sklears_compose/resource_management/
optimization.rs

1//! Resource optimization and prediction engines
2//!
3//! This module provides intelligent resource optimization algorithms and
4//! predictive scaling capabilities for the resource management system.
5
6use super::resource_types::{
7    AllocatedResources, MemoryUsage, ResourceAllocation, ResourcePoolType, ResourceUsage,
8};
9use super::simd_operations;
10use crate::task_definitions::TaskRequirements;
11use sklears_core::error::{Result as SklResult, SklearsError};
12use std::collections::{HashMap, VecDeque};
13use std::time::{Duration, SystemTime};
14
15/// Resource optimizer for intelligent resource allocation and rebalancing
16#[derive(Debug)]
17pub struct ResourceOptimizer {
18    /// Optimization configuration
19    config: OptimizerConfig,
20    /// Optimization strategies
21    strategies: Vec<Box<dyn OptimizationStrategy>>,
22    /// Optimization state
23    state: OptimizerState,
24    /// Performance history
25    history: OptimizationHistory,
26}
27
28/// Optimizer configuration
29#[derive(Debug, Clone)]
30pub struct OptimizerConfig {
31    /// Optimization strategy
32    pub strategy: OptimizationStrategyType,
33    /// Rebalancing interval
34    pub rebalancing_interval: Duration,
35    /// Enable predictive scaling
36    pub enable_predictive_scaling: bool,
37    /// Enable energy optimization
38    pub enable_energy_optimization: bool,
39    /// Enable thermal management
40    pub enable_thermal_management: bool,
41    /// Optimization aggressiveness (0.0 to 1.0)
42    pub aggressiveness: f64,
43    /// Performance weight in optimization
44    pub performance_weight: f64,
45    /// Energy weight in optimization
46    pub energy_weight: f64,
47    /// Fairness weight in optimization
48    pub fairness_weight: f64,
49}
50
51/// Types of optimization strategies
52#[derive(Debug, Clone)]
53pub enum OptimizationStrategyType {
54    /// Maximize resource utilization
55    MaxUtilization,
56    /// Minimize energy consumption
57    MinEnergy,
58    /// Balance performance and energy
59    Balanced,
60    /// Maximize throughput
61    MaxThroughput,
62    /// Minimize latency
63    MinLatency,
64    /// Fair resource sharing
65    FairShare,
66    /// Custom optimization
67    Custom(String),
68}
69
70/// Optimization strategy trait
71pub trait OptimizationStrategy: Send + Sync + std::fmt::Debug {
72    /// Get strategy name
73    fn name(&self) -> &str;
74
75    /// Optimize resource allocations
76    fn optimize(
77        &self,
78        current_allocations: &[ResourceAllocation],
79        available_resources: &ResourceUsage,
80        pending_requests: &[TaskRequirements],
81    ) -> SklResult<OptimizationResult>;
82
83    /// Get optimization score for current state
84    fn score(&self, allocations: &[ResourceAllocation], usage: &ResourceUsage) -> f64;
85}
86
87/// Result of optimization process
88#[derive(Debug, Clone)]
89pub struct OptimizationResult {
90    /// Recommended reallocation actions
91    pub actions: Vec<OptimizationAction>,
92    /// Expected improvement
93    pub expected_improvement: f64,
94    /// Confidence in the optimization
95    pub confidence: f64,
96    /// Optimization metadata
97    pub metadata: HashMap<String, String>,
98}
99
100/// Optimization actions to take
101#[derive(Debug, Clone)]
102pub enum OptimizationAction {
103    /// Reallocate resources for a task
104    Reallocate {
105        task_id: String,
106        old_allocation: ResourceAllocation,
107        new_allocation: ResourceAllocation,
108    },
109    /// Migrate task to different resources
110    Migrate {
111        task_id: String,
112        from_resources: AllocatedResources,
113        to_resources: AllocatedResources,
114    },
115    /// Scale resources up
116    ScaleUp {
117        resource_type: ResourcePoolType,
118        amount: u64,
119    },
120    /// Scale resources down
121    ScaleDown {
122        resource_type: ResourcePoolType,
123        amount: u64,
124    },
125    /// Consolidate resources
126    Consolidate {
127        task_ids: Vec<String>,
128        consolidated_allocation: ResourceAllocation,
129    },
130    /// Adjust resource frequencies
131    AdjustFrequency { resource_id: String, frequency: f64 },
132}
133
134/// Optimizer state tracking
135#[derive(Debug, Clone)]
136pub struct OptimizerState {
137    /// Is optimizer running
138    pub running: bool,
139    /// Last optimization time
140    pub last_optimization: SystemTime,
141    /// Optimization cycle count
142    pub cycle_count: u64,
143    /// Current optimization score
144    pub current_score: f64,
145    /// Best achieved score
146    pub best_score: f64,
147    /// Optimizations performed
148    pub optimizations_performed: u64,
149    /// Failed optimizations
150    pub failed_optimizations: u64,
151}
152
153/// Optimization history and analytics
154#[derive(Debug)]
155pub struct OptimizationHistory {
156    /// Optimization events
157    events: VecDeque<OptimizationEvent>,
158    /// Performance trends
159    performance_trends: VecDeque<PerformanceMeasurement>,
160    /// Energy usage trends
161    energy_trends: VecDeque<EnergyMeasurement>,
162    /// Configuration
163    config: HistoryConfig,
164}
165
166/// Optimization event record
167#[derive(Debug, Clone)]
168pub struct OptimizationEvent {
169    /// Event timestamp
170    pub timestamp: SystemTime,
171    /// Event type
172    pub event_type: OptimizationEventType,
173    /// Actions taken
174    pub actions: Vec<OptimizationAction>,
175    /// Measured impact
176    pub impact: OptimizationImpact,
177    /// Duration of optimization
178    pub duration: Duration,
179}
180
181/// Types of optimization events
182#[derive(Debug, Clone)]
183pub enum OptimizationEventType {
184    /// ScheduledOptimization
185    ScheduledOptimization,
186    /// ReactiveOptimization
187    ReactiveOptimization,
188    /// PredictiveOptimization
189    PredictiveOptimization,
190    /// EmergencyOptimization
191    EmergencyOptimization,
192    /// UserTriggered
193    UserTriggered,
194}
195
196/// Impact of optimization
197#[derive(Debug, Clone)]
198pub struct OptimizationImpact {
199    /// Performance change
200    pub performance_delta: f64,
201    /// Energy consumption change
202    pub energy_delta: f64,
203    /// Resource utilization change
204    pub utilization_delta: f64,
205    /// Cost change
206    pub cost_delta: f64,
207}
208
209/// Performance measurement
210#[derive(Debug, Clone)]
211pub struct PerformanceMeasurement {
212    /// Timestamp
213    pub timestamp: SystemTime,
214    /// Overall system performance score
215    pub performance_score: f64,
216    /// Throughput (tasks/sec)
217    pub throughput: f64,
218    /// Average latency
219    pub avg_latency: Duration,
220    /// 95th percentile latency
221    pub p95_latency: Duration,
222    /// Resource efficiency
223    pub resource_efficiency: f64,
224}
225
226/// Energy consumption measurement
227#[derive(Debug, Clone)]
228pub struct EnergyMeasurement {
229    /// Timestamp
230    pub timestamp: SystemTime,
231    /// Total power consumption (watts)
232    pub total_power: f64,
233    /// CPU power consumption
234    pub cpu_power: f64,
235    /// GPU power consumption
236    pub gpu_power: f64,
237    /// Memory power consumption
238    pub memory_power: f64,
239    /// Network power consumption
240    pub network_power: f64,
241    /// Storage power consumption
242    pub storage_power: f64,
243    /// Power efficiency (performance/watt)
244    pub power_efficiency: f64,
245}
246
247/// History configuration
248#[derive(Debug, Clone)]
249pub struct HistoryConfig {
250    /// Maximum history size
251    pub max_history_size: usize,
252    /// Measurement interval
253    pub measurement_interval: Duration,
254    /// Enable detailed tracking
255    pub detailed_tracking: bool,
256}
257
258/// Resource prediction engine for predictive scaling
259#[derive(Debug)]
260pub struct ResourcePredictionEngine {
261    /// Prediction models
262    models: HashMap<String, Box<dyn PredictionModel>>,
263    /// Prediction configuration
264    config: PredictionConfig,
265    /// Historical data
266    historical_data: PredictionHistory,
267    /// Current predictions
268    current_predictions: HashMap<String, ResourcePrediction>,
269}
270
271/// Prediction configuration
272#[derive(Debug, Clone)]
273pub struct PredictionConfig {
274    /// Prediction horizon
275    pub prediction_horizon: Duration,
276    /// Model update interval
277    pub model_update_interval: Duration,
278    /// Prediction confidence threshold
279    pub confidence_threshold: f64,
280    /// Enable ensemble predictions
281    pub enable_ensemble: bool,
282    /// Historical data window
283    pub historical_window: Duration,
284}
285
286/// Prediction model trait
287pub trait PredictionModel: Send + Sync + std::fmt::Debug {
288    /// Model name
289    fn name(&self) -> &str;
290
291    /// Train the model with historical data
292    fn train(&mut self, data: &PredictionHistory) -> SklResult<()>;
293
294    /// Make a prediction
295    fn predict(&self, context: &PredictionContext) -> SklResult<ResourcePrediction>;
296
297    /// Get model accuracy
298    fn accuracy(&self) -> f64;
299
300    /// Update model with new data
301    fn update(&mut self, actual: &ResourceUsage, predicted: &ResourcePrediction) -> SklResult<()>;
302}
303
304/// Prediction context
305#[derive(Debug, Clone)]
306pub struct PredictionContext {
307    /// Current resource usage
308    pub current_usage: ResourceUsage,
309    /// Time of day
310    pub time_of_day: u32, // seconds since midnight
311    /// Day of week (0-6)
312    pub day_of_week: u8,
313    /// Current workload
314    pub workload_characteristics: WorkloadCharacteristics,
315    /// External factors
316    pub external_factors: HashMap<String, f64>,
317}
318
319/// Workload characteristics
320#[derive(Debug, Clone)]
321pub struct WorkloadCharacteristics {
322    /// Number of active tasks
323    pub active_tasks: u32,
324    /// Average task complexity
325    pub avg_complexity: f64,
326    /// Workload type distribution
327    pub workload_types: HashMap<String, f64>,
328    /// Resource requirements pattern
329    pub requirement_pattern: ResourceRequirementPattern,
330}
331
332/// Pattern of resource requirements
333#[derive(Debug, Clone)]
334pub struct ResourceRequirementPattern {
335    /// CPU intensity
336    pub cpu_intensity: f64,
337    /// Memory intensity
338    pub memory_intensity: f64,
339    /// GPU intensity
340    pub gpu_intensity: f64,
341    /// Network intensity
342    pub network_intensity: f64,
343    /// Storage intensity
344    pub storage_intensity: f64,
345    /// Temporal pattern
346    pub temporal_pattern: TemporalPattern,
347}
348
349/// Temporal usage patterns
350#[derive(Debug, Clone)]
351pub enum TemporalPattern {
352    /// Constant
353    Constant,
354    /// Periodic
355    Periodic { period: Duration },
356    /// Trending
357    Trending { trend: f64 },
358    /// Burst
359    Burst { burst_duration: Duration },
360    /// Random
361    Random,
362}
363
364/// Resource usage prediction
365#[derive(Debug, Clone)]
366pub struct ResourcePrediction {
367    /// Predicted resource usage
368    pub predicted_usage: ResourceUsage,
369    /// Prediction confidence (0.0 to 1.0)
370    pub confidence: f64,
371    /// Prediction horizon
372    pub horizon: Duration,
373    /// Prediction timestamp
374    pub timestamp: SystemTime,
375    /// Model used for prediction
376    pub model_name: String,
377    /// Prediction intervals
378    pub intervals: PredictionIntervals,
379}
380
381/// Prediction confidence intervals
382#[derive(Debug, Clone)]
383pub struct PredictionIntervals {
384    /// Lower bound (5th percentile)
385    pub lower: ResourceUsage,
386    /// Upper bound (95th percentile)
387    pub upper: ResourceUsage,
388    /// Standard deviation
389    pub std_dev: ResourceUsageVariance,
390}
391
392/// Resource usage variance
393#[derive(Debug, Clone)]
394pub struct ResourceUsageVariance {
395    /// CPU usage variance
396    pub cpu_variance: f64,
397    /// Memory usage variance
398    pub memory_variance: f64,
399    /// GPU usage variance
400    pub gpu_variance: Vec<f64>,
401    /// Network usage variance
402    pub network_variance: f64,
403    /// Storage usage variance
404    pub storage_variance: f64,
405}
406
407/// Historical data for predictions
408#[derive(Debug)]
409pub struct PredictionHistory {
410    /// Usage samples
411    usage_samples: VecDeque<UsageSample>,
412    /// Workload samples
413    workload_samples: VecDeque<WorkloadSample>,
414    /// Performance samples
415    performance_samples: VecDeque<PerformanceSample>,
416}
417
418/// Usage sample with context
419#[derive(Debug, Clone)]
420pub struct UsageSample {
421    /// Timestamp
422    pub timestamp: SystemTime,
423    /// Resource usage
424    pub usage: ResourceUsage,
425    /// Context
426    pub context: PredictionContext,
427}
428
429/// Workload sample
430#[derive(Debug, Clone)]
431pub struct WorkloadSample {
432    /// Timestamp
433    pub timestamp: SystemTime,
434    /// Workload characteristics
435    pub characteristics: WorkloadCharacteristics,
436    /// Task queue length
437    pub queue_length: u32,
438}
439
440/// Performance sample
441#[derive(Debug, Clone)]
442pub struct PerformanceSample {
443    /// Timestamp
444    pub timestamp: SystemTime,
445    /// Performance metrics
446    pub metrics: PerformanceMeasurement,
447}
448
449impl Default for ResourceOptimizer {
450    fn default() -> Self {
451        Self::new()
452    }
453}
454
455impl ResourceOptimizer {
456    /// Create a new resource optimizer
457    #[must_use]
458    pub fn new() -> Self {
459        Self {
460            config: OptimizerConfig::default(),
461            strategies: Vec::new(),
462            state: OptimizerState {
463                running: false,
464                last_optimization: SystemTime::now(),
465                cycle_count: 0,
466                current_score: 0.0,
467                best_score: 0.0,
468                optimizations_performed: 0,
469                failed_optimizations: 0,
470            },
471            history: OptimizationHistory {
472                events: VecDeque::new(),
473                performance_trends: VecDeque::new(),
474                energy_trends: VecDeque::new(),
475                config: HistoryConfig {
476                    max_history_size: 10000,
477                    measurement_interval: Duration::from_secs(60),
478                    detailed_tracking: true,
479                },
480            },
481        }
482    }
483
484    /// Add an optimization strategy
485    pub fn add_strategy(&mut self, strategy: Box<dyn OptimizationStrategy>) {
486        self.strategies.push(strategy);
487    }
488
489    /// Start optimization loop
490    pub fn start_optimization(&mut self) -> SklResult<()> {
491        self.state.running = true;
492        Ok(())
493    }
494
495    /// Stop optimization loop
496    pub fn stop_optimization(&mut self) -> SklResult<()> {
497        self.state.running = false;
498        Ok(())
499    }
500
501    /// Perform optimization cycle
502    pub fn optimize(
503        &mut self,
504        current_allocations: &[ResourceAllocation],
505        available_resources: &ResourceUsage,
506        pending_requests: &[TaskRequirements],
507    ) -> SklResult<OptimizationResult> {
508        let mut best_result = OptimizationResult {
509            actions: Vec::new(),
510            expected_improvement: 0.0,
511            confidence: 0.0,
512            metadata: HashMap::new(),
513        };
514
515        // Run all optimization strategies and select the best one
516        for strategy in &self.strategies {
517            let result =
518                strategy.optimize(current_allocations, available_resources, pending_requests)?;
519            if result.expected_improvement > best_result.expected_improvement {
520                best_result = result;
521            }
522        }
523
524        // Update state
525        self.state.cycle_count += 1;
526        self.state.last_optimization = SystemTime::now();
527
528        Ok(best_result)
529    }
530
531    /// Calculate optimization score using SIMD acceleration
532    #[must_use]
533    pub fn calculate_optimization_score(
534        &self,
535        allocations: &[ResourceAllocation],
536        usage: &ResourceUsage,
537    ) -> f64 {
538        // Extract utilization metrics for SIMD processing
539        let cpu_utils = vec![usage.cpu_percent];
540        let avg_cpu = simd_operations::simd_average_utilization(&cpu_utils);
541
542        // Collect memory utilization
543        let memory_util = usage.memory_usage.used as f64 / usage.memory_usage.total as f64 * 100.0;
544        let memory_utils = [memory_util];
545
546        // Collect GPU utilizations
547        let gpu_utils: Vec<f64> = usage
548            .gpu_usage
549            .iter()
550            .map(|gpu| gpu.utilization_percent)
551            .collect();
552
553        let avg_gpu = if gpu_utils.is_empty() {
554            0.0
555        } else {
556            simd_operations::simd_average_utilization(&gpu_utils)
557        };
558
559        // Calculate efficiency score using SIMD
560        let utilizations = vec![avg_cpu, memory_util, avg_gpu];
561        let weights = vec![
562            self.config.performance_weight,
563            self.config.performance_weight * 0.8,
564            self.config.performance_weight * 1.2,
565        ];
566
567        let efficiency = simd_operations::simd_efficiency_score(&utilizations, &weights);
568
569        // Calculate load balance score
570        let balance_score = simd_operations::simd_load_balance_score(&utilizations);
571
572        // Combine scores with configuration weights
573        efficiency * 0.7 + balance_score * 0.3
574    }
575}
576
577impl Default for ResourcePredictionEngine {
578    fn default() -> Self {
579        Self::new()
580    }
581}
582
583impl ResourcePredictionEngine {
584    /// Create a new resource prediction engine
585    #[must_use]
586    pub fn new() -> Self {
587        Self {
588            models: HashMap::new(),
589            config: PredictionConfig {
590                prediction_horizon: Duration::from_secs(60 * 60), // 1 hour
591                model_update_interval: Duration::from_secs(5 * 60), // 5 minutes
592                confidence_threshold: 0.7,
593                enable_ensemble: true,
594                historical_window: Duration::from_secs(7 * 24 * 60 * 60), // 7 days
595            },
596            historical_data: PredictionHistory {
597                usage_samples: VecDeque::new(),
598                workload_samples: VecDeque::new(),
599                performance_samples: VecDeque::new(),
600            },
601            current_predictions: HashMap::new(),
602        }
603    }
604
605    /// Add a prediction model
606    pub fn add_model(&mut self, name: String, model: Box<dyn PredictionModel>) {
607        self.models.insert(name, model);
608    }
609
610    /// Make resource usage predictions
611    pub fn predict(&mut self, context: &PredictionContext) -> SklResult<ResourcePrediction> {
612        let mut predictions = Vec::new();
613
614        // Get predictions from all models
615        for (name, model) in &self.models {
616            if let Ok(prediction) = model.predict(context) {
617                predictions.push((name.clone(), prediction));
618            }
619        }
620
621        if predictions.is_empty() {
622            return Err(SklearsError::ResourceAllocationError(
623                "No models available for prediction".to_string(),
624            ));
625        }
626
627        // If ensemble is enabled, combine predictions
628        if self.config.enable_ensemble && predictions.len() > 1 {
629            self.ensemble_predict(&predictions)
630        } else {
631            // Use the best model's prediction
632            let best_prediction = predictions
633                .into_iter()
634                .max_by(|a, b| {
635                    a.1.confidence
636                        .partial_cmp(&b.1.confidence)
637                        .unwrap_or(std::cmp::Ordering::Equal)
638                })
639                .unwrap();
640
641            Ok(best_prediction.1)
642        }
643    }
644
645    /// Combine predictions using ensemble method
646    fn ensemble_predict(
647        &self,
648        predictions: &[(String, ResourcePrediction)],
649    ) -> SklResult<ResourcePrediction> {
650        // Use weighted average based on confidence
651        let total_confidence: f64 = predictions.iter().map(|(_, p)| p.confidence).sum();
652
653        if total_confidence == 0.0 {
654            return Err(SklearsError::ResourceAllocationError(
655                "All predictions have zero confidence".to_string(),
656            ));
657        }
658
659        // Calculate weighted average CPU usage
660        let weighted_cpu: f64 = predictions
661            .iter()
662            .map(|(_, p)| p.predicted_usage.cpu_percent * p.confidence)
663            .sum::<f64>()
664            / total_confidence;
665
666        // Calculate weighted average memory usage
667        let weighted_memory_used: f64 = predictions
668            .iter()
669            .map(|(_, p)| p.predicted_usage.memory_usage.used as f64 * p.confidence)
670            .sum::<f64>()
671            / total_confidence;
672
673        let reference_prediction = &predictions[0].1;
674
675        Ok(ResourcePrediction {
676            predicted_usage: ResourceUsage {
677                cpu_percent: weighted_cpu,
678                memory_usage: MemoryUsage {
679                    total: reference_prediction.predicted_usage.memory_usage.total,
680                    used: weighted_memory_used as u64,
681                    free: reference_prediction.predicted_usage.memory_usage.total
682                        - weighted_memory_used as u64,
683                    cached: reference_prediction.predicted_usage.memory_usage.cached,
684                    swap_used: reference_prediction.predicted_usage.memory_usage.swap_used,
685                },
686                gpu_usage: reference_prediction.predicted_usage.gpu_usage.clone(),
687                network_usage: reference_prediction.predicted_usage.network_usage.clone(),
688                storage_usage: reference_prediction.predicted_usage.storage_usage.clone(),
689            },
690            confidence: total_confidence / predictions.len() as f64,
691            horizon: reference_prediction.horizon,
692            timestamp: SystemTime::now(),
693            model_name: "Ensemble".to_string(),
694            intervals: reference_prediction.intervals.clone(),
695        })
696    }
697
698    /// Update models with actual usage data
699    pub fn update_models(
700        &mut self,
701        actual: &ResourceUsage,
702        predictions: &[ResourcePrediction],
703    ) -> SklResult<()> {
704        for prediction in predictions {
705            if let Some(model) = self.models.get_mut(&prediction.model_name) {
706                model.update(actual, prediction)?;
707            }
708        }
709        Ok(())
710    }
711}
712
713impl Default for OptimizerConfig {
714    fn default() -> Self {
715        Self {
716            strategy: OptimizationStrategyType::Balanced,
717            rebalancing_interval: Duration::from_secs(30),
718            enable_predictive_scaling: true,
719            enable_energy_optimization: true,
720            enable_thermal_management: true,
721            aggressiveness: 0.5,
722            performance_weight: 0.4,
723            energy_weight: 0.3,
724            fairness_weight: 0.3,
725        }
726    }
727}
728
729#[allow(non_snake_case)]
730#[cfg(test)]
731mod tests {
732    use super::*;
733
734    #[test]
735    fn test_optimizer_creation() {
736        let optimizer = ResourceOptimizer::new();
737        assert!(!optimizer.state.running);
738        assert_eq!(optimizer.state.cycle_count, 0);
739    }
740
741    #[test]
742    fn test_prediction_engine_creation() {
743        let engine = ResourcePredictionEngine::new();
744        assert!(engine.models.is_empty());
745        assert_eq!(
746            engine.config.prediction_horizon,
747            Duration::from_secs(60 * 60)
748        ); // 1 hour
749    }
750}