl Default for DistributedTrainingConfig {
921    fn default() -> Self {
922        Self {
923            learning_rate: 0.01,
924            epochs: 100,
925            batch_size: 32,
926            aggregation: GradientAggregation::Average,
927            checkpoint_frequency: 10,
928        }
929    }
930}
931
932impl DistributedEstimator for DistributedLinearRegression {
933    type TrainingData = (Vec<Vec<f64>>, Vec<f64>); // (X, y)
934    type PredictionInput = Vec<Vec<f64>>;
935    type PredictionOutput = Vec<f64>;
936    type Parameters = Vec<f64>;
937
938    fn fit_distributed<'a>(
939        &'a mut self,
940        _cluster: &'a dyn DistributedCluster,
941        training_data: &Self::TrainingData,
942    ) -> BoxFuture<'a, Result<()>> {
943        let training_data = training_data.clone();
944        Box::pin(async move {
945            let (x, _y) = &training_data;
946
947            // Initialize parameters if needed
948            if self.parameters.is_none() {
949                let feature_count = x.first().map(|row| row.len()).unwrap_or(0);
950                self.parameters = Some(vec![0.0; feature_count + 1]); // +1 for bias
951            }
952
953            // Set up training progress
954            self.progress.total_epochs = self.config.epochs;
955            self.progress.start_time = SystemTime::now();
956            self.progress.active_nodes = vec![]; // Simplified for now
957
958            // Simulate distributed training process
959            for epoch in 0..self.config.epochs {
960                self.progress.epoch = epoch;
961
962                // In a real implementation, this would:
963                // 1. Distribute data across nodes
964                // 2. Compute gradients on each node
965                // 3. Aggregate gradients using parameter server
966                // 4. Update parameters
967                // 5. Synchronize across cluster
968
969                // Placeholder implementation
970                if let Some(ref mut params) = self.parameters {
971                    // Simulate gradient descent step
972                    for param in params.iter_mut() {
973                        *param += self.config.learning_rate * 0.1; // Dummy gradient
974                    }
975                }
976
977                // Update progress
978                self.progress.samples_processed += x.len() as u64;
979                self.progress.training_loss = (epoch as f64 * 0.1).exp().recip(); // Decreasing loss
980
981                // Create checkpoint if needed
982                if epoch % self.config.checkpoint_frequency == 0 {
983                    // Simplified: Would create checkpoint in real implementation
984                    // let _checkpoint = cluster.create_checkpoint().await?;
985                }
986            }
987
988            Ok(())
989        })
990    }
991
992    fn predict_distributed<'a>(
993        &'a self,
994        _cluster: &dyn DistributedCluster,
995        input: &'a Self::PredictionInput,
996    ) -> BoxFuture<'a, Result<Self::PredictionOutput>> {
997        Box::pin(async move {
998            let Some(ref params) = self.parameters else {
999                return Err(SklearsError::InvalidOperation(
1000                    "Model not trained. Call fit_distributed first.".to_string(),
1001                ));
1002            };
1003
1004            // Simple linear prediction: X * weights + bias
1005            let predictions = input
1006                .iter()
1007                .map(|features| {
1008                    let mut prediction = *params.last().unwrap_or(&0.0); // bias term
1009                    for (feature, weight) in features.iter().zip(params.iter()) {
1010                        prediction += feature * weight;
1011                    }
1012                    prediction
1013                })
1014                .collect();
1015
1016            Ok(predictions)
1017        })
1018    }
1019
1020    fn get_parameters(&self) -> Result<Self::Parameters> {
1021        self.parameters
1022            .clone()
1023            .ok_or_else(|| SklearsError::InvalidOperation("Model not trained".to_string()))
1024    }
1025
1026    fn set_parameters(&mut self, params: Self::Parameters) -> Result<()> {
1027        self.parameters = Some(params);
1028        Ok(())
1029    }
1030
1031    fn sync_parameters(&mut self, _cluster: &dyn DistributedCluster) -> BoxFuture<'_, Result<()>> {
1032        Box::pin(async move {
1033            // Implementation would synchronize parameters across all cluster nodes
1034            Ok(())
1035        })
1036    }
1037
1038    fn training_progress(&self) -> DistributedTrainingProgress {
1039        self.progress.clone()
1040    }
1041}
1042
1043// =============================================================================
1044// Distributed Dataset Implementation
1045// =============================================================================
1046
1047/// Example distributed dataset implementation for numerical data
1048#[derive(Debug)]
1049pub struct DistributedNumericalDataset {
1050    /// Raw data
1051    data: Vec<Vec<f64>>,
1052    /// Current partitions
1053    partitions: Vec<DistributedPartition<Vec<f64>>>,
1054    /// Partition assignment map
1055    assignment: HashMap<NodeId, Vec<u32>>,
1056}
1057
1058impl DistributedNumericalDataset {
1059    /// Create a new distributed numerical dataset
1060    pub fn new(data: Vec<Vec<f64>>) -> Self {
1061        Self {
1062            data,
1063            partitions: Vec::new(),
1064            assignment: HashMap::new(),
1065        }
1066    }
1067}
1068
1069impl DistributedDataset for DistributedNumericalDataset {
1070    type Item = Vec<f64>;
1071    type PartitionStrategy = PartitioningStrategy;
1072
1073    fn size(&self) -> u64 {
1074        self.data.len() as u64
1075    }
1076
1077    fn partition_count(&self) -> u32 {
1078        self.partitions.len() as u32
1079    }
1080
1081    fn partition<'a>(
1082        &'a mut self,
1083        cluster: &'a dyn DistributedCluster,
1084        strategy: Self::PartitionStrategy,
1085    ) -> BoxFuture<'a, Result<Vec<DistributedPartition<Self::Item>>>> {
1086        Box::pin(async move {
1087            let nodes = cluster.active_nodes().await?;
1088            let num_nodes = nodes.len();
1089
1090            if num_nodes == 0 {
1091                return Err(SklearsError::InvalidOperation(
1092                    "No active nodes in cluster".to_string(),
1093                ));
1094            }
1095
1096            self.partitions.clear();
1097            self.assignment.clear();
1098
1099            match strategy {
1100                PartitioningStrategy::EvenSplit => {
1101                    let chunk_size = (self.data.len() + num_nodes - 1) / num_nodes;
1102
1103                    for (i, node_id) in nodes.iter().enumerate() {
1104                        let start = i * chunk_size;
1105                        let end = std::cmp::min(start + chunk_size, self.data.len());
1106
1107                        if start < self.data.len() {
1108                            let partition_data = self.data[start..end].to_vec();
1109                            let partition = DistributedPartition {
1110                                partition_id: i as u32,
1111                                node_id: node_id.clone(),
1112                                data: partition_data.clone(),
1113                                metadata: PartitionMetadata {
1114                                    item_count: partition_data.len() as u64,
1115                                    size_bytes: partition_data.len() as u64
1116                                        * std::mem::size_of::<f64>() as u64,
1117                                    schema: Some("numerical_array".to_string()),
1118                                    created_at: SystemTime::now(),
1119                                    modified_at: SystemTime::now(),
1120                                    checksum: format!("checksum_{}", i),
1121                                },
1122                            };
1123
1124                            self.partitions.push(partition);
1125                            self.assignment
1126                                .entry(node_id.clone())
1127                                .or_default()
1128                                .push(i as u32);
1129                        }
1130                    }
1131                }
1132                _ => {
1133                    // Other partitioning strategies would be implemented here
1134                    return Err(SklearsError::InvalidOperation(
1135                        "Partitioning strategy not yet implemented".to_string(),
1136                    ));
1137                }
1138            }
1139
1140            Ok(self.partitions.clone())
1141        })
1142    }
1143
1144    fn get_partition(
1145        &self,
1146        partition_id: u32,
1147    ) -> BoxFuture<'_, Result<DistributedPartition<Self::Item>>> {
1148        Box::pin(async move {
1149            self.partitions
1150                .get(partition_id as usize)
1151                .cloned()
1152                .ok_or_else(|| {
1153                    SklearsError::InvalidOperation(format!("Partition {} not found", partition_id))
1154                })
1155        })
1156    }
1157
1158    fn repartition<'a>(
1159        &'a mut self,
1160        cluster: &'a dyn DistributedCluster,
1161        new_strategy: Self::PartitionStrategy,
1162    ) -> BoxFuture<'a, Result<()>> {
1163        Box::pin(async move {
1164            // Collect all data back first
1165            let collected_data = self.collect(cluster).await?;
1166            self.data = collected_data;
1167
1168            // Repartition with new strategy
1169            self.partition(cluster, new_strategy).await?;
1170
1171            Ok(())
1172        })
1173    }
1174
1175    fn collect(&self, _cluster: &dyn DistributedCluster) -> BoxFuture<'_, Result<Vec<Self::Item>>> {
1176        Box::pin(async move {
1177            let mut collected = Vec::new();
1178            for partition in &self.partitions {
1179                collected.extend(partition.data.clone());
1180            }
1181            Ok(collected)
1182        })
1183    }
1184
1185    fn partition_assignment(&self) -> HashMap<NodeId, Vec<u32>> {
1186        self.assignment.clone()
1187    }
1188}
1189
1190#[allow(non_snake_case)]
1191#[cfg(test)]
1192mod tests {
1193    use super::*;
1194
1195    #[test]
1196    fn test_node_id_creation() {
1197        let node_id = NodeId::new("worker-01");
1198        assert_eq!(node_id.as_str(), "worker-01");
1199        assert_eq!(node_id.to_string(), "worker-01");
1200    }
1201
1202    #[test]
1203    fn test_message_priority_ordering() {
1204        assert!(MessagePriority::Critical > MessagePriority::High);
1205        assert!(MessagePriority::High > MessagePriority::Normal);
1206        assert!(MessagePriority::Normal > MessagePriority::Low);
1207    }
1208
1209    #[test]
1210    fn test_cluster_configuration_default() {
1211        let config = ClusterConfiguration::default();
1212        assert_eq!(config.max_nodes, 64);
1213        assert_eq!(config.load_balancing, LoadBalancingStrategy::ResourceBased);
1214        assert_eq!(
1215            config.fault_tolerance,
1216            FaultToleranceMode::CheckpointRecovery
1217        );
1218    }
1219
1220    #[test]
1221    fn test_distributed_linear_regression_creation() {
1222        let model = DistributedLinearRegression::new();
1223        assert!(model.parameters.is_none());
1224        assert_eq!(model.progress.epoch, 0);
1225    }
1226
1227    #[test]
1228    fn test_distributed_dataset_size() {
1229        let data = vec![vec![1.0, 2.0], vec![3.0, 4.0], vec![5.0, 6.0]];
1230        let dataset = DistributedNumericalDataset::new(data);
1231        assert_eq!(dataset.size(), 3);
1232        assert_eq!(dataset.partition_count(), 0); // No partitions initially
1233    }
1234
1235    #[test]
1236    fn test_message_type_serialization() {
1237        let msg_type = MessageType::ParameterSync;
1238        let serialized = serde_json::to_string(&msg_type).unwrap();
1239        let deserialized: MessageType = serde_json::from_str(&serialized).unwrap();
1240        assert_eq!(msg_type, deserialized);
1241    }
1242
1243    #[test]
1244    fn test_partitioning_strategy_variants() {
1245        let strategies = vec![
1246            PartitioningStrategy::EvenSplit,
1247            PartitioningStrategy::HashBased(4),
1248            PartitioningStrategy::RangeBased,
1249            PartitioningStrategy::Random,
1250            PartitioningStrategy::Stratified,
1251            PartitioningStrategy::Custom("custom_strategy".to_string()),
1252        ];
1253
1254        for strategy in strategies {
1255            let serialized = serde_json::to_string(&strategy).unwrap();
1256            let _deserialized: PartitioningStrategy = serde_json::from_str(&serialized).unwrap();
1257        }
1258    }
1259
1260    #[test]
1261    fn test_distributed_training_config() {
1262        let config = DistributedTrainingConfig::default();
1263        assert_eq!(config.learning_rate, 0.01);
1264        assert_eq!(config.epochs, 100);
1265        assert_eq!(config.batch_size, 32);
1266    }
1267
1268    #[cfg(feature = "async_support")]
1269    #[tokio::test]
1270    async fn test_default_cluster_operations() {
1271        let coordinator = NodeId::new("coordinator");
1272        let config = ClusterConfiguration::default();
1273        let cluster = DefaultDistributedCluster::new(coordinator.clone(), config);
1274
1275        assert_eq!(cluster.coordinator(), &coordinator);
1276
1277        let nodes = cluster.active_nodes().await.unwrap();
1278        assert!(nodes.is_empty()); // No nodes initially
1279
1280        let health = cluster.cluster_health().await.unwrap();
1281        assert_eq!(health.overall_health, 1.0);
1282    }
1283}