sklears_compose/
transfer_learning.rs

1//! Transfer learning pipeline components
2//!
3//! This module provides transfer learning capabilities including pre-trained model
4//! integration, feature extraction, fine-tuning strategies, and knowledge distillation.
5
6use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2, Axis};
7use sklears_core::{
8    error::Result as SklResult,
9    prelude::{Predict, SklearsError},
10    traits::{Estimator, Fit, Untrained},
11    types::{Float, FloatBounds},
12};
13use std::collections::HashMap;
14
15use crate::{PipelinePredictor, PipelineStep};
16
17/// Pre-trained model wrapper for transfer learning
18#[derive(Debug)]
19pub struct PretrainedModel {
20    /// The pre-trained model
21    pub model: Box<dyn PipelinePredictor>,
22    /// Feature extraction layers (frozen)
23    pub frozen_layers: Vec<String>,
24    /// Fine-tuning layers (trainable)
25    pub trainable_layers: Vec<String>,
26    /// Model metadata
27    pub metadata: HashMap<String, String>,
28}
29
30impl PretrainedModel {
31    /// Create a new pre-trained model wrapper
32    #[must_use]
33    pub fn new(model: Box<dyn PipelinePredictor>) -> Self {
34        Self {
35            model,
36            frozen_layers: Vec::new(),
37            trainable_layers: Vec::new(),
38            metadata: HashMap::new(),
39        }
40    }
41
42    /// Add frozen layers
43    #[must_use]
44    pub fn with_frozen_layers(mut self, layers: Vec<String>) -> Self {
45        self.frozen_layers = layers;
46        self
47    }
48
49    /// Add trainable layers
50    #[must_use]
51    pub fn with_trainable_layers(mut self, layers: Vec<String>) -> Self {
52        self.trainable_layers = layers;
53        self
54    }
55
56    /// Add metadata
57    #[must_use]
58    pub fn with_metadata(mut self, metadata: HashMap<String, String>) -> Self {
59        self.metadata = metadata;
60        self
61    }
62
63    /// Extract features using frozen layers
64    pub fn extract_features(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array2<f64>> {
65        // In a real implementation, this would extract features from intermediate layers
66        // For now, we'll use the full model prediction as feature extraction
67        let features = self.model.predict(x)?;
68        Array2::from_shape_vec(
69            (x.nrows(), features.len() / x.nrows()),
70            features.into_raw_vec(),
71        )
72        .map_err(|e| SklearsError::InvalidData {
73            reason: format!("Feature extraction failed: {e}"),
74        })
75    }
76}
77
78/// Transfer learning strategy
79#[derive(Debug, Clone)]
80pub enum TransferStrategy {
81    /// Feature extraction only (freeze all layers)
82    FeatureExtraction {
83        /// Whether to add new classifier head
84        add_classifier: bool,
85    },
86    /// Fine-tune all layers
87    FineTuning {
88        /// Learning rate for fine-tuning
89        learning_rate: f64,
90        /// Number of training epochs
91        epochs: usize,
92    },
93    /// Progressive unfreezing
94    ProgressiveUnfreezing {
95        /// Learning rate schedule
96        learning_rates: Vec<f64>,
97        /// Layers to unfreeze per step
98        unfreeze_schedule: Vec<Vec<String>>,
99    },
100    /// Layer-wise adaptive rates
101    LayerWiseAdaptive {
102        /// Learning rates per layer group
103        layer_rates: HashMap<String, f64>,
104    },
105    /// Knowledge distillation
106    KnowledgeDistillation {
107        /// Temperature for softmax distillation
108        temperature: f64,
109        /// Weight for distillation loss
110        distillation_weight: f64,
111        /// Weight for task loss
112        task_weight: f64,
113    },
114}
115
116/// Transfer learning pipeline
117#[derive(Debug)]
118pub struct TransferLearningPipeline<S = Untrained> {
119    state: S,
120    pretrained_model: Option<PretrainedModel>,
121    target_estimator: Option<Box<dyn PipelinePredictor>>,
122    transfer_strategy: TransferStrategy,
123    adaptation_config: AdaptationConfig,
124}
125
126/// Trained state for `TransferLearningPipeline`
127#[derive(Debug)]
128pub struct TransferLearningPipelineTrained {
129    adapted_model: Box<dyn PipelinePredictor>,
130    feature_extractor: Option<PretrainedModel>,
131    transfer_strategy: TransferStrategy,
132    adaptation_metrics: HashMap<String, f64>,
133    n_features_in: usize,
134    feature_names_in: Option<Vec<String>>,
135}
136
137/// Configuration for adaptation process
138#[derive(Debug, Clone)]
139pub struct AdaptationConfig {
140    /// Maximum number of adaptation steps
141    pub max_steps: usize,
142    /// Early stopping patience
143    pub patience: usize,
144    /// Minimum improvement threshold
145    pub min_improvement: f64,
146    /// Validation split ratio
147    pub validation_split: f64,
148    /// Batch size for adaptation
149    pub batch_size: usize,
150    /// Learning rate schedule
151    pub lr_schedule: LearningRateSchedule,
152}
153
154impl Default for AdaptationConfig {
155    fn default() -> Self {
156        Self {
157            max_steps: 1000,
158            patience: 10,
159            min_improvement: 1e-4,
160            validation_split: 0.2,
161            batch_size: 32,
162            lr_schedule: LearningRateSchedule::Constant { rate: 0.001 },
163        }
164    }
165}
166
167/// Learning rate schedule types
168#[derive(Debug, Clone)]
169pub enum LearningRateSchedule {
170    /// Constant learning rate
171    Constant { rate: f64 },
172    /// Exponential decay
173    ExponentialDecay {
174        initial_rate: f64,
175        decay_rate: f64,
176        decay_steps: usize,
177    },
178    /// Step decay
179    StepDecay {
180        initial_rate: f64,
181        drop_rate: f64,
182        epochs_drop: usize,
183    },
184    /// Cosine annealing
185    CosineAnnealing {
186        max_rate: f64,
187        min_rate: f64,
188        cycle_length: usize,
189    },
190}
191
192impl LearningRateSchedule {
193    /// Get learning rate for a given step
194    #[must_use]
195    pub fn get_rate(&self, step: usize) -> f64 {
196        match self {
197            LearningRateSchedule::Constant { rate } => *rate,
198            LearningRateSchedule::ExponentialDecay {
199                initial_rate,
200                decay_rate,
201                decay_steps,
202            } => initial_rate * decay_rate.powf(step as f64 / *decay_steps as f64),
203            LearningRateSchedule::StepDecay {
204                initial_rate,
205                drop_rate,
206                epochs_drop,
207            } => initial_rate * drop_rate.powf((step / epochs_drop) as f64),
208            LearningRateSchedule::CosineAnnealing {
209                max_rate,
210                min_rate,
211                cycle_length,
212            } => {
213                let cycle_position = (step % cycle_length) as f64 / *cycle_length as f64;
214                min_rate
215                    + (max_rate - min_rate) * (1.0 + (std::f64::consts::PI * cycle_position).cos())
216                        / 2.0
217            }
218        }
219    }
220}
221
222impl TransferLearningPipeline<Untrained> {
223    /// Create a new transfer learning pipeline
224    #[must_use]
225    pub fn new(
226        pretrained_model: PretrainedModel,
227        target_estimator: Box<dyn PipelinePredictor>,
228    ) -> Self {
229        Self {
230            state: Untrained,
231            pretrained_model: Some(pretrained_model),
232            target_estimator: Some(target_estimator),
233            transfer_strategy: TransferStrategy::FineTuning {
234                learning_rate: 0.001,
235                epochs: 10,
236            },
237            adaptation_config: AdaptationConfig::default(),
238        }
239    }
240
241    /// Set the transfer strategy
242    #[must_use]
243    pub fn transfer_strategy(mut self, strategy: TransferStrategy) -> Self {
244        self.transfer_strategy = strategy;
245        self
246    }
247
248    /// Set the adaptation configuration
249    #[must_use]
250    pub fn adaptation_config(mut self, config: AdaptationConfig) -> Self {
251        self.adaptation_config = config;
252        self
253    }
254
255    /// Create a feature extraction pipeline
256    #[must_use]
257    pub fn feature_extraction(pretrained_model: PretrainedModel) -> Self {
258        let strategy = TransferStrategy::FeatureExtraction {
259            add_classifier: true,
260        };
261        Self {
262            state: Untrained,
263            pretrained_model: Some(pretrained_model),
264            target_estimator: None,
265            transfer_strategy: strategy,
266            adaptation_config: AdaptationConfig::default(),
267        }
268    }
269
270    /// Create a fine-tuning pipeline
271    #[must_use]
272    pub fn fine_tuning(
273        pretrained_model: PretrainedModel,
274        target_estimator: Box<dyn PipelinePredictor>,
275        learning_rate: f64,
276        epochs: usize,
277    ) -> Self {
278        let strategy = TransferStrategy::FineTuning {
279            learning_rate,
280            epochs,
281        };
282        Self {
283            state: Untrained,
284            pretrained_model: Some(pretrained_model),
285            target_estimator: Some(target_estimator),
286            transfer_strategy: strategy,
287            adaptation_config: AdaptationConfig::default(),
288        }
289    }
290
291    /// Create a knowledge distillation pipeline
292    #[must_use]
293    pub fn knowledge_distillation(
294        teacher_model: PretrainedModel,
295        student_estimator: Box<dyn PipelinePredictor>,
296        temperature: f64,
297        distillation_weight: f64,
298        task_weight: f64,
299    ) -> Self {
300        let strategy = TransferStrategy::KnowledgeDistillation {
301            temperature,
302            distillation_weight,
303            task_weight,
304        };
305        Self {
306            state: Untrained,
307            pretrained_model: Some(teacher_model),
308            target_estimator: Some(student_estimator),
309            transfer_strategy: strategy,
310            adaptation_config: AdaptationConfig::default(),
311        }
312    }
313}
314
315impl Estimator for TransferLearningPipeline<Untrained> {
316    type Config = ();
317    type Error = SklearsError;
318    type Float = Float;
319
320    fn config(&self) -> &Self::Config {
321        &()
322    }
323}
324
325impl Fit<ArrayView2<'_, Float>, Option<&ArrayView1<'_, Float>>>
326    for TransferLearningPipeline<Untrained>
327{
328    type Fitted = TransferLearningPipeline<TransferLearningPipelineTrained>;
329
330    fn fit(
331        mut self,
332        x: &ArrayView2<'_, Float>,
333        y: &Option<&ArrayView1<'_, Float>>,
334    ) -> SklResult<Self::Fitted> {
335        let pretrained_model = self.pretrained_model.take().ok_or_else(|| {
336            SklearsError::InvalidInput("No pretrained model provided".to_string())
337        })?;
338
339        let transfer_strategy = self.transfer_strategy.clone();
340        let adapted_model = match &transfer_strategy {
341            TransferStrategy::FeatureExtraction { add_classifier } => {
342                self.apply_feature_extraction(&pretrained_model, x, y, *add_classifier)?
343            }
344            TransferStrategy::FineTuning {
345                learning_rate,
346                epochs,
347            } => self.apply_fine_tuning(&pretrained_model, x, y, *learning_rate, *epochs)?,
348            TransferStrategy::ProgressiveUnfreezing {
349                learning_rates,
350                unfreeze_schedule,
351            } => self.apply_progressive_unfreezing(
352                &pretrained_model,
353                x,
354                y,
355                learning_rates,
356                unfreeze_schedule,
357            )?,
358            TransferStrategy::LayerWiseAdaptive { layer_rates } => {
359                self.apply_layer_wise_adaptive(&pretrained_model, x, y, layer_rates)?
360            }
361            TransferStrategy::KnowledgeDistillation {
362                temperature,
363                distillation_weight,
364                task_weight,
365            } => self.apply_knowledge_distillation(
366                &pretrained_model,
367                x,
368                y,
369                *temperature,
370                *distillation_weight,
371                *task_weight,
372            )?,
373        };
374
375        let mut adaptation_metrics = HashMap::new();
376        adaptation_metrics.insert(
377            "adaptation_steps".to_string(),
378            self.adaptation_config.max_steps as f64,
379        );
380
381        Ok(TransferLearningPipeline {
382            state: TransferLearningPipelineTrained {
383                adapted_model,
384                feature_extractor: Some(pretrained_model),
385                transfer_strategy: self.transfer_strategy,
386                adaptation_metrics,
387                n_features_in: x.ncols(),
388                feature_names_in: None,
389            },
390            pretrained_model: None,
391            target_estimator: None,
392            transfer_strategy: TransferStrategy::FeatureExtraction {
393                add_classifier: false,
394            },
395            adaptation_config: AdaptationConfig::default(),
396        })
397    }
398}
399
400impl TransferLearningPipeline<Untrained> {
401    /// Apply feature extraction strategy
402    fn apply_feature_extraction(
403        &mut self,
404        pretrained_model: &PretrainedModel,
405        x: &ArrayView2<'_, Float>,
406        y: &Option<&ArrayView1<'_, Float>>,
407        add_classifier: bool,
408    ) -> SklResult<Box<dyn PipelinePredictor>> {
409        if add_classifier {
410            if let Some(mut target_estimator) = self.target_estimator.take() {
411                // Extract features and train classifier
412                let features = pretrained_model.extract_features(x)?;
413                let y_ref = y.as_ref().ok_or_else(|| {
414                    SklearsError::InvalidInput("No target values provided".to_string())
415                })?;
416                target_estimator.fit(&features.view(), y_ref)?;
417                Ok(target_estimator)
418            } else {
419                // Use pretrained model as-is
420                Ok(Box::new(FeatureExtractorWrapper::new(pretrained_model)))
421            }
422        } else {
423            // Use pretrained model for feature extraction only
424            Ok(Box::new(FeatureExtractorWrapper::new(pretrained_model)))
425        }
426    }
427
428    /// Apply fine-tuning strategy
429    fn apply_fine_tuning(
430        &mut self,
431        pretrained_model: &PretrainedModel,
432        x: &ArrayView2<'_, Float>,
433        y: &Option<&ArrayView1<'_, Float>>,
434        learning_rate: f64,
435        epochs: usize,
436    ) -> SklResult<Box<dyn PipelinePredictor>> {
437        if let Some(mut target_estimator) = self.target_estimator.take() {
438            // Simulate fine-tuning by training the target estimator
439            for epoch in 0..epochs {
440                let current_lr = learning_rate * (0.95_f64).powi(epoch as i32); // Simple decay
441                let y_ref = y.as_ref().ok_or_else(|| {
442                    SklearsError::InvalidInput("No target values provided".to_string())
443                })?;
444                target_estimator.fit(x, y_ref)?;
445            }
446            Ok(target_estimator)
447        } else {
448            // Return the pretrained model
449            Err(SklearsError::InvalidInput(
450                "Target estimator required for fine-tuning".to_string(),
451            ))
452        }
453    }
454
455    /// Apply progressive unfreezing strategy
456    fn apply_progressive_unfreezing(
457        &mut self,
458        pretrained_model: &PretrainedModel,
459        x: &ArrayView2<'_, Float>,
460        y: &Option<&ArrayView1<'_, Float>>,
461        learning_rates: &[f64],
462        unfreeze_schedule: &[Vec<String>],
463    ) -> SklResult<Box<dyn PipelinePredictor>> {
464        if let Some(mut target_estimator) = self.target_estimator.take() {
465            // Simulate progressive unfreezing
466            for (step, (lr, layers)) in learning_rates
467                .iter()
468                .zip(unfreeze_schedule.iter())
469                .enumerate()
470            {
471                // In a real implementation, we would unfreeze specific layers
472                // For now, we'll just train with different learning rates
473                let y_ref = y.as_ref().ok_or_else(|| {
474                    SklearsError::InvalidInput("No target values provided".to_string())
475                })?;
476                target_estimator.fit(x, y_ref)?;
477            }
478            Ok(target_estimator)
479        } else {
480            Err(SklearsError::InvalidInput(
481                "Target estimator required for progressive unfreezing".to_string(),
482            ))
483        }
484    }
485
486    /// Apply layer-wise adaptive rates strategy
487    fn apply_layer_wise_adaptive(
488        &mut self,
489        pretrained_model: &PretrainedModel,
490        x: &ArrayView2<'_, Float>,
491        y: &Option<&ArrayView1<'_, Float>>,
492        layer_rates: &HashMap<String, f64>,
493    ) -> SklResult<Box<dyn PipelinePredictor>> {
494        if let Some(mut target_estimator) = self.target_estimator.take() {
495            // Simulate layer-wise adaptive training
496            if let Some(y_ref) = y.as_ref() {
497                target_estimator.fit(x, y_ref)?;
498            } else {
499                return Err(SklearsError::InvalidInput(
500                    "Target y is required for fitting".to_string(),
501                ));
502            }
503            Ok(target_estimator)
504        } else {
505            Err(SklearsError::InvalidInput(
506                "Target estimator required for layer-wise adaptive rates".to_string(),
507            ))
508        }
509    }
510
511    /// Apply knowledge distillation strategy
512    fn apply_knowledge_distillation(
513        &mut self,
514        teacher_model: &PretrainedModel,
515        x: &ArrayView2<'_, Float>,
516        y: &Option<&ArrayView1<'_, Float>>,
517        temperature: f64,
518        distillation_weight: f64,
519        task_weight: f64,
520    ) -> SklResult<Box<dyn PipelinePredictor>> {
521        if let Some(mut student_estimator) = self.target_estimator.take() {
522            // Get teacher predictions
523            let teacher_predictions = teacher_model.model.predict(x)?;
524
525            // Apply temperature scaling (softmax with temperature)
526            let soft_targets = self.apply_temperature_scaling(&teacher_predictions, temperature);
527
528            // Train student with both hard and soft targets
529            // In a real implementation, this would involve a custom loss function
530            if let Some(y_ref) = y.as_ref() {
531                student_estimator.fit(x, y_ref)?;
532            } else {
533                return Err(SklearsError::InvalidInput(
534                    "Target y is required for fitting student model".to_string(),
535                ));
536            }
537
538            Ok(student_estimator)
539        } else {
540            Err(SklearsError::InvalidInput(
541                "Student estimator required for knowledge distillation".to_string(),
542            ))
543        }
544    }
545
546    /// Apply temperature scaling for knowledge distillation
547    fn apply_temperature_scaling(
548        &self,
549        predictions: &Array1<f64>,
550        temperature: f64,
551    ) -> Array1<f64> {
552        if temperature == 1.0 {
553            return predictions.clone();
554        }
555
556        // Apply temperature scaling: softmax(logits / T)
557        let scaled_logits = predictions.mapv(|x| x / temperature);
558        let max_logit = scaled_logits.fold(f64::NEG_INFINITY, |a, &b| a.max(b));
559        let exp_logits = scaled_logits.mapv(|x| (x - max_logit).exp());
560        let sum_exp = exp_logits.sum();
561
562        exp_logits.mapv(|x| x / sum_exp)
563    }
564}
565
566impl TransferLearningPipeline<TransferLearningPipelineTrained> {
567    /// Predict using the adapted model
568    pub fn predict(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array1<f64>> {
569        self.state.adapted_model.predict(x)
570    }
571
572    /// Get the adaptation metrics
573    #[must_use]
574    pub fn adaptation_metrics(&self) -> &HashMap<String, f64> {
575        &self.state.adaptation_metrics
576    }
577
578    /// Get the feature extractor
579    #[must_use]
580    pub fn feature_extractor(&self) -> Option<&PretrainedModel> {
581        self.state.feature_extractor.as_ref()
582    }
583
584    /// Extract features using the pretrained model
585    pub fn extract_features(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array2<f64>> {
586        if let Some(ref extractor) = self.state.feature_extractor {
587            extractor.extract_features(x)
588        } else {
589            Err(SklearsError::InvalidInput(
590                "No feature extractor available".to_string(),
591            ))
592        }
593    }
594
595    /// Fine-tune on new data
596    pub fn fine_tune(
597        &mut self,
598        x: &ArrayView2<'_, Float>,
599        y: &ArrayView1<'_, Float>,
600        learning_rate: f64,
601        epochs: usize,
602    ) -> SklResult<()> {
603        // Simulate fine-tuning the adapted model
604        for _ in 0..epochs {
605            self.state.adapted_model.fit(x, y)?;
606        }
607        Ok(())
608    }
609}
610
611/// Wrapper for feature extraction functionality
612#[derive(Debug)]
613pub struct FeatureExtractorWrapper {
614    extractor: PretrainedModel,
615}
616
617impl FeatureExtractorWrapper {
618    #[must_use]
619    pub fn new(extractor: &PretrainedModel) -> Self {
620        // Clone the essential parts of the PretrainedModel
621        Self {
622            extractor: PretrainedModel {
623                model: Box::new(MockExtractor::new()), // Placeholder
624                frozen_layers: extractor.frozen_layers.clone(),
625                trainable_layers: extractor.trainable_layers.clone(),
626                metadata: extractor.metadata.clone(),
627            },
628        }
629    }
630}
631
632impl PipelinePredictor for FeatureExtractorWrapper {
633    fn fit(&mut self, _x: &ArrayView2<'_, Float>, _y: &ArrayView1<'_, Float>) -> SklResult<()> {
634        // Feature extractors don't need fitting
635        Ok(())
636    }
637
638    fn predict(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array1<f64>> {
639        let features = self.extractor.extract_features(x)?;
640        // Return first column as prediction (placeholder)
641        if features.ncols() > 0 {
642            Ok(features.column(0).to_owned())
643        } else {
644            Ok(Array1::zeros(x.nrows()))
645        }
646    }
647
648    fn clone_predictor(&self) -> Box<dyn PipelinePredictor> {
649        Box::new(FeatureExtractorWrapper::new(&self.extractor))
650    }
651}
652
653/// Mock feature extractor for testing
654#[derive(Debug)]
655pub struct MockExtractor {}
656
657impl Default for MockExtractor {
658    fn default() -> Self {
659        Self::new()
660    }
661}
662
663impl MockExtractor {
664    #[must_use]
665    pub fn new() -> Self {
666        Self {}
667    }
668}
669
670impl PipelinePredictor for MockExtractor {
671    fn fit(&mut self, _x: &ArrayView2<'_, Float>, _y: &ArrayView1<'_, Float>) -> SklResult<()> {
672        Ok(())
673    }
674
675    fn predict(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array1<f64>> {
676        Ok(Array1::zeros(x.nrows()))
677    }
678
679    fn clone_predictor(&self) -> Box<dyn PipelinePredictor> {
680        Box::new(MockExtractor::new())
681    }
682}
683
684/// Domain adaptation utilities
685pub mod domain_adaptation {
686    use super::{
687        Array1, Array2, ArrayView1, ArrayView2, Axis, Estimator, Fit, Float, FloatBounds, HashMap,
688        PipelinePredictor, PipelineStep, Predict, SklResult, SklearsError, Untrained,
689    };
690
691    /// Domain adaptation strategy
692    #[derive(Debug, Clone)]
693    pub enum DomainAdaptationStrategy {
694        /// Maximum Mean Discrepancy (MMD) alignment
695        MMD { bandwidth: f64, lambda: f64 },
696        /// Adversarial domain adaptation
697        Adversarial {
698            discriminator_lr: f64,
699            generator_lr: f64,
700            adversarial_weight: f64,
701        },
702        /// Correlation alignment (CORAL)
703        CORAL { lambda: f64 },
704        /// Deep domain confusion
705        DeepDomainConfusion {
706            adaptation_factor: f64,
707            confusion_weight: f64,
708        },
709    }
710
711    /// Domain adaptation pipeline
712    #[derive(Debug)]
713    pub struct DomainAdaptationPipeline<S = Untrained> {
714        state: S,
715        source_data: Option<(Array2<f64>, Array1<f64>)>,
716        adaptation_strategy: DomainAdaptationStrategy,
717        base_estimator: Option<Box<dyn PipelinePredictor>>,
718    }
719
720    /// Trained state for `DomainAdaptationPipeline`
721    #[derive(Debug)]
722    pub struct DomainAdaptationPipelineTrained {
723        adapted_estimator: Box<dyn PipelinePredictor>,
724        domain_alignment_metrics: HashMap<String, f64>,
725        adaptation_strategy: DomainAdaptationStrategy,
726        n_features_in: usize,
727        feature_names_in: Option<Vec<String>>,
728    }
729
730    impl DomainAdaptationPipeline<Untrained> {
731        /// Create a new domain adaptation pipeline
732        #[must_use]
733        pub fn new(
734            source_data: (Array2<f64>, Array1<f64>),
735            adaptation_strategy: DomainAdaptationStrategy,
736            base_estimator: Box<dyn PipelinePredictor>,
737        ) -> Self {
738            Self {
739                state: Untrained,
740                source_data: Some(source_data),
741                adaptation_strategy,
742                base_estimator: Some(base_estimator),
743            }
744        }
745
746        /// Create MMD-based domain adaptation
747        #[must_use]
748        pub fn mmd(
749            source_data: (Array2<f64>, Array1<f64>),
750            base_estimator: Box<dyn PipelinePredictor>,
751            bandwidth: f64,
752            lambda: f64,
753        ) -> Self {
754            Self::new(
755                source_data,
756                DomainAdaptationStrategy::MMD { bandwidth, lambda },
757                base_estimator,
758            )
759        }
760
761        /// Create adversarial domain adaptation
762        #[must_use]
763        pub fn adversarial(
764            source_data: (Array2<f64>, Array1<f64>),
765            base_estimator: Box<dyn PipelinePredictor>,
766            discriminator_lr: f64,
767            generator_lr: f64,
768            adversarial_weight: f64,
769        ) -> Self {
770            Self::new(
771                source_data,
772                DomainAdaptationStrategy::Adversarial {
773                    discriminator_lr,
774                    generator_lr,
775                    adversarial_weight,
776                },
777                base_estimator,
778            )
779        }
780    }
781
782    impl Estimator for DomainAdaptationPipeline<Untrained> {
783        type Config = ();
784        type Error = SklearsError;
785        type Float = Float;
786
787        fn config(&self) -> &Self::Config {
788            &()
789        }
790    }
791
792    impl Fit<ArrayView2<'_, Float>, Option<&ArrayView1<'_, Float>>>
793        for DomainAdaptationPipeline<Untrained>
794    {
795        type Fitted = DomainAdaptationPipeline<DomainAdaptationPipelineTrained>;
796
797        fn fit(
798            mut self,
799            target_x: &ArrayView2<'_, Float>,
800            target_y: &Option<&ArrayView1<'_, Float>>,
801        ) -> SklResult<Self::Fitted> {
802            let (source_x, source_y) = self
803                .source_data
804                .as_ref()
805                .ok_or_else(|| SklearsError::InvalidInput("No source data provided".to_string()))?;
806
807            let mut base_estimator = self.base_estimator.take().ok_or_else(|| {
808                SklearsError::InvalidInput("No base estimator provided".to_string())
809            })?;
810
811            let target_x_f64 = target_x.mapv(|v| v);
812
813            // Apply domain adaptation strategy
814            let alignment_metrics = match &self.adaptation_strategy {
815                DomainAdaptationStrategy::MMD { bandwidth, lambda } => {
816                    self.apply_mmd_adaptation(source_x, &target_x_f64, *bandwidth, *lambda)?
817                }
818                DomainAdaptationStrategy::Adversarial {
819                    discriminator_lr,
820                    generator_lr,
821                    adversarial_weight,
822                } => self.apply_adversarial_adaptation(
823                    source_x,
824                    &target_x_f64,
825                    *discriminator_lr,
826                    *generator_lr,
827                    *adversarial_weight,
828                )?,
829                DomainAdaptationStrategy::CORAL { lambda } => {
830                    self.apply_coral_adaptation(source_x, &target_x_f64, *lambda)?
831                }
832                DomainAdaptationStrategy::DeepDomainConfusion {
833                    adaptation_factor,
834                    confusion_weight,
835                } => self.apply_deep_domain_confusion(
836                    source_x,
837                    &target_x_f64,
838                    *adaptation_factor,
839                    *confusion_weight,
840                )?,
841            };
842
843            // Train the base estimator on source data
844            let source_x_float = source_x.mapv(|v| v as Float);
845            let source_y_float = source_y.mapv(|v| v as Float);
846            base_estimator.fit(&source_x_float.view(), &source_y_float.view())?;
847
848            Ok(DomainAdaptationPipeline {
849                state: DomainAdaptationPipelineTrained {
850                    adapted_estimator: base_estimator,
851                    domain_alignment_metrics: alignment_metrics,
852                    adaptation_strategy: self.adaptation_strategy,
853                    n_features_in: target_x.ncols(),
854                    feature_names_in: None,
855                },
856                source_data: None,
857                adaptation_strategy: DomainAdaptationStrategy::MMD {
858                    bandwidth: 1.0,
859                    lambda: 1.0,
860                },
861                base_estimator: None,
862            })
863        }
864    }
865
866    impl DomainAdaptationPipeline<Untrained> {
867        /// Apply MMD-based domain adaptation
868        fn apply_mmd_adaptation(
869            &self,
870            source_x: &Array2<f64>,
871            target_x: &Array2<f64>,
872            bandwidth: f64,
873            lambda: f64,
874        ) -> SklResult<HashMap<String, f64>> {
875            let mmd_distance = self.compute_mmd_distance(source_x, target_x, bandwidth);
876
877            let mut metrics = HashMap::new();
878            metrics.insert("mmd_distance".to_string(), mmd_distance);
879            metrics.insert("bandwidth".to_string(), bandwidth);
880            metrics.insert("lambda".to_string(), lambda);
881
882            Ok(metrics)
883        }
884
885        /// Apply adversarial domain adaptation
886        fn apply_adversarial_adaptation(
887            &self,
888            source_x: &Array2<f64>,
889            target_x: &Array2<f64>,
890            discriminator_lr: f64,
891            generator_lr: f64,
892            adversarial_weight: f64,
893        ) -> SklResult<HashMap<String, f64>> {
894            // Simulate adversarial training metrics
895            let mut metrics = HashMap::new();
896            metrics.insert("discriminator_accuracy".to_string(), 0.6); // Placeholder
897            metrics.insert("generator_loss".to_string(), 1.2); // Placeholder
898            metrics.insert("adversarial_weight".to_string(), adversarial_weight);
899
900            Ok(metrics)
901        }
902
903        /// Apply CORAL adaptation
904        fn apply_coral_adaptation(
905            &self,
906            source_x: &Array2<f64>,
907            target_x: &Array2<f64>,
908            lambda: f64,
909        ) -> SklResult<HashMap<String, f64>> {
910            let coral_loss = self.compute_coral_loss(source_x, target_x);
911
912            let mut metrics = HashMap::new();
913            metrics.insert("coral_loss".to_string(), coral_loss);
914            metrics.insert("lambda".to_string(), lambda);
915
916            Ok(metrics)
917        }
918
919        /// Apply deep domain confusion
920        fn apply_deep_domain_confusion(
921            &self,
922            source_x: &Array2<f64>,
923            target_x: &Array2<f64>,
924            adaptation_factor: f64,
925            confusion_weight: f64,
926        ) -> SklResult<HashMap<String, f64>> {
927            let confusion_loss = self.compute_confusion_loss(source_x, target_x);
928
929            let mut metrics = HashMap::new();
930            metrics.insert("confusion_loss".to_string(), confusion_loss);
931            metrics.insert("adaptation_factor".to_string(), adaptation_factor);
932            metrics.insert("confusion_weight".to_string(), confusion_weight);
933
934            Ok(metrics)
935        }
936
937        /// Compute MMD distance between domains
938        fn compute_mmd_distance(
939            &self,
940            source_x: &Array2<f64>,
941            target_x: &Array2<f64>,
942            bandwidth: f64,
943        ) -> f64 {
944            // Simplified MMD computation using mean differences
945            let source_mean = source_x.mean_axis(Axis(0)).unwrap();
946            let target_mean = target_x.mean_axis(Axis(0)).unwrap();
947            let diff = &source_mean - &target_mean;
948            (diff.mapv(|x| x * x).sum() / bandwidth).sqrt()
949        }
950
951        /// Compute CORAL loss (correlation alignment)
952        fn compute_coral_loss(&self, source_x: &Array2<f64>, target_x: &Array2<f64>) -> f64 {
953            // Simplified CORAL loss using covariance differences
954            if source_x.ncols() != target_x.ncols() {
955                return f64::INFINITY;
956            }
957
958            // Compute covariance matrices (simplified)
959            let source_mean = source_x.mean_axis(Axis(0)).unwrap();
960            let target_mean = target_x.mean_axis(Axis(0)).unwrap();
961
962            // For simplicity, just compute variance differences
963            let source_var = source_x.var_axis(Axis(0), 1.0);
964            let target_var = target_x.var_axis(Axis(0), 1.0);
965
966            (&source_var - &target_var).mapv(|x| x * x).sum()
967        }
968
969        /// Compute confusion loss for deep domain confusion
970        fn compute_confusion_loss(&self, source_x: &Array2<f64>, target_x: &Array2<f64>) -> f64 {
971            // Simplified confusion loss using feature distribution differences
972            let source_std = source_x.std_axis(Axis(0), 1.0);
973            let target_std = target_x.std_axis(Axis(0), 1.0);
974            (&source_std - &target_std).mapv(|x| x * x).sum()
975        }
976    }
977
978    impl DomainAdaptationPipeline<DomainAdaptationPipelineTrained> {
979        /// Predict on target domain data
980        pub fn predict(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array1<f64>> {
981            self.state.adapted_estimator.predict(x)
982        }
983
984        /// Get domain alignment metrics
985        #[must_use]
986        pub fn alignment_metrics(&self) -> &HashMap<String, f64> {
987            &self.state.domain_alignment_metrics
988        }
989
990        /// Measure domain discrepancy
991        pub fn measure_domain_discrepancy(
992            &self,
993            source_x: &ArrayView2<'_, Float>,
994            target_x: &ArrayView2<'_, Float>,
995        ) -> SklResult<f64> {
996            let source_x_f64 = source_x.mapv(|v| v);
997            let target_x_f64 = target_x.mapv(|v| v);
998
999            match &self.state.adaptation_strategy {
1000                DomainAdaptationStrategy::MMD { bandwidth, .. } => {
1001                    Ok(self.compute_mmd_distance(&source_x_f64, &target_x_f64, *bandwidth))
1002                }
1003                DomainAdaptationStrategy::CORAL { .. } => {
1004                    Ok(self.compute_coral_loss(&source_x_f64, &target_x_f64))
1005                }
1006                _ => Ok(0.0), // Placeholder for other strategies
1007            }
1008        }
1009
1010        /// Compute MMD distance between domains
1011        fn compute_mmd_distance(
1012            &self,
1013            source_x: &Array2<f64>,
1014            target_x: &Array2<f64>,
1015            bandwidth: f64,
1016        ) -> f64 {
1017            let source_mean = source_x.mean_axis(Axis(0)).unwrap();
1018            let target_mean = target_x.mean_axis(Axis(0)).unwrap();
1019            let diff = &source_mean - &target_mean;
1020            (diff.mapv(|x| x * x).sum() / bandwidth).sqrt()
1021        }
1022
1023        /// Compute CORAL loss
1024        fn compute_coral_loss(&self, source_x: &Array2<f64>, target_x: &Array2<f64>) -> f64 {
1025            if source_x.ncols() != target_x.ncols() {
1026                return f64::INFINITY;
1027            }
1028
1029            let source_var = source_x.var_axis(Axis(0), 1.0);
1030            let target_var = target_x.var_axis(Axis(0), 1.0);
1031
1032            (&source_var - &target_var).mapv(|x| x * x).sum()
1033        }
1034    }
1035}
1036
1037#[allow(non_snake_case)]
1038#[cfg(test)]
1039mod tests {
1040    use super::*;
1041    use crate::MockPredictor;
1042    use scirs2_core::ndarray::array;
1043
1044    #[test]
1045    fn test_pretrained_model() {
1046        let base_model = Box::new(MockPredictor::new());
1047        let pretrained = PretrainedModel::new(base_model)
1048            .with_frozen_layers(vec!["layer1".to_string(), "layer2".to_string()])
1049            .with_trainable_layers(vec!["layer3".to_string()]);
1050
1051        assert_eq!(pretrained.frozen_layers.len(), 2);
1052        assert_eq!(pretrained.trainable_layers.len(), 1);
1053    }
1054
1055    #[test]
1056    fn test_learning_rate_schedule() {
1057        let schedule = LearningRateSchedule::ExponentialDecay {
1058            initial_rate: 0.1,
1059            decay_rate: 0.9,
1060            decay_steps: 10,
1061        };
1062
1063        let rate_0 = schedule.get_rate(0);
1064        let rate_10 = schedule.get_rate(10);
1065
1066        assert_eq!(rate_0, 0.1);
1067        assert!(rate_10 < rate_0);
1068    }
1069
1070    #[test]
1071    fn test_transfer_learning_pipeline() {
1072        let x = array![[1.0, 2.0], [3.0, 4.0]];
1073        let y = array![1.0, 0.0];
1074
1075        let pretrained_model = PretrainedModel::new(Box::new(MockPredictor::new()));
1076        let target_estimator = Box::new(MockPredictor::new());
1077
1078        let pipeline =
1079            TransferLearningPipeline::fine_tuning(pretrained_model, target_estimator, 0.001, 5);
1080
1081        let fitted_pipeline = pipeline.fit(&x.view(), &Some(&y.view())).unwrap();
1082        let predictions = fitted_pipeline.predict(&x.view()).unwrap();
1083
1084        assert_eq!(predictions.len(), x.nrows());
1085    }
1086
1087    #[test]
1088    fn test_domain_adaptation_pipeline() {
1089        use domain_adaptation::*;
1090
1091        let source_x = array![[1.0, 2.0], [3.0, 4.0]];
1092        let source_y = array![1.0, 0.0];
1093        let target_x = array![[2.0, 3.0], [4.0, 5.0]];
1094
1095        let base_estimator = Box::new(MockPredictor::new());
1096        let pipeline =
1097            DomainAdaptationPipeline::mmd((source_x, source_y), base_estimator, 1.0, 0.1);
1098
1099        let fitted_pipeline = pipeline.fit(&target_x.view(), &None).unwrap();
1100        let predictions = fitted_pipeline.predict(&target_x.view()).unwrap();
1101
1102        assert_eq!(predictions.len(), target_x.nrows());
1103        assert!(fitted_pipeline
1104            .alignment_metrics()
1105            .contains_key("mmd_distance"));
1106    }
1107}