sklears_compose/workflow_language/
workflow_execution.rs

1//! Workflow Execution and Validation
2//!
3//! This module provides workflow execution capabilities including validation,
4//! runtime execution, dependency resolution, and execution monitoring for
5//! machine learning pipeline workflows.
6
7use scirs2_core::ndarray::{Array1, Array2};
8use serde::{Deserialize, Serialize};
9use sklears_core::{
10    error::{Result as SklResult, SklearsError},
11    types::Float,
12};
13use std::collections::{HashMap, HashSet, VecDeque};
14use std::time::{Duration, Instant};
15
16use super::component_registry::ComponentRegistry;
17use super::workflow_definitions::{Connection, ExecutionMode, StepDefinition, WorkflowDefinition};
18
19/// Workflow execution engine
20#[derive(Debug)]
21pub struct WorkflowExecutor {
22    /// Component registry
23    registry: ComponentRegistry,
24    /// Execution context
25    context: ExecutionContext,
26    /// Execution statistics
27    stats: ExecutionStatistics,
28}
29
30/// Execution context for workflow runs
31#[derive(Debug, Clone)]
32pub struct ExecutionContext {
33    /// Execution ID
34    pub execution_id: String,
35    /// Workflow being executed
36    pub workflow: WorkflowDefinition,
37    /// Data flow between steps
38    pub data_flow: HashMap<String, StepData>,
39    /// Execution start time
40    pub start_time: Instant,
41    /// Current execution step
42    pub current_step: Option<String>,
43    /// Execution mode
44    pub execution_mode: ExecutionMode,
45}
46
47/// Data passed between workflow steps
48#[derive(Debug, Clone)]
49pub struct StepData {
50    /// Step identifier
51    pub step_id: String,
52    /// Output port name
53    pub port_name: String,
54    /// Data matrices
55    pub matrices: HashMap<String, Array2<Float>>,
56    /// Data arrays
57    pub arrays: HashMap<String, Array1<Float>>,
58    /// Metadata
59    pub metadata: HashMap<String, String>,
60    /// Timestamp when data was produced
61    pub timestamp: Instant,
62}
63
64/// Execution result for a workflow
65#[derive(Debug, Clone, Serialize, Deserialize)]
66pub struct ExecutionResult {
67    /// Execution ID
68    pub execution_id: String,
69    /// Whether execution succeeded
70    pub success: bool,
71    /// Execution duration
72    pub duration: Duration,
73    /// Step results
74    pub step_results: Vec<StepExecutionResult>,
75    /// Final outputs
76    pub outputs: HashMap<String, String>,
77    /// Error message if execution failed
78    pub error: Option<String>,
79    /// Performance metrics
80    pub performance: PerformanceMetrics,
81}
82
83impl Default for ExecutionResult {
84    fn default() -> Self {
85        Self {
86            execution_id: "unknown".to_string(),
87            success: false,
88            duration: Duration::from_secs(0),
89            step_results: Vec::new(),
90            outputs: HashMap::new(),
91            error: Some("Execution failed".to_string()),
92            performance: PerformanceMetrics::default(),
93        }
94    }
95}
96
97/// Result of executing a single step
98#[derive(Debug, Clone, Serialize, Deserialize)]
99pub struct StepExecutionResult {
100    /// Step ID
101    pub step_id: String,
102    /// Step name/algorithm
103    pub algorithm: String,
104    /// Whether step succeeded
105    pub success: bool,
106    /// Step execution duration
107    pub duration: Duration,
108    /// Memory usage during step
109    pub memory_usage: u64,
110    /// Output data sizes
111    pub output_sizes: HashMap<String, usize>,
112    /// Error message if step failed
113    pub error: Option<String>,
114}
115
116/// Performance metrics for execution
117#[derive(Debug, Clone, Serialize, Deserialize)]
118pub struct PerformanceMetrics {
119    /// Total execution time
120    pub total_time: Duration,
121    /// Peak memory usage
122    pub peak_memory: u64,
123    /// CPU utilization
124    pub cpu_utilization: f64,
125    /// Throughput (samples per second)
126    pub throughput: f64,
127    /// Parallelism efficiency
128    pub parallelism_efficiency: f64,
129}
130
131/// Execution statistics
132#[derive(Debug, Clone)]
133pub struct ExecutionStatistics {
134    /// Total executions
135    pub total_executions: u64,
136    /// Successful executions
137    pub successful_executions: u64,
138    /// Failed executions
139    pub failed_executions: u64,
140    /// Average execution time
141    pub average_execution_time: Duration,
142    /// Step execution counts
143    pub step_execution_counts: HashMap<String, u64>,
144}
145
146/// Workflow validation result
147#[derive(Debug, Clone)]
148pub struct ValidationResult {
149    /// Whether workflow is valid
150    pub is_valid: bool,
151    /// Validation errors
152    pub errors: Vec<ValidationError>,
153    /// Validation warnings
154    pub warnings: Vec<ValidationWarning>,
155    /// Execution order
156    pub execution_order: Option<Vec<String>>,
157}
158
159/// Validation error
160#[derive(Debug, Clone, Serialize, Deserialize)]
161pub struct ValidationError {
162    /// Error type
163    pub error_type: String,
164    /// Error message
165    pub message: String,
166    /// Related step ID
167    pub step_id: Option<String>,
168    /// Related connection
169    pub connection: Option<String>,
170}
171
172/// Validation warning
173#[derive(Debug, Clone, Serialize, Deserialize)]
174pub struct ValidationWarning {
175    /// Warning type
176    pub warning_type: String,
177    /// Warning message
178    pub message: String,
179    /// Related step ID
180    pub step_id: Option<String>,
181}
182
183impl WorkflowExecutor {
184    /// Create a new workflow executor
185    #[must_use]
186    pub fn new() -> Self {
187        Self {
188            registry: ComponentRegistry::new(),
189            context: ExecutionContext::new(),
190            stats: ExecutionStatistics::new(),
191        }
192    }
193
194    /// Create executor with custom registry
195    #[must_use]
196    pub fn with_registry(registry: ComponentRegistry) -> Self {
197        Self {
198            registry,
199            context: ExecutionContext::new(),
200            stats: ExecutionStatistics::new(),
201        }
202    }
203
204    /// Validate a workflow
205    #[must_use]
206    pub fn validate_workflow(&self, workflow: &WorkflowDefinition) -> ValidationResult {
207        let mut errors = Vec::new();
208        let mut warnings = Vec::new();
209
210        // Check for empty workflow
211        if workflow.steps.is_empty() {
212            errors.push(ValidationError {
213                error_type: "EmptyWorkflow".to_string(),
214                message: "Workflow has no steps".to_string(),
215                step_id: None,
216                connection: None,
217            });
218            return ValidationResult {
219                is_valid: false,
220                errors,
221                warnings,
222                execution_order: None,
223            };
224        }
225
226        // Validate steps
227        for step in &workflow.steps {
228            self.validate_step(step, &mut errors, &mut warnings);
229        }
230
231        // Validate connections
232        for connection in &workflow.connections {
233            self.validate_connection(connection, workflow, &mut errors, &mut warnings);
234        }
235
236        // Check for circular dependencies
237        if let Err(cycle_error) = self.check_circular_dependencies(workflow) {
238            errors.push(ValidationError {
239                error_type: "CircularDependency".to_string(),
240                message: cycle_error,
241                step_id: None,
242                connection: None,
243            });
244        }
245
246        // Determine execution order
247        let execution_order = if errors.is_empty() {
248            self.determine_execution_order(workflow).ok()
249        } else {
250            None
251        };
252
253        ValidationResult {
254            is_valid: errors.is_empty(),
255            errors,
256            warnings,
257            execution_order,
258        }
259    }
260
261    /// Validate a single step
262    fn validate_step(
263        &self,
264        step: &StepDefinition,
265        errors: &mut Vec<ValidationError>,
266        warnings: &mut Vec<ValidationWarning>,
267    ) {
268        // Check if component exists
269        if !self.registry.has_component(&step.algorithm) {
270            errors.push(ValidationError {
271                error_type: "UnknownComponent".to_string(),
272                message: format!("Component '{}' not found in registry", step.algorithm),
273                step_id: Some(step.id.clone()),
274                connection: None,
275            });
276            return;
277        }
278
279        // Validate parameters
280        if let Err(param_error) = self
281            .registry
282            .validate_parameters(&step.algorithm, &step.parameters)
283        {
284            errors.push(ValidationError {
285                error_type: "InvalidParameters".to_string(),
286                message: param_error.to_string(),
287                step_id: Some(step.id.clone()),
288                connection: None,
289            });
290        }
291
292        // Check for deprecated components
293        if let Some(component) = self.registry.get_component(&step.algorithm) {
294            if component.deprecated {
295                warnings.push(ValidationWarning {
296                    warning_type: "DeprecatedComponent".to_string(),
297                    message: format!("Component '{}' is deprecated", step.algorithm),
298                    step_id: Some(step.id.clone()),
299                });
300            }
301        }
302    }
303
304    /// Validate a connection
305    fn validate_connection(
306        &self,
307        connection: &Connection,
308        workflow: &WorkflowDefinition,
309        errors: &mut Vec<ValidationError>,
310        _warnings: &mut Vec<ValidationWarning>,
311    ) {
312        // Check if source step exists
313        let source_step = workflow.steps.iter().find(|s| s.id == connection.from_step);
314        if source_step.is_none() {
315            errors.push(ValidationError {
316                error_type: "InvalidConnection".to_string(),
317                message: format!("Source step '{}' not found", connection.from_step),
318                step_id: None,
319                connection: Some(format!(
320                    "{}:{} -> {}:{}",
321                    connection.from_step,
322                    connection.from_output,
323                    connection.to_step,
324                    connection.to_input
325                )),
326            });
327            return;
328        }
329
330        // Check if target step exists
331        let target_step = workflow.steps.iter().find(|s| s.id == connection.to_step);
332        if target_step.is_none() {
333            errors.push(ValidationError {
334                error_type: "InvalidConnection".to_string(),
335                message: format!("Target step '{}' not found", connection.to_step),
336                step_id: None,
337                connection: Some(format!(
338                    "{}:{} -> {}:{}",
339                    connection.from_step,
340                    connection.from_output,
341                    connection.to_step,
342                    connection.to_input
343                )),
344            });
345            return;
346        }
347
348        // Validate that source step has the output port
349        let source = source_step.unwrap();
350        if !source.outputs.contains(&connection.from_output) {
351            errors.push(ValidationError {
352                error_type: "InvalidConnection".to_string(),
353                message: format!(
354                    "Step '{}' does not have output '{}'",
355                    connection.from_step, connection.from_output
356                ),
357                step_id: Some(source.id.clone()),
358                connection: Some(format!(
359                    "{}:{} -> {}:{}",
360                    connection.from_step,
361                    connection.from_output,
362                    connection.to_step,
363                    connection.to_input
364                )),
365            });
366        }
367
368        // Validate that target step has the input port
369        let target = target_step.unwrap();
370        if !target.inputs.contains(&connection.to_input) {
371            errors.push(ValidationError {
372                error_type: "InvalidConnection".to_string(),
373                message: format!(
374                    "Step '{}' does not have input '{}'",
375                    connection.to_step, connection.to_input
376                ),
377                step_id: Some(target.id.clone()),
378                connection: Some(format!(
379                    "{}:{} -> {}:{}",
380                    connection.from_step,
381                    connection.from_output,
382                    connection.to_step,
383                    connection.to_input
384                )),
385            });
386        }
387    }
388
389    /// Check for circular dependencies
390    pub fn check_circular_dependencies(&self, workflow: &WorkflowDefinition) -> Result<(), String> {
391        let mut graph = HashMap::new();
392
393        // Build dependency graph
394        for step in &workflow.steps {
395            graph.insert(step.id.clone(), HashSet::new());
396        }
397
398        for connection in &workflow.connections {
399            if let Some(dependencies) = graph.get_mut(&connection.to_step) {
400                dependencies.insert(connection.from_step.clone());
401            }
402        }
403
404        // Check for cycles using DFS
405        let mut visited = HashSet::new();
406        let mut rec_stack = HashSet::new();
407
408        for step_id in graph.keys() {
409            if !visited.contains(step_id)
410                && self.has_cycle_dfs(step_id, &graph, &mut visited, &mut rec_stack)
411            {
412                return Err(format!(
413                    "Circular dependency detected involving step '{step_id}'"
414                ));
415            }
416        }
417
418        Ok(())
419    }
420
421    /// DFS helper for cycle detection
422    fn has_cycle_dfs(
423        &self,
424        step_id: &str,
425        graph: &HashMap<String, HashSet<String>>,
426        visited: &mut HashSet<String>,
427        rec_stack: &mut HashSet<String>,
428    ) -> bool {
429        visited.insert(step_id.to_string());
430        rec_stack.insert(step_id.to_string());
431
432        if let Some(dependencies) = graph.get(step_id) {
433            for dep in dependencies {
434                if !visited.contains(dep) {
435                    if self.has_cycle_dfs(dep, graph, visited, rec_stack) {
436                        return true;
437                    }
438                } else if rec_stack.contains(dep) {
439                    return true;
440                }
441            }
442        }
443
444        rec_stack.remove(step_id);
445        false
446    }
447
448    /// Determine execution order using topological sort
449    pub fn determine_execution_order(
450        &self,
451        workflow: &WorkflowDefinition,
452    ) -> SklResult<Vec<String>> {
453        let mut in_degree = HashMap::new();
454        let mut adj_list = HashMap::new();
455
456        // Initialize
457        for step in &workflow.steps {
458            in_degree.insert(step.id.clone(), 0);
459            adj_list.insert(step.id.clone(), Vec::new());
460        }
461
462        // Build graph and calculate in-degrees
463        for connection in &workflow.connections {
464            *in_degree.get_mut(&connection.to_step).unwrap() += 1;
465            adj_list
466                .get_mut(&connection.from_step)
467                .unwrap()
468                .push(connection.to_step.clone());
469        }
470
471        // Topological sort using Kahn's algorithm
472        let mut queue = VecDeque::new();
473        let mut result = Vec::new();
474
475        // Find all nodes with in-degree 0
476        for (step_id, degree) in &in_degree {
477            if *degree == 0 {
478                queue.push_back(step_id.clone());
479            }
480        }
481
482        while let Some(current) = queue.pop_front() {
483            result.push(current.clone());
484
485            // Reduce in-degree of adjacent nodes
486            for neighbor in &adj_list[&current] {
487                *in_degree.get_mut(neighbor).unwrap() -= 1;
488                if in_degree[neighbor] == 0 {
489                    queue.push_back(neighbor.clone());
490                }
491            }
492        }
493
494        if result.len() != workflow.steps.len() {
495            return Err(SklearsError::InvalidInput(
496                "Circular dependency detected".to_string(),
497            ));
498        }
499
500        Ok(result)
501    }
502
503    /// Execute a workflow
504    pub fn execute_workflow(&mut self, workflow: WorkflowDefinition) -> SklResult<ExecutionResult> {
505        let execution_start = Instant::now();
506        let execution_id = uuid::Uuid::new_v4().to_string();
507
508        // Validate workflow first
509        let validation = self.validate_workflow(&workflow);
510        if !validation.is_valid {
511            return Ok(ExecutionResult {
512                execution_id,
513                success: false,
514                duration: execution_start.elapsed(),
515                step_results: Vec::new(),
516                outputs: HashMap::new(),
517                error: Some(format!(
518                    "Workflow validation failed: {:?}",
519                    validation.errors
520                )),
521                performance: PerformanceMetrics::default(),
522            });
523        }
524
525        // Setup execution context
526        self.context = ExecutionContext {
527            execution_id: execution_id.clone(),
528            workflow: workflow.clone(),
529            data_flow: HashMap::new(),
530            start_time: execution_start,
531            current_step: None,
532            execution_mode: workflow.execution.mode.clone(),
533        };
534
535        let execution_order = validation.execution_order.unwrap();
536        let mut step_results = Vec::new();
537        let mut success = true;
538        let mut error_message = None;
539
540        // Execute steps in order
541        for step_id in execution_order {
542            let step = workflow.steps.iter().find(|s| s.id == step_id).unwrap();
543            self.context.current_step = Some(step_id.clone());
544
545            match self.execute_step(step) {
546                Ok(step_result) => {
547                    step_results.push(step_result);
548                }
549                Err(e) => {
550                    success = false;
551                    error_message = Some(e.to_string());
552                    step_results.push(StepExecutionResult {
553                        step_id: step_id.clone(),
554                        algorithm: step.algorithm.clone(),
555                        success: false,
556                        duration: Duration::from_millis(0),
557                        memory_usage: 0,
558                        output_sizes: HashMap::new(),
559                        error: Some(e.to_string()),
560                    });
561                    break;
562                }
563            }
564        }
565
566        // Update statistics
567        self.stats.total_executions += 1;
568        if success {
569            self.stats.successful_executions += 1;
570        } else {
571            self.stats.failed_executions += 1;
572        }
573
574        let total_duration = execution_start.elapsed();
575        self.stats.average_execution_time = Duration::from_millis(
576            (((self.stats.average_execution_time.as_millis()
577                * u128::from(self.stats.total_executions - 1))
578                + total_duration.as_millis())
579                / u128::from(self.stats.total_executions))
580            .try_into()
581            .unwrap_or(u64::MAX),
582        );
583
584        Ok(ExecutionResult {
585            execution_id,
586            success,
587            duration: total_duration,
588            step_results,
589            outputs: self.extract_final_outputs(&workflow),
590            error: error_message,
591            performance: self.calculate_performance_metrics(execution_start),
592        })
593    }
594
595    /// Execute a single step
596    fn execute_step(&mut self, step: &StepDefinition) -> SklResult<StepExecutionResult> {
597        let step_start = Instant::now();
598
599        // Get component definition
600        let component = self
601            .registry
602            .get_component(&step.algorithm)
603            .ok_or_else(|| {
604                SklearsError::InvalidInput(format!("Component '{}' not found", step.algorithm))
605            })?;
606
607        // Prepare input data
608        let input_data = self.prepare_step_input(step)?;
609
610        // Simulate step execution (in real implementation, this would call actual components)
611        let output_data = self.simulate_step_execution(step, &input_data)?;
612
613        // Store output data in context
614        self.store_step_output(step, output_data.clone());
615
616        // Update step execution count
617        *self
618            .stats
619            .step_execution_counts
620            .entry(step.algorithm.clone())
621            .or_insert(0) += 1;
622
623        Ok(StepExecutionResult {
624            step_id: step.id.clone(),
625            algorithm: step.algorithm.clone(),
626            success: true,
627            duration: step_start.elapsed(),
628            memory_usage: self.estimate_memory_usage(&output_data),
629            output_sizes: output_data
630                .matrices
631                .iter()
632                .map(|(k, v)| (k.clone(), v.len()))
633                .collect(),
634            error: None,
635        })
636    }
637
638    /// Prepare input data for a step
639    fn prepare_step_input(&self, step: &StepDefinition) -> SklResult<StepData> {
640        let mut input_data = StepData {
641            step_id: step.id.clone(),
642            port_name: "input".to_string(),
643            matrices: HashMap::new(),
644            arrays: HashMap::new(),
645            metadata: HashMap::new(),
646            timestamp: Instant::now(),
647        };
648
649        // For each input connection, get data from previous steps
650        for connection in &self.context.workflow.connections {
651            if connection.to_step == step.id {
652                let source_data_key =
653                    format!("{}:{}", connection.from_step, connection.from_output);
654                if let Some(source_data) = self.context.data_flow.get(&source_data_key) {
655                    // Copy relevant data based on connection mapping
656                    for (key, matrix) in &source_data.matrices {
657                        input_data.matrices.insert(key.clone(), matrix.clone());
658                    }
659                    for (key, array) in &source_data.arrays {
660                        input_data.arrays.insert(key.clone(), array.clone());
661                    }
662                }
663            }
664        }
665
666        Ok(input_data)
667    }
668
669    /// Simulate step execution (placeholder for actual component execution)
670    fn simulate_step_execution(
671        &self,
672        step: &StepDefinition,
673        input_data: &StepData,
674    ) -> SklResult<StepData> {
675        // This is a placeholder implementation
676        // In a real system, this would delegate to the actual component implementation
677
678        let mut output_data = StepData {
679            step_id: step.id.clone(),
680            port_name: "output".to_string(),
681            matrices: HashMap::new(),
682            arrays: HashMap::new(),
683            metadata: HashMap::new(),
684            timestamp: Instant::now(),
685        };
686
687        // Simple simulation based on component type
688        match step.algorithm.as_str() {
689            "StandardScaler" => {
690                // Simulate scaling operation
691                if let Some(input_matrix) = input_data.matrices.get("X") {
692                    let scaled_matrix = input_matrix.clone(); // Placeholder
693                    output_data
694                        .matrices
695                        .insert("X_scaled".to_string(), scaled_matrix);
696                }
697            }
698            "LinearRegression" => {
699                // Simulate training
700                if input_data.matrices.contains_key("X") && input_data.arrays.contains_key("y") {
701                    // Create dummy model output
702                    output_data
703                        .metadata
704                        .insert("model_type".to_string(), "LinearRegression".to_string());
705                    output_data
706                        .metadata
707                        .insert("trained".to_string(), "true".to_string());
708                }
709            }
710            _ => {
711                // Default behavior: pass through input data
712                output_data.matrices = input_data.matrices.clone();
713                output_data.arrays = input_data.arrays.clone();
714            }
715        }
716
717        Ok(output_data)
718    }
719
720    /// Store step output in execution context
721    fn store_step_output(&mut self, step: &StepDefinition, output_data: StepData) {
722        for output_name in &step.outputs {
723            let key = format!("{}:{}", step.id, output_name);
724            self.context.data_flow.insert(key, output_data.clone());
725        }
726    }
727
728    /// Extract final outputs from workflow execution
729    fn extract_final_outputs(&self, workflow: &WorkflowDefinition) -> HashMap<String, String> {
730        let mut outputs = HashMap::new();
731
732        for output in &workflow.outputs {
733            // Find the step that produces this output
734            for step in &workflow.steps {
735                if step.outputs.contains(&output.name) {
736                    let key = format!("{}:{}", step.id, output.name);
737                    if let Some(data) = self.context.data_flow.get(&key) {
738                        outputs.insert(
739                            output.name.clone(),
740                            format!("Data from step '{}' port '{}'", step.id, output.name),
741                        );
742                    }
743                }
744            }
745        }
746
747        outputs
748    }
749
750    /// Calculate performance metrics
751    fn calculate_performance_metrics(&self, start_time: Instant) -> PerformanceMetrics {
752        PerformanceMetrics {
753            total_time: start_time.elapsed(),
754            peak_memory: 0,              // Placeholder
755            cpu_utilization: 0.0,        // Placeholder
756            throughput: 0.0,             // Placeholder
757            parallelism_efficiency: 1.0, // Placeholder
758        }
759    }
760
761    /// Estimate memory usage for step data
762    fn estimate_memory_usage(&self, _data: &StepData) -> u64 {
763        // Placeholder implementation
764        1024 * 1024 // 1MB
765    }
766
767    /// Get execution statistics
768    #[must_use]
769    pub fn get_statistics(&self) -> &ExecutionStatistics {
770        &self.stats
771    }
772}
773
774impl ExecutionContext {
775    fn new() -> Self {
776        Self {
777            execution_id: String::new(),
778            workflow: WorkflowDefinition::default(),
779            data_flow: HashMap::new(),
780            start_time: Instant::now(),
781            current_step: None,
782            execution_mode: ExecutionMode::Sequential,
783        }
784    }
785}
786
787impl ExecutionStatistics {
788    fn new() -> Self {
789        Self {
790            total_executions: 0,
791            successful_executions: 0,
792            failed_executions: 0,
793            average_execution_time: Duration::from_secs(0),
794            step_execution_counts: HashMap::new(),
795        }
796    }
797}
798
799impl Default for PerformanceMetrics {
800    fn default() -> Self {
801        Self {
802            total_time: Duration::from_secs(0),
803            peak_memory: 0,
804            cpu_utilization: 0.0,
805            throughput: 0.0,
806            parallelism_efficiency: 0.0,
807        }
808    }
809}
810
811impl Default for WorkflowExecutor {
812    fn default() -> Self {
813        Self::new()
814    }
815}
816
817/// Execution state tracking
818#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
819pub enum ExecutionState {
820    /// Execution is initializing
821    Initializing,
822    /// Execution is preparing
823    Preparing,
824    /// Execution is running
825    Running,
826    /// Execution is paused
827    Paused,
828    /// Execution completed successfully
829    Completed,
830    /// Execution failed
831    Failed,
832    /// Execution was cancelled
833    Cancelled,
834    /// Execution timed out
835    TimedOut,
836}
837
838/// Execution tracker for monitoring workflow progress
839#[derive(Debug, Clone, Serialize, Deserialize)]
840pub struct ExecutionTracker {
841    /// Current execution state
842    pub state: ExecutionState,
843    /// Progress percentage (0-100)
844    pub progress: f64,
845    /// Currently executing step
846    pub current_step: Option<String>,
847    /// Completed steps
848    pub completed_steps: Vec<String>,
849    /// Failed steps
850    pub failed_steps: Vec<String>,
851    /// Execution start time
852    pub start_time: String,
853    /// Estimated completion time
854    pub estimated_completion: Option<String>,
855    /// Error messages
856    pub errors: Vec<String>,
857    /// Warnings
858    pub warnings: Vec<String>,
859}
860
861/// Parallel execution configuration
862#[derive(Debug, Clone, Serialize, Deserialize)]
863pub struct ParallelExecutionConfig {
864    /// Maximum number of parallel workers
865    pub max_workers: usize,
866    /// Task queue size
867    pub queue_size: usize,
868    /// Load balancing strategy
869    pub load_balancing: LoadBalancingStrategy,
870    /// Thread pool configuration
871    pub thread_pool: ThreadPoolConfig,
872    /// Resource sharing strategy
873    pub resource_sharing: ResourceSharingStrategy,
874}
875
876/// Load balancing strategies
877#[derive(Debug, Clone, Serialize, Deserialize)]
878pub enum LoadBalancingStrategy {
879    /// Round-robin assignment
880    RoundRobin,
881    /// Least loaded worker
882    LeastLoaded,
883    /// Random assignment
884    Random,
885    /// Work stealing
886    WorkStealing,
887    /// Custom strategy
888    Custom(String),
889}
890
891/// Thread pool configuration
892#[derive(Debug, Clone, Serialize, Deserialize)]
893pub struct ThreadPoolConfig {
894    /// Core thread count
895    pub core_threads: usize,
896    /// Maximum thread count
897    pub max_threads: usize,
898    /// Thread keep-alive time in seconds
899    pub keep_alive_sec: u64,
900    /// Thread stack size in bytes
901    pub stack_size: Option<usize>,
902}
903
904/// Resource sharing strategies
905#[derive(Debug, Clone, Serialize, Deserialize)]
906pub enum ResourceSharingStrategy {
907    /// Exclusive resource access
908    Exclusive,
909    /// Shared resource access
910    Shared,
911    /// Copy-on-write sharing
912    CopyOnWrite,
913    /// Memory mapped sharing
914    MemoryMapped,
915}
916
917/// Resource allocation for workflow execution
918#[derive(Debug, Clone, Serialize, Deserialize)]
919pub struct ResourceAllocation {
920    /// CPU allocation
921    pub cpu: CpuAllocation,
922    /// Memory allocation
923    pub memory: MemoryAllocation,
924    /// GPU allocation
925    pub gpu: Option<GpuAllocation>,
926    /// Disk allocation
927    pub disk: Option<DiskAllocation>,
928    /// Network allocation
929    pub network: Option<NetworkAllocation>,
930}
931
932/// CPU resource allocation
933#[derive(Debug, Clone, Serialize, Deserialize)]
934pub struct CpuAllocation {
935    /// Number of cores allocated
936    pub cores: usize,
937    /// CPU utilization limit (0.0-1.0)
938    pub utilization_limit: f64,
939    /// CPU affinity settings
940    pub affinity: Vec<usize>,
941}
942
943/// Memory resource allocation
944#[derive(Debug, Clone, Serialize, Deserialize)]
945pub struct MemoryAllocation {
946    /// Maximum memory in MB
947    pub max_memory_mb: usize,
948    /// Memory type preference
949    pub memory_type: MemoryType,
950    /// Swap allowance
951    pub allow_swap: bool,
952}
953
954/// Memory types
955#[derive(Debug, Clone, Serialize, Deserialize)]
956pub enum MemoryType {
957    /// System RAM
958    Ram,
959    /// High bandwidth memory
960    Hbm,
961    /// Non-volatile memory
962    Nvram,
963    /// Any available memory
964    Any,
965}
966
967/// GPU resource allocation
968#[derive(Debug, Clone, Serialize, Deserialize)]
969pub struct GpuAllocation {
970    /// GPU device IDs
971    pub device_ids: Vec<usize>,
972    /// Memory per GPU in MB
973    pub memory_per_gpu_mb: usize,
974    /// Compute capability requirement
975    pub min_compute_capability: f64,
976}
977
978/// Disk resource allocation
979#[derive(Debug, Clone, Serialize, Deserialize)]
980pub struct DiskAllocation {
981    /// Temporary storage in MB
982    pub temp_storage_mb: usize,
983    /// Storage paths
984    pub storage_paths: Vec<String>,
985    /// I/O bandwidth limit in MB/s
986    pub io_bandwidth_mbs: Option<f64>,
987}
988
989/// Network resource allocation
990#[derive(Debug, Clone, Serialize, Deserialize)]
991pub struct NetworkAllocation {
992    /// Bandwidth limit in Mbps
993    pub bandwidth_mbps: f64,
994    /// Connection limit
995    pub max_connections: usize,
996    /// Network interfaces
997    pub interfaces: Vec<String>,
998}
999
1000/// Resource manager for managing workflow resources
1001#[derive(Debug, Clone, Serialize, Deserialize)]
1002pub struct ResourceManager {
1003    /// Available resource pool
1004    pub available_resources: ResourcePool,
1005    /// Current allocations
1006    pub allocations: HashMap<String, ResourceAllocation>,
1007    /// Resource monitoring
1008    pub monitoring: ResourceMonitoring,
1009    /// Resource scheduling strategy
1010    pub scheduling_strategy: ResourceSchedulingStrategy,
1011}
1012
1013/// Resource pool available for allocation
1014#[derive(Debug, Clone, Serialize, Deserialize)]
1015pub struct ResourcePool {
1016    /// Total CPU cores
1017    pub total_cpu_cores: usize,
1018    /// Total memory in MB
1019    pub total_memory_mb: usize,
1020    /// Available GPUs
1021    pub gpus: Vec<GpuInfo>,
1022    /// Available disk space in MB
1023    pub disk_space_mb: usize,
1024    /// Network bandwidth in Mbps
1025    pub network_bandwidth_mbps: f64,
1026}
1027
1028/// GPU information
1029#[derive(Debug, Clone, Serialize, Deserialize)]
1030pub struct GpuInfo {
1031    /// GPU ID
1032    pub id: usize,
1033    /// GPU name
1034    pub name: String,
1035    /// Memory in MB
1036    pub memory_mb: usize,
1037    /// Compute capability
1038    pub compute_capability: f64,
1039    /// Whether currently available
1040    pub available: bool,
1041}
1042
1043/// Resource monitoring configuration
1044#[derive(Debug, Clone, Serialize, Deserialize)]
1045pub struct ResourceMonitoring {
1046    /// Enable resource monitoring
1047    pub enabled: bool,
1048    /// Monitoring interval in seconds
1049    pub interval_sec: u64,
1050    /// Resource usage thresholds
1051    pub thresholds: ResourceThresholds,
1052}
1053
1054/// Resource usage thresholds
1055#[derive(Debug, Clone, Serialize, Deserialize)]
1056pub struct ResourceThresholds {
1057    /// CPU usage warning threshold
1058    pub cpu_warning: f64,
1059    /// Memory usage warning threshold
1060    pub memory_warning: f64,
1061    /// Disk usage warning threshold
1062    pub disk_warning: f64,
1063}
1064
1065/// Resource scheduling strategies
1066#[derive(Debug, Clone, Serialize, Deserialize)]
1067pub enum ResourceSchedulingStrategy {
1068    /// First-come, first-served
1069    Fcfs,
1070    /// Shortest job first
1071    Sjf,
1072    /// Round-robin
1073    RoundRobin,
1074    /// Priority-based
1075    Priority,
1076    /// Fair share
1077    FairShare,
1078    /// Custom strategy
1079    Custom(String),
1080}
1081
1082/// Workflow execution error types
1083#[derive(Debug, Clone, Serialize, Deserialize, thiserror::Error)]
1084pub enum WorkflowExecutionError {
1085    /// Validation error
1086    #[error("Workflow validation error: {0}")]
1087    ValidationError(String),
1088    /// Resource allocation failed
1089    #[error("Resource allocation failed: {0}")]
1090    ResourceAllocationError(String),
1091    /// Step execution failed
1092    #[error("Step execution failed for '{0}': {1}")]
1093    StepExecutionError(String, String), // step_id, error_message
1094    /// Dependency resolution failed
1095    #[error("Dependency resolution failed: {0}")]
1096    DependencyError(String),
1097    /// Timeout occurred
1098    #[error("Workflow timeout: {0}")]
1099    TimeoutError(String),
1100    /// Cancellation requested
1101    #[error("Workflow cancelled: {0}")]
1102    CancellationError(String),
1103    /// Configuration error
1104    #[error("Configuration error: {0}")]
1105    ConfigurationError(String),
1106    /// Runtime error
1107    #[error("Runtime error: {0}")]
1108    RuntimeError(String),
1109    /// System error
1110    #[error("System error: {0}")]
1111    SystemError(String),
1112}
1113
1114#[allow(non_snake_case)]
1115#[cfg(test)]
1116mod tests {
1117    use super::*;
1118    use crate::workflow_language::workflow_definitions::{DataType, StepType};
1119
1120    #[test]
1121    fn test_workflow_executor_creation() {
1122        let executor = WorkflowExecutor::new();
1123        assert_eq!(executor.stats.total_executions, 0);
1124    }
1125
1126    #[test]
1127    fn test_empty_workflow_validation() {
1128        let executor = WorkflowExecutor::new();
1129        let workflow = WorkflowDefinition::default();
1130
1131        let validation = executor.validate_workflow(&workflow);
1132        assert!(!validation.is_valid);
1133        assert!(!validation.errors.is_empty());
1134        assert_eq!(validation.errors[0].error_type, "EmptyWorkflow");
1135    }
1136
1137    #[test]
1138    fn test_valid_workflow_validation() {
1139        let executor = WorkflowExecutor::new();
1140        let mut workflow = WorkflowDefinition::default();
1141
1142        workflow.steps.push(StepDefinition::new(
1143            "step1",
1144            StepType::Transformer,
1145            "StandardScaler",
1146        ));
1147
1148        let validation = executor.validate_workflow(&workflow);
1149        assert!(validation.is_valid);
1150        assert!(validation.errors.is_empty());
1151        assert!(validation.execution_order.is_some());
1152    }
1153
1154    #[test]
1155    fn test_unknown_component_validation() {
1156        let executor = WorkflowExecutor::new();
1157        let mut workflow = WorkflowDefinition::default();
1158
1159        workflow.steps.push(StepDefinition::new(
1160            "step1",
1161            StepType::Transformer,
1162            "UnknownComponent",
1163        ));
1164
1165        let validation = executor.validate_workflow(&workflow);
1166        assert!(!validation.is_valid);
1167        assert!(!validation.errors.is_empty());
1168        assert_eq!(validation.errors[0].error_type, "UnknownComponent");
1169    }
1170
1171    #[test]
1172    fn test_execution_order_determination() {
1173        let executor = WorkflowExecutor::new();
1174        let mut workflow = WorkflowDefinition::default();
1175
1176        // Add steps
1177        workflow.steps.push(
1178            StepDefinition::new("step1", StepType::Transformer, "StandardScaler")
1179                .with_output("X_scaled"),
1180        );
1181        workflow.steps.push(
1182            StepDefinition::new("step2", StepType::Trainer, "LinearRegression").with_input("X"),
1183        );
1184
1185        // Add connection
1186        workflow
1187            .connections
1188            .push(Connection::direct("step1", "X_scaled", "step2", "X"));
1189
1190        let order = executor.determine_execution_order(&workflow).unwrap();
1191        assert_eq!(order, vec!["step1".to_string(), "step2".to_string()]);
1192    }
1193
1194    #[test]
1195    fn test_circular_dependency_detection() {
1196        let executor = WorkflowExecutor::new();
1197        let mut workflow = WorkflowDefinition::default();
1198
1199        // Add steps
1200        workflow.steps.push(StepDefinition::new(
1201            "step1",
1202            StepType::Transformer,
1203            "StandardScaler",
1204        ));
1205        workflow.steps.push(StepDefinition::new(
1206            "step2",
1207            StepType::Trainer,
1208            "LinearRegression",
1209        ));
1210
1211        // Add circular connections
1212        workflow
1213            .connections
1214            .push(Connection::direct("step1", "output", "step2", "input"));
1215        workflow
1216            .connections
1217            .push(Connection::direct("step2", "output", "step1", "input"));
1218
1219        let result = executor.check_circular_dependencies(&workflow);
1220        assert!(result.is_err());
1221    }
1222}