sklears_core/
autodiff.rs

1/// Advanced automatic differentiation system for sklears-core
2///
3/// This module provides a comprehensive automatic differentiation framework with procedural
4/// macros for compile-time gradient computation. It supports both forward-mode and reverse-mode
5/// automatic differentiation with efficient tape-based computation graphs.
6///
7/// # Key Features
8///
9/// - **Compile-time AD**: Zero-overhead automatic differentiation using procedural macros
10/// - **Dual Number System**: Forward-mode AD with epsilon-delta calculus
11/// - **Computation Graph**: Reverse-mode AD with dynamic tape construction
12/// - **Higher-order Derivatives**: Support for Hessians and higher-order gradients
13/// - **SIMD Optimization**: Vectorized gradient computation
14/// - **GPU Support**: CUDA kernels for gradient computation
15/// - **Symbolic Differentiation**: Optional symbolic manipulation
16///
17/// # Usage Examples
18///
19/// ## Forward-mode Automatic Differentiation
20/// ```rust,ignore
21/// use sklears_core::autodiff::{autodiff, Dual, forward_diff};
22///
23/// // Define a function with automatic differentiation
24/// #[autodiff(forward)]
25/// fn polynomial(x: f64) -> f64 {
26///     x.powi(3) + 2.0 * x.powi(2) - 3.0 * x + 1.0
27/// }
28///
29/// // Compute function value and derivative at x = 2.0
30/// let (value, derivative) = forward_diff(polynomial, 2.0);
31/// assert_eq!(value, 11.0);        // f(2) = 8 + 8 - 6 + 1 = 11
32/// assert_eq!(derivative, 15.0);   // f'(2) = 12 + 8 - 3 = 17
33/// ```
34///
35/// ## Reverse-mode Automatic Differentiation
36/// ```rust,ignore
37/// use sklears_core::autodiff::{autodiff, Variable, backward};
38///
39/// // Define a neural network layer with backpropagation
40/// #[autodiff(reverse)]
41/// fn neural_layer(x: &[f64], weights: &[f64], bias: f64) -> f64 {
42///     let linear = x.iter().zip(weights).map(|(xi, wi)| xi * wi).sum::`<f64>`() + bias;
43///     1.0 / (1.0 + (-linear).exp()) // sigmoid activation
44/// }
45///
46/// // Compute gradients with respect to all inputs
47/// let x = vec![1.0, 2.0, 3.0];
48/// let weights = vec![0.5, -0.3, 0.7];
49/// let bias = 0.1;
50///
51/// let gradients = backward(neural_layer, (&x, &weights, bias));
52/// println!("Gradients: {:?}", gradients);
53/// ```
54///
55/// ## Multi-variable Functions
56/// ```rust,ignore
57/// use sklears_core::autodiff::{autodiff, gradient, hessian};
58///
59/// // Loss function for logistic regression
60/// #[autodiff(reverse, order = 2)] // Support up to 2nd derivatives
61/// fn logistic_loss(weights: &[f64], x: &[f64], y: f64) -> f64 {
62///     let prediction = sigmoid(dot_product(weights, x));
63///     -y * prediction.ln() - (1.0 - y) * (1.0 - prediction).ln()
64/// }
65///
66/// // Compute gradient and Hessian for optimization
67/// let weights = vec![0.1, 0.2, -0.3];
68/// let x = vec![1.0, 2.0, 3.0];
69/// let y = 1.0;
70///
71/// let grad = gradient(logistic_loss, (&weights, &x, y));
72/// let hess = hessian(logistic_loss, (&weights, &x, y));
73/// ```
74use crate::error::{Result, SklearsError};
75use proc_macro2::{Span, TokenStream};
76use quote::quote;
77use serde::{Deserialize, Serialize};
78use std::collections::HashMap;
79use std::sync::{Arc, Mutex};
80use syn::{Attribute, Expr, FnArg, ItemFn, ReturnType, Stmt, Type};
81
82// =============================================================================
83// Core Automatic Differentiation Types
84// =============================================================================
85
86/// Dual number for forward-mode automatic differentiation
87#[derive(Debug, Clone, Copy, PartialEq)]
88pub struct Dual {
89    /// Real part (function value)
90    pub real: f64,
91    /// Dual part (derivative)
92    pub dual: f64,
93}
94
95impl Dual {
96    /// Create a new dual number
97    pub fn new(real: f64, dual: f64) -> Self {
98        Self { real, dual }
99    }
100
101    /// Create a dual number representing a variable
102    pub fn variable(value: f64) -> Self {
103        Self::new(value, 1.0)
104    }
105
106    /// Create a dual number representing a constant
107    pub fn constant(value: f64) -> Self {
108        Self::new(value, 0.0)
109    }
110
111    /// Extract the value (real part)
112    pub fn value(&self) -> f64 {
113        self.real
114    }
115
116    /// Extract the derivative (dual part)
117    pub fn derivative(&self) -> f64 {
118        self.dual
119    }
120}
121
122/// Implementation of arithmetic operations for dual numbers
123impl std::ops::Add for Dual {
124    type Output = Self;
125
126    fn add(self, other: Self) -> Self {
127        Self::new(self.real + other.real, self.dual + other.dual)
128    }
129}
130
131impl std::ops::Sub for Dual {
132    type Output = Self;
133
134    fn sub(self, other: Self) -> Self {
135        Self::new(self.real - other.real, self.dual - other.dual)
136    }
137}
138
139impl std::ops::Mul for Dual {
140    type Output = Self;
141
142    fn mul(self, other: Self) -> Self {
143        Self::new(
144            self.real * other.real,
145            self.real * other.dual + self.dual * other.real,
146        )
147    }
148}
149
150impl std::ops::Div for Dual {
151    type Output = Self;
152
153    fn div(self, other: Self) -> Self {
154        let inv_other_real = 1.0 / other.real;
155        Self::new(
156            self.real * inv_other_real,
157            (self.dual * other.real - self.real * other.dual) * inv_other_real * inv_other_real,
158        )
159    }
160}
161
162/// Variable for reverse-mode automatic differentiation
163#[derive(Debug, Clone)]
164pub struct Variable {
165    /// Unique variable identifier
166    pub id: VariableId,
167    /// Current value
168    pub value: f64,
169    /// Gradient (populated during backpropagation)
170    pub gradient: f64,
171    /// Computation graph node
172    pub node: Option<Arc<ComputationNode>>,
173}
174
175/// Unique identifier for variables in the computation graph
176#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
177pub struct VariableId(pub u64);
178
179impl Variable {
180    /// Create a new variable
181    pub fn new(value: f64) -> Self {
182        static NEXT_ID: std::sync::atomic::AtomicU64 = std::sync::atomic::AtomicU64::new(0);
183        let id = VariableId(NEXT_ID.fetch_add(1, std::sync::atomic::Ordering::SeqCst));
184
185        Self {
186            id,
187            value,
188            gradient: 0.0,
189            node: None,
190        }
191    }
192
193    /// Create a variable with computation graph tracking
194    pub fn with_graph(value: f64, tape: Arc<Mutex<ComputationTape>>) -> Self {
195        let mut var = Self::new(value);
196
197        let node = ComputationNode {
198            operation: Operation::Input,
199            inputs: Vec::new(),
200            output_id: var.id,
201            gradient_fn: Box::new(|_inputs, _output_grad| Vec::new()),
202        };
203
204        var.node = Some(Arc::new(node));
205
206        // Register with tape
207        if let Ok(mut tape_guard) = tape.lock() {
208            tape_guard.add_node(var.node.as_ref().unwrap().clone());
209        }
210
211        var
212    }
213
214    /// Set gradient value
215    pub fn set_gradient(&mut self, gradient: f64) {
216        self.gradient = gradient;
217    }
218
219    /// Add to gradient (for accumulation)
220    pub fn add_gradient(&mut self, gradient: f64) {
221        self.gradient += gradient;
222    }
223
224    /// Reset gradient to zero
225    pub fn zero_gradient(&mut self) {
226        self.gradient = 0.0;
227    }
228}
229
230/// Type alias for gradient functions to reduce complexity
231pub type GradientFunction = Box<dyn Fn(&[f64], f64) -> Vec<f64> + Send + Sync>;
232
233/// Node in the computation graph for reverse-mode AD
234pub struct ComputationNode {
235    /// Operation that produced this node
236    pub operation: Operation,
237    /// Input variable IDs
238    pub inputs: Vec<VariableId>,
239    /// Output variable ID
240    pub output_id: VariableId,
241    /// Gradient function for backpropagation
242    pub gradient_fn: GradientFunction,
243}
244
245impl std::fmt::Debug for ComputationNode {
246    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
247        f.debug_struct("ComputationNode")
248            .field("operation", &self.operation)
249            .field("inputs", &self.inputs)
250            .field("output_id", &self.output_id)
251            .field("gradient_fn", &"<function>")
252            .finish()
253    }
254}
255
256/// Operations in the computation graph
257#[derive(Debug, Clone, PartialEq)]
258pub enum Operation {
259    /// Input variable
260    Input,
261    /// Addition operation
262    Add,
263    /// Subtraction operation
264    Sub,
265    /// Multiplication operation
266    Mul,
267    /// Division operation
268    Div,
269    /// Power operation
270    Pow,
271    /// Exponential function
272    Exp,
273    /// Natural logarithm
274    Ln,
275    /// Sine function
276    Sin,
277    /// Cosine function
278    Cos,
279    /// Hyperbolic tangent
280    Tanh,
281    /// Sigmoid function
282    Sigmoid,
283    /// ReLU activation
284    ReLU,
285    /// Custom operation
286    Custom(String),
287}
288
289/// Computation tape for tracking operations in reverse-mode AD
290#[derive(Debug)]
291pub struct ComputationTape {
292    /// Nodes in the computation graph
293    pub nodes: Vec<Arc<ComputationNode>>,
294    /// Variable registry
295    pub variables: HashMap<VariableId, Variable>,
296    /// Execution order for backpropagation
297    pub execution_order: Vec<VariableId>,
298}
299
300impl ComputationTape {
301    /// Create a new computation tape
302    pub fn new() -> Self {
303        Self {
304            nodes: Vec::new(),
305            variables: HashMap::new(),
306            execution_order: Vec::new(),
307        }
308    }
309
310    /// Add a node to the computation graph
311    pub fn add_node(&mut self, node: Arc<ComputationNode>) {
312        self.execution_order.push(node.output_id);
313        self.nodes.push(node);
314    }
315
316    /// Register a variable
317    pub fn register_variable(&mut self, var: Variable) {
318        self.variables.insert(var.id, var);
319    }
320
321    /// Perform backpropagation
322    pub fn backward(&mut self, root_gradient: f64) -> Result<()> {
323        // Initialize gradients
324        for var in self.variables.values_mut() {
325            var.zero_gradient();
326        }
327
328        // Set root gradient
329        if let Some(root_id) = self.execution_order.last() {
330            if let Some(root_var) = self.variables.get_mut(root_id) {
331                root_var.set_gradient(root_gradient);
332            }
333        }
334
335        // Backpropagate in reverse order
336        for &node_id in self.execution_order.iter().rev() {
337            if let Some(node) = self.nodes.iter().find(|n| n.output_id == node_id) {
338                let output_gradient = self
339                    .variables
340                    .get(&node_id)
341                    .map(|v| v.gradient)
342                    .unwrap_or(0.0);
343
344                // Get input values for gradient computation
345                let input_values: Vec<f64> = node
346                    .inputs
347                    .iter()
348                    .filter_map(|&id| self.variables.get(&id).map(|v| v.value))
349                    .collect();
350
351                // Compute input gradients
352                let input_gradients = (node.gradient_fn)(&input_values, output_gradient);
353
354                // Accumulate gradients to input variables
355                for (&input_id, &gradient) in node.inputs.iter().zip(input_gradients.iter()) {
356                    if let Some(input_var) = self.variables.get_mut(&input_id) {
357                        input_var.add_gradient(gradient);
358                    }
359                }
360            }
361        }
362
363        Ok(())
364    }
365
366    /// Get gradient for a specific variable
367    pub fn get_gradient(&self, id: VariableId) -> Option<f64> {
368        self.variables.get(&id).map(|v| v.gradient)
369    }
370
371    /// Clear the tape
372    pub fn clear(&mut self) {
373        self.nodes.clear();
374        self.variables.clear();
375        self.execution_order.clear();
376    }
377}
378
379impl Default for ComputationTape {
380    fn default() -> Self {
381        Self::new()
382    }
383}
384
385// =============================================================================
386// Procedural Macro Implementation for Auto-differentiation
387// =============================================================================
388
389/// Configuration for automatic differentiation code generation
390#[derive(Debug, Clone, Serialize, Deserialize)]
391pub struct AutodiffConfig {
392    /// AD mode (forward or reverse)
393    pub mode: ADMode,
394    /// Maximum derivative order
395    pub max_order: u32,
396    /// Enable SIMD optimizations
397    pub simd: bool,
398    /// Enable GPU kernels
399    pub gpu: bool,
400    /// Enable symbolic differentiation
401    pub symbolic: bool,
402    /// Custom optimization flags
403    pub optimizations: Vec<String>,
404}
405
406/// Automatic differentiation modes
407#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
408pub enum ADMode {
409    /// Forward-mode automatic differentiation
410    Forward,
411    /// Reverse-mode automatic differentiation
412    Reverse,
413    /// Mixed-mode (forward for some variables, reverse for others)
414    Mixed,
415    /// Symbolic differentiation
416    Symbolic,
417}
418
419impl Default for AutodiffConfig {
420    fn default() -> Self {
421        Self {
422            mode: ADMode::Forward,
423            max_order: 1,
424            simd: false,
425            gpu: false,
426            symbolic: false,
427            optimizations: Vec::new(),
428        }
429    }
430}
431
432/// Parse autodiff attributes from function
433pub fn parse_autodiff_attributes(attrs: &[Attribute]) -> Result<AutodiffConfig> {
434    let mut config = AutodiffConfig::default();
435
436    for attr in attrs {
437        if attr.path().is_ident("autodiff") {
438            // Parse autodiff configuration from attribute
439            // This would be more complex in a real implementation
440            config.mode = ADMode::Forward; // Default for now
441        }
442    }
443
444    Ok(config)
445}
446
447/// Generate automatic differentiation code for a function
448pub fn generate_autodiff_impl(func: &ItemFn, config: &AutodiffConfig) -> Result<TokenStream> {
449    let original_name = &func.sig.ident;
450    let autodiff_name = syn::Ident::new(&format!("{}_autodiff", original_name), Span::call_site());
451
452    match config.mode {
453        ADMode::Forward => generate_forward_mode(func, &autodiff_name, config),
454        ADMode::Reverse => generate_reverse_mode(func, &autodiff_name, config),
455        ADMode::Mixed => generate_mixed_mode(func, &autodiff_name, config),
456        ADMode::Symbolic => generate_symbolic_mode(func, &autodiff_name, config),
457    }
458}
459
460/// Generate forward-mode automatic differentiation
461fn generate_forward_mode(
462    func: &ItemFn,
463    autodiff_name: &syn::Ident,
464    _config: &AutodiffConfig,
465) -> Result<TokenStream> {
466    let original_name = &func.sig.ident;
467    let inputs = &func.sig.inputs;
468    let output = &func.sig.output;
469
470    // Transform function parameters to use Dual numbers
471    let dual_inputs = transform_inputs_to_dual(inputs)?;
472    let dual_output = transform_output_to_dual(output)?;
473
474    // Transform function body to use Dual arithmetic
475    let dual_body = transform_body_to_dual(&func.block)?;
476
477    let generated = quote! {
478        /// Forward-mode automatic differentiation version
479        pub fn #autodiff_name(#dual_inputs) -> #dual_output {
480            #dual_body
481        }
482
483        /// Convenience function for computing derivative
484        pub fn #original_name _derivative(x: f64) -> (f64, f64) {
485            let dual_x = Dual::variable(x);
486            let result = #autodiff_name(dual_x);
487            (result.value(), result.derivative())
488        }
489    };
490
491    Ok(generated)
492}
493
494/// Generate reverse-mode automatic differentiation
495fn generate_reverse_mode(
496    func: &ItemFn,
497    autodiff_name: &syn::Ident,
498    _config: &AutodiffConfig,
499) -> Result<TokenStream> {
500    let original_name = &func.sig.ident;
501    let inputs = &func.sig.inputs;
502
503    // Transform function to use Variables and computation tape
504    let var_inputs = transform_inputs_to_variables(inputs)?;
505    let tape_body = transform_body_to_tape(&func.block)?;
506
507    let generated = quote! {
508        /// Reverse-mode automatic differentiation version
509        pub fn #autodiff_name(#var_inputs, tape: Arc<Mutex<ComputationTape>>) -> Variable {
510            #tape_body
511        }
512
513        /// Convenience function for computing gradients
514        pub fn #original_name _gradients(inputs: &[f64]) -> Vec<f64> {
515            let tape = Arc::new(Mutex::new(ComputationTape::new()));
516
517            // Create variables for inputs
518            let vars: Vec<Variable> = inputs.iter()
519                .map(|&x| Variable::with_graph(x, tape.clone()))
520                .collect();
521
522            // Forward pass
523            let output = #autodiff_name(vars, tape.clone());
524
525            // Backward pass
526            if let Ok(mut tape_guard) = tape.lock() {
527                let _ = tape_guard.backward(1.0);
528
529                // Extract gradients
530                vars.iter()
531                    .map(|v| tape_guard.get_gradient(v.id).unwrap_or(0.0))
532                    .collect()
533            } else {
534                vec![0.0; inputs.len()]
535            }
536        }
537    };
538
539    Ok(generated)
540}
541
542/// Generate mixed-mode automatic differentiation
543fn generate_mixed_mode(
544    func: &ItemFn,
545    autodiff_name: &syn::Ident,
546    config: &AutodiffConfig,
547) -> Result<TokenStream> {
548    // For mixed mode, we generate both forward and reverse versions
549    let forward_impl = generate_forward_mode(func, autodiff_name, config)?;
550
551    let reverse_name = syn::Ident::new(&format!("{}_reverse", autodiff_name), Span::call_site());
552    let reverse_impl = generate_reverse_mode(func, &reverse_name, config)?;
553
554    let generated = quote! {
555        #forward_impl
556        #reverse_impl
557
558        /// Mixed-mode automatic differentiation
559        pub fn #autodiff_name _mixed(inputs: &[f64], forward_vars: &[usize]) -> (f64, Vec<f64>) {
560            // Implementation would choose forward or reverse mode per variable
561            // This is a placeholder implementation
562            let gradients = vec![0.0; inputs.len()];
563            (0.0, gradients)
564        }
565    };
566
567    Ok(generated)
568}
569
570/// Generate symbolic differentiation
571fn generate_symbolic_mode(
572    func: &ItemFn,
573    autodiff_name: &syn::Ident,
574    _config: &AutodiffConfig,
575) -> Result<TokenStream> {
576    let original_name = &func.sig.ident;
577
578    let generated = quote! {
579        /// Symbolic differentiation version
580        pub fn #autodiff_name() -> SymbolicExpression {
581            // This would generate symbolic expressions for derivatives
582            // Placeholder implementation
583            SymbolicExpression::new("derivative")
584        }
585
586        /// Get symbolic derivative as LaTeX string
587        pub fn #original_name _latex() -> String {
588            let expr = #autodiff_name();
589            expr.to_latex()
590        }
591    };
592
593    Ok(generated)
594}
595
596// =============================================================================
597// Code Transformation Utilities
598// =============================================================================
599
600/// Transform function inputs to use Dual numbers
601fn transform_inputs_to_dual(
602    inputs: &syn::punctuated::Punctuated<FnArg, syn::Token![,]>,
603) -> Result<TokenStream> {
604    let mut dual_inputs = Vec::new();
605
606    for input in inputs {
607        match input {
608            FnArg::Typed(pat_type) => {
609                let pat = &pat_type.pat;
610                // Transform f64 to Dual, keep other types as-is
611                match &*pat_type.ty {
612                    Type::Path(type_path) if type_path.path.is_ident("f64") => {
613                        dual_inputs.push(quote! { #pat: Dual });
614                    }
615                    ty => {
616                        dual_inputs.push(quote! { #pat: #ty });
617                    }
618                }
619            }
620            _ => {
621                return Err(SklearsError::InvalidOperation(
622                    "Unsupported function parameter type".to_string(),
623                ));
624            }
625        }
626    }
627
628    Ok(quote! { #(#dual_inputs),* })
629}
630
631/// Transform function output to use Dual numbers
632fn transform_output_to_dual(output: &ReturnType) -> Result<TokenStream> {
633    match output {
634        ReturnType::Type(_, ty) => match &**ty {
635            Type::Path(type_path) if type_path.path.is_ident("f64") => Ok(quote! { Dual }),
636            ty => Ok(quote! { #ty }),
637        },
638        ReturnType::Default => Ok(quote! { () }),
639    }
640}
641
642/// Transform function body to use Dual arithmetic
643fn transform_body_to_dual(block: &syn::Block) -> Result<TokenStream> {
644    let mut transformed_stmts = Vec::new();
645
646    for stmt in &block.stmts {
647        let transformed = transform_statement_to_dual(stmt)?;
648        transformed_stmts.push(transformed);
649    }
650
651    Ok(quote! { { #(#transformed_stmts)* } })
652}
653
654/// Transform a single statement to use Dual arithmetic
655fn transform_statement_to_dual(stmt: &Stmt) -> Result<TokenStream> {
656    match stmt {
657        Stmt::Expr(expr, _) => {
658            let transformed_expr = transform_expression_to_dual(expr)?;
659            Ok(quote! { #transformed_expr })
660        }
661        Stmt::Local(local) => {
662            // Transform variable declarations
663            let pat = &local.pat;
664            if let Some(local_init) = &local.init {
665                let init = &local_init.expr;
666                let transformed_init = transform_expression_to_dual(init)?;
667                Ok(quote! { let #pat = #transformed_init; })
668            } else {
669                Ok(quote! { #stmt })
670            }
671        }
672        _ => Ok(quote! { #stmt }),
673    }
674}
675
676/// Transform an expression to use Dual arithmetic
677fn transform_expression_to_dual(expr: &Expr) -> Result<TokenStream> {
678    match expr {
679        Expr::Binary(binary_expr) => {
680            let left = transform_expression_to_dual(&binary_expr.left)?;
681            let right = transform_expression_to_dual(&binary_expr.right)?;
682            let op = &binary_expr.op;
683
684            // Dual arithmetic preserves standard operators
685            Ok(quote! { (#left) #op (#right) })
686        }
687        Expr::Call(call_expr) => {
688            let func = &call_expr.func;
689            let args: Vec<TokenStream> = call_expr
690                .args
691                .iter()
692                .map(transform_expression_to_dual)
693                .collect::<Result<Vec<_>>>()?;
694
695            // Transform math functions to Dual versions
696            match &**func {
697                Expr::Path(path) if path.path.is_ident("exp") => {
698                    Ok(quote! { dual_exp(#(#args),*) })
699                }
700                Expr::Path(path) if path.path.is_ident("ln") => Ok(quote! { dual_ln(#(#args),*) }),
701                Expr::Path(path) if path.path.is_ident("sin") => {
702                    Ok(quote! { dual_sin(#(#args),*) })
703                }
704                Expr::Path(path) if path.path.is_ident("cos") => {
705                    Ok(quote! { dual_cos(#(#args),*) })
706                }
707                _ => Ok(quote! { #func(#(#args),*) }),
708            }
709        }
710        Expr::Lit(lit_expr) => {
711            // Transform numeric literals to Dual constants
712            match &lit_expr.lit {
713                syn::Lit::Float(float_lit) => {
714                    let value = &float_lit.base10_digits();
715                    let parsed_value: f64 = value.parse().map_err(|_| {
716                        SklearsError::InvalidOperation("Invalid float literal".to_string())
717                    })?;
718                    Ok(quote! { Dual::constant(#parsed_value) })
719                }
720                syn::Lit::Int(int_lit) => {
721                    let value = &int_lit.base10_digits();
722                    let parsed_value: i64 = value.parse().map_err(|_| {
723                        SklearsError::InvalidOperation("Invalid int literal".to_string())
724                    })?;
725                    Ok(quote! { Dual::constant(#parsed_value as f64) })
726                }
727                _ => Ok(quote! { #expr }),
728            }
729        }
730        _ => Ok(quote! { #expr }),
731    }
732}
733
734/// Transform function inputs to use Variables
735fn transform_inputs_to_variables(
736    inputs: &syn::punctuated::Punctuated<FnArg, syn::Token![,]>,
737) -> Result<TokenStream> {
738    let mut var_inputs = Vec::new();
739
740    for input in inputs {
741        match input {
742            FnArg::Typed(pat_type) => {
743                let pat = &pat_type.pat;
744                // Transform f64 to Variable, keep other types as-is
745                match &*pat_type.ty {
746                    Type::Path(type_path) if type_path.path.is_ident("f64") => {
747                        var_inputs.push(quote! { #pat: Variable });
748                    }
749                    ty => {
750                        var_inputs.push(quote! { #pat: #ty });
751                    }
752                }
753            }
754            _ => {
755                return Err(SklearsError::InvalidOperation(
756                    "Unsupported function parameter type".to_string(),
757                ));
758            }
759        }
760    }
761
762    Ok(quote! { #(#var_inputs),* })
763}
764
765/// Transform function body to use computation tape
766fn transform_body_to_tape(_block: &syn::Block) -> Result<TokenStream> {
767    // This would transform the function body to build a computation graph
768    // For now, return a placeholder that creates a simple variable
769    Ok(quote! {
770        {
771            // Placeholder: create a variable representing the function output
772            Variable::with_graph(0.0, tape)
773        }
774    })
775}
776
777// =============================================================================
778// Dual Number Math Functions
779// =============================================================================
780
781/// Exponential function for dual numbers
782pub fn dual_exp(x: Dual) -> Dual {
783    let exp_x = x.real.exp();
784    Dual::new(exp_x, x.dual * exp_x)
785}
786
787/// Natural logarithm for dual numbers
788pub fn dual_ln(x: Dual) -> Dual {
789    Dual::new(x.real.ln(), x.dual / x.real)
790}
791
792/// Sine function for dual numbers
793pub fn dual_sin(x: Dual) -> Dual {
794    Dual::new(x.real.sin(), x.dual * x.real.cos())
795}
796
797/// Cosine function for dual numbers
798pub fn dual_cos(x: Dual) -> Dual {
799    Dual::new(x.real.cos(), -x.dual * x.real.sin())
800}
801
802/// Hyperbolic tangent for dual numbers
803pub fn dual_tanh(x: Dual) -> Dual {
804    let tanh_x = x.real.tanh();
805    Dual::new(tanh_x, x.dual * (1.0 - tanh_x * tanh_x))
806}
807
808/// Sigmoid function for dual numbers
809pub fn dual_sigmoid(x: Dual) -> Dual {
810    let sigmoid_x = 1.0 / (1.0 + (-x.real).exp());
811    Dual::new(sigmoid_x, x.dual * sigmoid_x * (1.0 - sigmoid_x))
812}
813
814/// Power function for dual numbers
815pub fn dual_pow(base: Dual, exponent: f64) -> Dual {
816    let pow_result = base.real.powf(exponent);
817    Dual::new(
818        pow_result,
819        base.dual * exponent * base.real.powf(exponent - 1.0),
820    )
821}
822
823// =============================================================================
824// Symbolic Expression System
825// =============================================================================
826
827/// Symbolic expression for symbolic differentiation
828#[derive(Debug, Clone, PartialEq)]
829pub enum SymbolicExpression {
830    /// Variable
831    Variable(String),
832    /// Constant
833    Constant(f64),
834    /// Addition
835    Add(Box<SymbolicExpression>, Box<SymbolicExpression>),
836    /// Subtraction
837    Sub(Box<SymbolicExpression>, Box<SymbolicExpression>),
838    /// Multiplication
839    Mul(Box<SymbolicExpression>, Box<SymbolicExpression>),
840    /// Division
841    Div(Box<SymbolicExpression>, Box<SymbolicExpression>),
842    /// Power
843    Pow(Box<SymbolicExpression>, Box<SymbolicExpression>),
844    /// Function call
845    Function(String, Vec<SymbolicExpression>),
846}
847
848impl SymbolicExpression {
849    /// Create a new symbolic expression
850    pub fn new(name: &str) -> Self {
851        Self::Variable(name.to_string())
852    }
853
854    /// Differentiate with respect to a variable
855    pub fn differentiate(&self, var: &str) -> Self {
856        match self {
857            SymbolicExpression::Variable(v) if v == var => SymbolicExpression::Constant(1.0),
858            SymbolicExpression::Variable(_) => SymbolicExpression::Constant(0.0),
859            SymbolicExpression::Constant(_) => SymbolicExpression::Constant(0.0),
860            SymbolicExpression::Add(left, right) => SymbolicExpression::Add(
861                Box::new(left.differentiate(var)),
862                Box::new(right.differentiate(var)),
863            ),
864            SymbolicExpression::Sub(left, right) => SymbolicExpression::Sub(
865                Box::new(left.differentiate(var)),
866                Box::new(right.differentiate(var)),
867            ),
868            SymbolicExpression::Mul(left, right) => {
869                // Product rule: (fg)' = f'g + fg'
870                SymbolicExpression::Add(
871                    Box::new(SymbolicExpression::Mul(
872                        Box::new(left.differentiate(var)),
873                        right.clone(),
874                    )),
875                    Box::new(SymbolicExpression::Mul(
876                        left.clone(),
877                        Box::new(right.differentiate(var)),
878                    )),
879                )
880            }
881            SymbolicExpression::Div(left, right) => {
882                // Quotient rule: (f/g)' = (f'g - fg')/g²
883                SymbolicExpression::Div(
884                    Box::new(SymbolicExpression::Sub(
885                        Box::new(SymbolicExpression::Mul(
886                            Box::new(left.differentiate(var)),
887                            right.clone(),
888                        )),
889                        Box::new(SymbolicExpression::Mul(
890                            left.clone(),
891                            Box::new(right.differentiate(var)),
892                        )),
893                    )),
894                    Box::new(SymbolicExpression::Pow(
895                        right.clone(),
896                        Box::new(SymbolicExpression::Constant(2.0)),
897                    )),
898                )
899            }
900            SymbolicExpression::Pow(base, exp) => {
901                // Power rule and chain rule
902                match (&**base, &**exp) {
903                    (_, SymbolicExpression::Constant(n)) => {
904                        // Simple power rule: (x^n)' = n*x^(n-1)*x'
905                        SymbolicExpression::Mul(
906                            Box::new(SymbolicExpression::Mul(
907                                Box::new(SymbolicExpression::Constant(*n)),
908                                Box::new(SymbolicExpression::Pow(
909                                    base.clone(),
910                                    Box::new(SymbolicExpression::Constant(n - 1.0)),
911                                )),
912                            )),
913                            Box::new(base.differentiate(var)),
914                        )
915                    }
916                    _ => {
917                        // General case: (f^g)' = f^g * (g'*ln(f) + g*f'/f)
918                        SymbolicExpression::Mul(
919                            Box::new(self.clone()),
920                            Box::new(SymbolicExpression::Add(
921                                Box::new(SymbolicExpression::Mul(
922                                    Box::new(exp.differentiate(var)),
923                                    Box::new(SymbolicExpression::Function(
924                                        "ln".to_string(),
925                                        vec![*base.clone()],
926                                    )),
927                                )),
928                                Box::new(SymbolicExpression::Mul(
929                                    exp.clone(),
930                                    Box::new(SymbolicExpression::Div(
931                                        Box::new(base.differentiate(var)),
932                                        base.clone(),
933                                    )),
934                                )),
935                            )),
936                        )
937                    }
938                }
939            }
940            SymbolicExpression::Function(name, args) => {
941                self.differentiate_function(name, args, var)
942            }
943        }
944    }
945
946    /// Differentiate function calls
947    fn differentiate_function(&self, name: &str, args: &[SymbolicExpression], var: &str) -> Self {
948        match name {
949            "sin" if args.len() == 1 => {
950                // d/dx sin(f) = cos(f) * f'
951                SymbolicExpression::Mul(
952                    Box::new(SymbolicExpression::Function(
953                        "cos".to_string(),
954                        args.to_vec(),
955                    )),
956                    Box::new(args[0].differentiate(var)),
957                )
958            }
959            "cos" if args.len() == 1 => {
960                // d/dx cos(f) = -sin(f) * f'
961                SymbolicExpression::Mul(
962                    Box::new(SymbolicExpression::Constant(-1.0)),
963                    Box::new(SymbolicExpression::Mul(
964                        Box::new(SymbolicExpression::Function(
965                            "sin".to_string(),
966                            args.to_vec(),
967                        )),
968                        Box::new(args[0].differentiate(var)),
969                    )),
970                )
971            }
972            "exp" if args.len() == 1 => {
973                // d/dx exp(f) = exp(f) * f'
974                SymbolicExpression::Mul(
975                    Box::new(self.clone()),
976                    Box::new(args[0].differentiate(var)),
977                )
978            }
979            "ln" if args.len() == 1 => {
980                // d/dx ln(f) = f'/f
981                SymbolicExpression::Div(
982                    Box::new(args[0].differentiate(var)),
983                    Box::new(args[0].clone()),
984                )
985            }
986            _ => {
987                // Unknown function - return symbolic derivative
988                SymbolicExpression::Function(format!("d{}_d{}", name, var), args.to_vec())
989            }
990        }
991    }
992
993    /// Convert to LaTeX representation
994    pub fn to_latex(&self) -> String {
995        match self {
996            SymbolicExpression::Variable(v) => v.clone(),
997            SymbolicExpression::Constant(c) => {
998                if c.fract() == 0.0 {
999                    format!("{}", *c as i64)
1000                } else {
1001                    format!("{:.3}", c)
1002                }
1003            }
1004            SymbolicExpression::Add(left, right) => {
1005                format!("({} + {})", left.to_latex(), right.to_latex())
1006            }
1007            SymbolicExpression::Sub(left, right) => {
1008                format!("({} - {})", left.to_latex(), right.to_latex())
1009            }
1010            SymbolicExpression::Mul(left, right) => {
1011                format!("({} \\cdot {})", left.to_latex(), right.to_latex())
1012            }
1013            SymbolicExpression::Div(left, right) => {
1014                format!("\\frac{{{}}}{{{}}}", left.to_latex(), right.to_latex())
1015            }
1016            SymbolicExpression::Pow(base, exp) => {
1017                format!("{}^{{{}}}", base.to_latex(), exp.to_latex())
1018            }
1019            SymbolicExpression::Function(name, args) => {
1020                if args.is_empty() {
1021                    format!("\\{}", name)
1022                } else if args.len() == 1 {
1023                    format!("\\{}({})", name, args[0].to_latex())
1024                } else {
1025                    let arg_strs: Vec<String> = args.iter().map(|a| a.to_latex()).collect();
1026                    format!("\\{}({})", name, arg_strs.join(", "))
1027                }
1028            }
1029        }
1030    }
1031
1032    /// Simplify the expression
1033    pub fn simplify(&self) -> Self {
1034        match self {
1035            SymbolicExpression::Add(left, right) => {
1036                let left_simp = left.simplify();
1037                let right_simp = right.simplify();
1038
1039                match (&left_simp, &right_simp) {
1040                    (SymbolicExpression::Constant(0.0), _) => right_simp,
1041                    (_, SymbolicExpression::Constant(0.0)) => left_simp,
1042                    (SymbolicExpression::Constant(a), SymbolicExpression::Constant(b)) => {
1043                        SymbolicExpression::Constant(a + b)
1044                    }
1045                    _ => SymbolicExpression::Add(Box::new(left_simp), Box::new(right_simp)),
1046                }
1047            }
1048            SymbolicExpression::Mul(left, right) => {
1049                let left_simp = left.simplify();
1050                let right_simp = right.simplify();
1051
1052                match (&left_simp, &right_simp) {
1053                    (SymbolicExpression::Constant(0.0), _)
1054                    | (_, SymbolicExpression::Constant(0.0)) => SymbolicExpression::Constant(0.0),
1055                    (SymbolicExpression::Constant(1.0), _) => right_simp,
1056                    (_, SymbolicExpression::Constant(1.0)) => left_simp,
1057                    (SymbolicExpression::Constant(a), SymbolicExpression::Constant(b)) => {
1058                        SymbolicExpression::Constant(a * b)
1059                    }
1060                    _ => SymbolicExpression::Mul(Box::new(left_simp), Box::new(right_simp)),
1061                }
1062            }
1063            SymbolicExpression::Pow(base, exponent) => {
1064                let base_simp = base.simplify();
1065                let exp_simp = exponent.simplify();
1066
1067                match (&base_simp, &exp_simp) {
1068                    // x^1 = x
1069                    (_, SymbolicExpression::Constant(1.0)) => base_simp,
1070                    // x^0 = 1
1071                    (_, SymbolicExpression::Constant(0.0)) => SymbolicExpression::Constant(1.0),
1072                    // 1^n = 1
1073                    (SymbolicExpression::Constant(1.0), _) => SymbolicExpression::Constant(1.0),
1074                    // 0^n = 0 (for n > 0)
1075                    (SymbolicExpression::Constant(0.0), SymbolicExpression::Constant(n))
1076                        if *n > 0.0 =>
1077                    {
1078                        SymbolicExpression::Constant(0.0)
1079                    }
1080                    // a^b = a^b (constant exponentiation)
1081                    (SymbolicExpression::Constant(a), SymbolicExpression::Constant(b)) => {
1082                        SymbolicExpression::Constant(a.powf(*b))
1083                    }
1084                    _ => SymbolicExpression::Pow(Box::new(base_simp), Box::new(exp_simp)),
1085                }
1086            }
1087            _ => self.clone(),
1088        }
1089    }
1090}
1091
1092// =============================================================================
1093// Higher-order Derivatives
1094// =============================================================================
1095
1096/// Compute second derivative using dual numbers
1097pub fn second_derivative<F>(_f: F, x: f64) -> f64
1098where
1099    F: Fn(Dual) -> Dual,
1100{
1101    // Use dual numbers nested to compute second derivative
1102    let _dual_x = Dual::new(x, 1.0);
1103
1104    // This is a simplified placeholder - real implementation would be more complex
1105    0.0
1106}
1107
1108/// Compute Hessian matrix for multivariate functions
1109pub fn hessian<F>(f: F, x: &[f64]) -> Vec<Vec<f64>>
1110where
1111    F: Fn(&[f64]) -> f64,
1112{
1113    let n = x.len();
1114    let mut hessian = vec![vec![0.0; n]; n];
1115
1116    let h = 1e-8; // Small step size
1117
1118    // Compute Hessian using finite differences
1119    for i in 0..n {
1120        for j in 0..n {
1121            if i == j {
1122                // Diagonal elements: f''(x)
1123                let mut x_plus = x.to_vec();
1124                let mut x_minus = x.to_vec();
1125                x_plus[i] += h;
1126                x_minus[i] -= h;
1127
1128                let f_plus = f(&x_plus);
1129                let f_center = f(x);
1130                let f_minus = f(&x_minus);
1131
1132                hessian[i][j] = (f_plus - 2.0 * f_center + f_minus) / (h * h);
1133            } else {
1134                // Off-diagonal elements: mixed partial derivatives
1135                let mut x_pp = x.to_vec();
1136                let mut x_pm = x.to_vec();
1137                let mut x_mp = x.to_vec();
1138                let mut x_mm = x.to_vec();
1139
1140                x_pp[i] += h;
1141                x_pp[j] += h;
1142                x_pm[i] += h;
1143                x_pm[j] -= h;
1144                x_mp[i] -= h;
1145                x_mp[j] += h;
1146                x_mm[i] -= h;
1147                x_mm[j] -= h;
1148
1149                let f_pp = f(&x_pp);
1150                let f_pm = f(&x_pm);
1151                let f_mp = f(&x_mp);
1152                let f_mm = f(&x_mm);
1153
1154                hessian[i][j] = (f_pp - f_pm - f_mp + f_mm) / (4.0 * h * h);
1155            }
1156        }
1157    }
1158
1159    hessian
1160}
1161
1162// =============================================================================
1163// Convenience Functions
1164// =============================================================================
1165
1166/// Compute forward-mode derivative
1167pub fn forward_diff<F>(f: F, x: f64) -> (f64, f64)
1168where
1169    F: Fn(Dual) -> Dual,
1170{
1171    let dual_x = Dual::variable(x);
1172    let result = f(dual_x);
1173    (result.value(), result.derivative())
1174}
1175
1176/// Compute gradient using finite differences
1177pub fn gradient<F>(f: F, x: &[f64]) -> Vec<f64>
1178where
1179    F: Fn(&[f64]) -> f64,
1180{
1181    let mut grad = vec![0.0; x.len()];
1182    let h = 1e-8;
1183
1184    for i in 0..x.len() {
1185        let mut x_plus = x.to_vec();
1186        let mut x_minus = x.to_vec();
1187        x_plus[i] += h;
1188        x_minus[i] -= h;
1189
1190        grad[i] = (f(&x_plus) - f(&x_minus)) / (2.0 * h);
1191    }
1192
1193    grad
1194}
1195
1196#[allow(non_snake_case)]
1197#[cfg(test)]
1198mod tests {
1199    use super::*;
1200
1201    #[test]
1202    fn test_dual_arithmetic() {
1203        let x = Dual::new(2.0, 1.0);
1204        let y = Dual::new(3.0, 0.0);
1205
1206        let sum = x + y;
1207        assert_eq!(sum.real, 5.0);
1208        assert_eq!(sum.dual, 1.0);
1209
1210        let product = x * y;
1211        assert_eq!(product.real, 6.0);
1212        assert_eq!(product.dual, 3.0);
1213    }
1214
1215    #[test]
1216    fn test_dual_math_functions() {
1217        let x = Dual::variable(1.0);
1218
1219        let exp_result = dual_exp(x);
1220        assert!((exp_result.real - std::f64::consts::E).abs() < 1e-10);
1221        assert!((exp_result.dual - std::f64::consts::E).abs() < 1e-10);
1222
1223        let ln_result = dual_ln(x);
1224        assert!((ln_result.real - 0.0).abs() < 1e-10);
1225        assert!((ln_result.dual - 1.0).abs() < 1e-10);
1226    }
1227
1228    #[test]
1229    fn test_forward_diff() {
1230        // Test f(x) = x^2, f'(x) = 2x
1231        let f = |x: Dual| x * x;
1232        let (value, derivative) = forward_diff(f, 3.0);
1233
1234        assert_eq!(value, 9.0);
1235        assert_eq!(derivative, 6.0);
1236    }
1237
1238    #[test]
1239    fn test_symbolic_differentiation() {
1240        let x = SymbolicExpression::Variable("x".to_string());
1241        let x_squared = SymbolicExpression::Pow(
1242            Box::new(x.clone()),
1243            Box::new(SymbolicExpression::Constant(2.0)),
1244        );
1245
1246        let derivative = x_squared.differentiate("x");
1247        let simplified = derivative.simplify();
1248
1249        // Should be 2*x
1250        match simplified {
1251            SymbolicExpression::Mul(left, right) => {
1252                assert_eq!(*left, SymbolicExpression::Constant(2.0));
1253                assert_eq!(*right, SymbolicExpression::Variable("x".to_string()));
1254            }
1255            _ => panic!("Expected multiplication"),
1256        }
1257    }
1258
1259    #[test]
1260    fn test_gradient_computation() {
1261        // Test f(x, y) = x^2 + y^2, gradient = [2x, 2y]
1262        let f = |vars: &[f64]| vars[0] * vars[0] + vars[1] * vars[1];
1263        let grad = gradient(f, &[2.0, 3.0]);
1264
1265        assert!((grad[0] - 4.0).abs() < 1e-6);
1266        assert!((grad[1] - 6.0).abs() < 1e-6);
1267    }
1268
1269    #[test]
1270    fn test_computation_tape() {
1271        let mut tape = ComputationTape::new();
1272
1273        // Create variables
1274        let x = Variable::new(2.0);
1275        let y = Variable::new(3.0);
1276
1277        tape.register_variable(x.clone());
1278        tape.register_variable(y.clone());
1279
1280        // Test basic tape operations
1281        assert_eq!(tape.variables.len(), 2);
1282        assert!(tape.get_gradient(x.id).is_some());
1283    }
1284
1285    #[test]
1286    fn test_variable_creation() {
1287        let var1 = Variable::new(1.0);
1288        let var2 = Variable::new(2.0);
1289
1290        assert_ne!(var1.id, var2.id);
1291        assert_eq!(var1.value, 1.0);
1292        assert_eq!(var2.value, 2.0);
1293        assert_eq!(var1.gradient, 0.0);
1294        assert_eq!(var2.gradient, 0.0);
1295    }
1296
1297    #[test]
1298    fn test_autodiff_config() {
1299        let config = AutodiffConfig::default();
1300        assert_eq!(config.mode, ADMode::Forward);
1301        assert_eq!(config.max_order, 1);
1302        assert!(!config.simd);
1303        assert!(!config.gpu);
1304    }
1305
1306    #[test]
1307    fn test_symbolic_latex_output() {
1308        let expr = SymbolicExpression::Div(
1309            Box::new(SymbolicExpression::Variable("x".to_string())),
1310            Box::new(SymbolicExpression::Constant(2.0)),
1311        );
1312
1313        let latex = expr.to_latex();
1314        assert_eq!(latex, "\\frac{x}{2}");
1315    }
1316}