sklears_compose/
performance_profiler.rs

1//! Performance Profiling Utilities for Pipeline Optimization
2//!
3//! This module provides comprehensive performance profiling tools for machine learning
4//! pipelines, including execution timing, memory usage tracking, bottleneck detection,
5//! and optimization recommendations.
6
7use chrono::{DateTime, Utc};
8use scirs2_core::random::{thread_rng, Rng};
9use serde::{Deserialize, Serialize};
10use std::collections::{BTreeMap, HashMap};
11use std::sync::{Arc, Mutex};
12use std::thread;
13use std::time::Duration;
14
15/// Main performance profiler for pipeline execution
16#[derive(Debug, Clone)]
17pub struct PerformanceProfiler {
18    config: ProfilerConfig,
19    active_sessions: Arc<Mutex<HashMap<String, ProfileSession>>>,
20    completed_sessions: Arc<Mutex<Vec<ProfileSession>>>,
21}
22
23/// Configuration for the performance profiler
24#[derive(Debug, Clone, Serialize, Deserialize)]
25pub struct ProfilerConfig {
26    /// Enable detailed timing measurements
27    pub enable_timing: bool,
28    /// Enable memory usage tracking
29    pub enable_memory_tracking: bool,
30    /// Enable CPU usage monitoring
31    pub enable_cpu_monitoring: bool,
32    /// Enable GPU usage monitoring if available
33    pub enable_gpu_monitoring: bool,
34    /// Sample interval for continuous monitoring (ms)
35    pub sample_interval_ms: u64,
36    /// Maximum number of profiling sessions to keep
37    pub max_sessions: usize,
38    /// Enable automatic bottleneck detection
39    pub enable_bottleneck_detection: bool,
40    /// Enable optimization recommendations
41    pub enable_optimization_hints: bool,
42}
43
44impl Default for ProfilerConfig {
45    fn default() -> Self {
46        Self {
47            enable_timing: true,
48            enable_memory_tracking: true,
49            enable_cpu_monitoring: true,
50            enable_gpu_monitoring: false,
51            sample_interval_ms: 100,
52            max_sessions: 100,
53            enable_bottleneck_detection: true,
54            enable_optimization_hints: true,
55        }
56    }
57}
58
59/// Individual profiling session for a pipeline execution
60#[derive(Debug, Clone, Serialize, Deserialize)]
61pub struct ProfileSession {
62    pub session_id: String,
63    pub pipeline_name: String,
64    pub start_time: DateTime<Utc>,
65    pub end_time: Option<DateTime<Utc>>,
66    pub stages: BTreeMap<String, StageProfile>,
67    pub overall_metrics: OverallMetrics,
68    pub bottlenecks: Vec<Bottleneck>,
69    pub optimization_hints: Vec<OptimizationHint>,
70}
71
72/// Performance profile for individual pipeline stage
73#[derive(Debug, Clone, Serialize, Deserialize)]
74pub struct StageProfile {
75    pub stage_name: String,
76    pub component_type: String,
77    pub start_time: DateTime<Utc>,
78    pub end_time: Option<DateTime<Utc>>,
79    pub execution_time: Duration,
80    pub memory_samples: Vec<MemorySample>,
81    pub cpu_samples: Vec<CpuSample>,
82    pub gpu_samples: Vec<GpuSample>,
83    pub input_shape: Option<(usize, usize)>,
84    pub output_shape: Option<(usize, usize)>,
85    pub parameters: HashMap<String, String>,
86    pub error_count: u32,
87    pub warning_count: u32,
88}
89
90/// Overall pipeline execution metrics
91#[derive(Debug, Clone, Serialize, Deserialize)]
92pub struct OverallMetrics {
93    pub total_execution_time: Duration,
94    pub peak_memory_usage_mb: f64,
95    pub average_cpu_usage: f64,
96    pub average_gpu_usage: f64,
97    pub total_data_processed_mb: f64,
98    pub throughput_samples_per_second: f64,
99    pub cache_hit_ratio: f64,
100    pub parallel_efficiency: f64,
101    pub pipeline_stages: usize,
102    pub data_transformations: usize,
103}
104
105/// Memory usage sample
106#[derive(Debug, Clone, Serialize, Deserialize)]
107pub struct MemorySample {
108    pub timestamp: DateTime<Utc>,
109    pub heap_usage_mb: f64,
110    pub stack_usage_mb: f64,
111    pub gpu_memory_mb: f64,
112    pub virtual_memory_mb: f64,
113}
114
115/// CPU usage sample
116#[derive(Debug, Clone, Serialize, Deserialize)]
117pub struct CpuSample {
118    pub timestamp: DateTime<Utc>,
119    pub overall_usage: f64,
120    pub user_usage: f64,
121    pub system_usage: f64,
122    pub core_usage: Vec<f64>,
123    pub thread_count: u32,
124}
125
126/// GPU usage sample
127#[derive(Debug, Clone, Serialize, Deserialize)]
128pub struct GpuSample {
129    pub timestamp: DateTime<Utc>,
130    pub gpu_utilization: f64,
131    pub memory_utilization: f64,
132    pub temperature: f64,
133    pub power_consumption: f64,
134}
135
136/// Performance bottleneck identification
137#[derive(Debug, Clone, Serialize, Deserialize)]
138pub struct Bottleneck {
139    pub bottleneck_type: BottleneckType,
140    pub affected_stage: String,
141    pub severity: BottleneckSeverity,
142    pub impact_factor: f64,
143    pub description: String,
144    pub metrics: BottleneckMetrics,
145}
146
147/// Types of performance bottlenecks
148#[derive(Debug, Clone, Serialize, Deserialize)]
149pub enum BottleneckType {
150    /// MemoryConstraint
151    MemoryConstraint,
152    /// ComputationalBottleneck
153    ComputationalBottleneck,
154    /// IOBottleneck
155    IOBottleneck,
156    /// CacheInefficiency
157    CacheInefficiency,
158    /// SynchronizationOverhead
159    SynchronizationOverhead,
160    /// DataMovementOverhead
161    DataMovementOverhead,
162    /// AlgorithmicComplexity
163    AlgorithmicComplexity,
164    /// ConfigurationSuboptimal
165    ConfigurationSuboptimal,
166}
167
168/// Bottleneck severity levels
169#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, PartialOrd, Ord, Hash)]
170pub enum BottleneckSeverity {
171    /// Low
172    Low,
173    /// Medium
174    Medium,
175    /// High
176    High,
177    /// Critical
178    Critical,
179}
180
181/// Specific metrics for bottleneck analysis
182#[derive(Debug, Clone, Serialize, Deserialize)]
183pub struct BottleneckMetrics {
184    pub time_spent_waiting_ms: f64,
185    pub resource_utilization: f64,
186    pub efficiency_score: f64,
187    pub improvement_potential: f64,
188}
189
190/// Optimization suggestions
191#[derive(Debug, Clone, Serialize, Deserialize)]
192pub struct OptimizationHint {
193    pub category: OptimizationCategory,
194    pub priority: OptimizationPriority,
195    pub title: String,
196    pub description: String,
197    pub expected_improvement: f64,
198    pub implementation_difficulty: ImplementationDifficulty,
199    pub code_examples: Vec<String>,
200}
201
202/// Categories of optimizations
203#[derive(Debug, Clone, Serialize, Deserialize)]
204pub enum OptimizationCategory {
205    /// AlgorithmSelection
206    AlgorithmSelection,
207    /// ParameterTuning
208    ParameterTuning,
209    /// MemoryOptimization
210    MemoryOptimization,
211    /// ParallelProcessing
212    ParallelProcessing,
213    /// CacheOptimization
214    CacheOptimization,
215    /// DataStructureOptimization
216    DataStructureOptimization,
217    /// HardwareUtilization
218    HardwareUtilization,
219    /// PipelineRestructuring
220    PipelineRestructuring,
221}
222
223/// Priority levels for optimizations
224#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, PartialOrd, Ord)]
225pub enum OptimizationPriority {
226    /// Low
227    Low,
228    /// Medium
229    Medium,
230    /// High
231    High,
232    /// Critical
233    Critical,
234}
235
236/// Implementation difficulty assessment
237#[derive(Debug, Clone, Serialize, Deserialize)]
238pub enum ImplementationDifficulty {
239    /// Trivial
240    Trivial, // Just configuration changes
241    /// Easy
242    Easy, // Simple code modifications
243    /// Moderate
244    Moderate, // Significant code changes
245    /// Hard
246    Hard, // Major restructuring
247    /// Expert
248    Expert, // Requires deep expertise
249}
250
251impl PerformanceProfiler {
252    /// Create a new performance profiler
253    #[must_use]
254    pub fn new(config: ProfilerConfig) -> Self {
255        Self {
256            config,
257            active_sessions: Arc::new(Mutex::new(HashMap::new())),
258            completed_sessions: Arc::new(Mutex::new(Vec::new())),
259        }
260    }
261
262    /// Create profiler with default configuration
263    #[must_use]
264    pub fn default() -> Self {
265        Self::new(ProfilerConfig::default())
266    }
267
268    /// Start a new profiling session
269    #[must_use]
270    pub fn start_session(&self, pipeline_name: &str) -> String {
271        let session_id = format!("profile_{}", uuid::Uuid::new_v4());
272        let session = ProfileSession {
273            session_id: session_id.clone(),
274            pipeline_name: pipeline_name.to_string(),
275            start_time: Utc::now(),
276            end_time: None,
277            stages: BTreeMap::new(),
278            overall_metrics: OverallMetrics::default(),
279            bottlenecks: Vec::new(),
280            optimization_hints: Vec::new(),
281        };
282
283        {
284            let mut active = self.active_sessions.lock().unwrap();
285            active.insert(session_id.clone(), session);
286        }
287
288        // Start background monitoring if enabled
289        if self.config.enable_cpu_monitoring || self.config.enable_memory_tracking {
290            self.start_background_monitoring(&session_id);
291        }
292
293        session_id
294    }
295
296    /// Start profiling a specific pipeline stage
297    pub fn start_stage(
298        &self,
299        session_id: &str,
300        stage_name: &str,
301        component_type: &str,
302    ) -> Result<(), String> {
303        let mut active = self.active_sessions.lock().unwrap();
304        if let Some(session) = active.get_mut(session_id) {
305            let stage_profile = StageProfile {
306                stage_name: stage_name.to_string(),
307                component_type: component_type.to_string(),
308                start_time: Utc::now(),
309                end_time: None,
310                execution_time: Duration::from_secs(0),
311                memory_samples: Vec::new(),
312                cpu_samples: Vec::new(),
313                gpu_samples: Vec::new(),
314                input_shape: None,
315                output_shape: None,
316                parameters: HashMap::new(),
317                error_count: 0,
318                warning_count: 0,
319            };
320            session.stages.insert(stage_name.to_string(), stage_profile);
321            Ok(())
322        } else {
323            Err(format!("Session {session_id} not found"))
324        }
325    }
326
327    /// End profiling a specific pipeline stage
328    pub fn end_stage(&self, session_id: &str, stage_name: &str) -> Result<Duration, String> {
329        let mut active = self.active_sessions.lock().unwrap();
330        if let Some(session) = active.get_mut(session_id) {
331            if let Some(stage) = session.stages.get_mut(stage_name) {
332                let end_time = Utc::now();
333                stage.end_time = Some(end_time);
334                stage.execution_time = end_time
335                    .signed_duration_since(stage.start_time)
336                    .to_std()
337                    .unwrap_or(Duration::from_secs(0));
338                Ok(stage.execution_time)
339            } else {
340                Err(format!(
341                    "Stage {stage_name} not found in session {session_id}"
342                ))
343            }
344        } else {
345            Err(format!("Session {session_id} not found"))
346        }
347    }
348
349    /// Record stage parameters for analysis
350    pub fn record_stage_parameters(
351        &self,
352        session_id: &str,
353        stage_name: &str,
354        parameters: HashMap<String, String>,
355    ) -> Result<(), String> {
356        let mut active = self.active_sessions.lock().unwrap();
357        if let Some(session) = active.get_mut(session_id) {
358            if let Some(stage) = session.stages.get_mut(stage_name) {
359                stage.parameters = parameters;
360                Ok(())
361            } else {
362                Err(format!("Stage {stage_name} not found"))
363            }
364        } else {
365            Err(format!("Session {session_id} not found"))
366        }
367    }
368
369    /// Record data shapes for performance analysis
370    pub fn record_data_shapes(
371        &self,
372        session_id: &str,
373        stage_name: &str,
374        input_shape: Option<(usize, usize)>,
375        output_shape: Option<(usize, usize)>,
376    ) -> Result<(), String> {
377        let mut active = self.active_sessions.lock().unwrap();
378        if let Some(session) = active.get_mut(session_id) {
379            if let Some(stage) = session.stages.get_mut(stage_name) {
380                stage.input_shape = input_shape;
381                stage.output_shape = output_shape;
382                Ok(())
383            } else {
384                Err(format!("Stage {stage_name} not found"))
385            }
386        } else {
387            Err(format!("Session {session_id} not found"))
388        }
389    }
390
391    /// End profiling session and generate analysis
392    pub fn end_session(&self, session_id: &str) -> Result<ProfileSession, String> {
393        let mut session = {
394            let mut active = self.active_sessions.lock().unwrap();
395            active
396                .remove(session_id)
397                .ok_or_else(|| format!("Session {session_id} not found"))?
398        };
399
400        session.end_time = Some(Utc::now());
401
402        // Calculate overall metrics
403        session.overall_metrics = self.calculate_overall_metrics(&session);
404
405        // Detect bottlenecks
406        if self.config.enable_bottleneck_detection {
407            session.bottlenecks = self.detect_bottlenecks(&session);
408        }
409
410        // Generate optimization hints
411        if self.config.enable_optimization_hints {
412            session.optimization_hints = self.generate_optimization_hints(&session);
413        }
414
415        // Store completed session
416        {
417            let mut completed = self.completed_sessions.lock().unwrap();
418            completed.push(session.clone());
419
420            // Maintain session limit
421            while completed.len() > self.config.max_sessions {
422                completed.remove(0);
423            }
424        }
425
426        Ok(session)
427    }
428
429    /// Start background monitoring for system resources
430    fn start_background_monitoring(&self, session_id: &str) {
431        let session_id = session_id.to_string();
432        let active_sessions = Arc::clone(&self.active_sessions);
433        let config = self.config.clone();
434
435        thread::spawn(move || {
436            let sample_interval = Duration::from_millis(config.sample_interval_ms);
437
438            loop {
439                let should_continue = {
440                    let active = active_sessions.lock().unwrap();
441                    active.contains_key(&session_id)
442                };
443
444                if !should_continue {
445                    break;
446                }
447
448                // Sample system metrics
449                if config.enable_memory_tracking {
450                    let memory_sample = Self::sample_memory();
451                    Self::add_memory_sample(&active_sessions, &session_id, memory_sample);
452                }
453
454                if config.enable_cpu_monitoring {
455                    let cpu_sample = Self::sample_cpu();
456                    Self::add_cpu_sample(&active_sessions, &session_id, cpu_sample);
457                }
458
459                if config.enable_gpu_monitoring {
460                    if let Some(gpu_sample) = Self::sample_gpu() {
461                        Self::add_gpu_sample(&active_sessions, &session_id, gpu_sample);
462                    }
463                }
464
465                thread::sleep(sample_interval);
466            }
467        });
468    }
469
470    /// Sample current memory usage
471    fn sample_memory() -> MemorySample {
472        // In a real implementation, you would use system APIs or libraries like sysinfo
473        // For now, we'll simulate the sampling
474        /// MemorySample
475        MemorySample {
476            timestamp: Utc::now(),
477            heap_usage_mb: Self::get_process_memory(),
478            stack_usage_mb: 5.2, // Simulated
479            gpu_memory_mb: 0.0,  // Would need GPU APIs
480            virtual_memory_mb: Self::get_process_memory() * 1.5,
481        }
482    }
483
484    /// Sample current CPU usage
485    fn sample_cpu() -> CpuSample {
486        // In a real implementation, you would use system APIs
487        /// CpuSample
488        CpuSample {
489            timestamp: Utc::now(),
490            overall_usage: Self::get_cpu_usage(),
491            user_usage: Self::get_cpu_usage() * 0.8,
492            system_usage: Self::get_cpu_usage() * 0.2,
493            core_usage: (0..num_cpus::get())
494                .map(|_| Self::get_cpu_usage())
495                .collect(),
496            thread_count: 8, // Would need proper thread counting
497        }
498    }
499
500    /// Sample GPU usage if available
501    fn sample_gpu() -> Option<GpuSample> {
502        // GPU monitoring would require specialized libraries like NVML
503        None
504    }
505
506    /// Get current process memory usage (simplified)
507    fn get_process_memory() -> f64 {
508        // This is a simplified implementation
509        // In practice, you'd use sysinfo or similar
510        150.0 + (thread_rng().gen::<f64>() * 50.0)
511    }
512
513    /// Get current CPU usage (simplified)
514    fn get_cpu_usage() -> f64 {
515        // Simplified CPU usage simulation
516        30.0 + (thread_rng().gen::<f64>() * 40.0)
517    }
518
519    /// Add memory sample to active session
520    fn add_memory_sample(
521        active_sessions: &Arc<Mutex<HashMap<String, ProfileSession>>>,
522        session_id: &str,
523        sample: MemorySample,
524    ) {
525        let mut active = active_sessions.lock().unwrap();
526        if let Some(session) = active.get_mut(session_id) {
527            // Add to the currently active stage or overall session
528            if let Some((_, stage)) = session.stages.iter_mut().last() {
529                if stage.end_time.is_none() {
530                    stage.memory_samples.push(sample);
531                }
532            }
533        }
534    }
535
536    /// Add CPU sample to active session
537    fn add_cpu_sample(
538        active_sessions: &Arc<Mutex<HashMap<String, ProfileSession>>>,
539        session_id: &str,
540        sample: CpuSample,
541    ) {
542        let mut active = active_sessions.lock().unwrap();
543        if let Some(session) = active.get_mut(session_id) {
544            if let Some((_, stage)) = session.stages.iter_mut().last() {
545                if stage.end_time.is_none() {
546                    stage.cpu_samples.push(sample);
547                }
548            }
549        }
550    }
551
552    /// Add GPU sample to active session
553    fn add_gpu_sample(
554        active_sessions: &Arc<Mutex<HashMap<String, ProfileSession>>>,
555        session_id: &str,
556        sample: GpuSample,
557    ) {
558        let mut active = active_sessions.lock().unwrap();
559        if let Some(session) = active.get_mut(session_id) {
560            if let Some((_, stage)) = session.stages.iter_mut().last() {
561                if stage.end_time.is_none() {
562                    stage.gpu_samples.push(sample);
563                }
564            }
565        }
566    }
567
568    /// Calculate overall pipeline metrics
569    fn calculate_overall_metrics(&self, session: &ProfileSession) -> OverallMetrics {
570        let total_execution_time = session
571            .stages
572            .values()
573            .map(|stage| stage.execution_time)
574            .fold(Duration::from_secs(0), |acc, dur| acc + dur);
575
576        let peak_memory = session
577            .stages
578            .values()
579            .flat_map(|stage| &stage.memory_samples)
580            .map(|sample| sample.heap_usage_mb)
581            .fold(0.0, f64::max);
582
583        let avg_cpu = session
584            .stages
585            .values()
586            .flat_map(|stage| &stage.cpu_samples)
587            .map(|sample| sample.overall_usage)
588            .collect::<Vec<_>>();
589        let average_cpu_usage = if avg_cpu.is_empty() {
590            0.0
591        } else {
592            avg_cpu.iter().sum::<f64>() / avg_cpu.len() as f64
593        };
594
595        /// OverallMetrics
596        OverallMetrics {
597            total_execution_time,
598            peak_memory_usage_mb: peak_memory,
599            average_cpu_usage,
600            average_gpu_usage: 0.0, // Would be calculated from GPU samples
601            total_data_processed_mb: Self::estimate_data_processed(session),
602            throughput_samples_per_second: Self::calculate_throughput(session),
603            cache_hit_ratio: 0.75, // Would be measured from actual cache statistics
604            parallel_efficiency: Self::calculate_parallel_efficiency(session),
605            pipeline_stages: session.stages.len(),
606            data_transformations: Self::count_transformations(session),
607        }
608    }
609
610    /// Estimate total data processed
611    fn estimate_data_processed(session: &ProfileSession) -> f64 {
612        session
613            .stages
614            .values()
615            .filter_map(|stage| stage.input_shape)
616            .map(|(samples, features)| (samples * features * 8) as f64 / (1024.0 * 1024.0)) // 8 bytes per f64
617            .sum()
618    }
619
620    /// Calculate processing throughput
621    fn calculate_throughput(session: &ProfileSession) -> f64 {
622        let total_samples: usize = session
623            .stages
624            .values()
625            .filter_map(|stage| stage.input_shape)
626            .map(|(samples, _)| samples)
627            .sum();
628
629        let total_time_seconds = session.overall_metrics.total_execution_time.as_secs_f64();
630
631        if total_time_seconds > 0.0 {
632            total_samples as f64 / total_time_seconds
633        } else {
634            0.0
635        }
636    }
637
638    /// Calculate parallel execution efficiency
639    fn calculate_parallel_efficiency(session: &ProfileSession) -> f64 {
640        // Simplified calculation based on CPU utilization vs ideal parallelism
641        let ideal_parallel_stages = session.stages.len().min(num_cpus::get());
642        let avg_cpu_per_core = session
643            .stages
644            .values()
645            .flat_map(|stage| &stage.cpu_samples)
646            .map(|sample| sample.overall_usage / sample.core_usage.len() as f64)
647            .collect::<Vec<_>>();
648
649        if avg_cpu_per_core.is_empty() {
650            0.5 // Default moderate efficiency
651        } else {
652            let actual_efficiency =
653                avg_cpu_per_core.iter().sum::<f64>() / avg_cpu_per_core.len() as f64;
654            (actual_efficiency / 100.0).min(1.0)
655        }
656    }
657
658    /// Count data transformation stages
659    fn count_transformations(session: &ProfileSession) -> usize {
660        session
661            .stages
662            .values()
663            .filter(|stage| {
664                stage.component_type.contains("transformer")
665                    || stage.component_type.contains("preprocessor")
666            })
667            .count()
668    }
669
670    /// Detect performance bottlenecks
671    fn detect_bottlenecks(&self, session: &ProfileSession) -> Vec<Bottleneck> {
672        let mut bottlenecks = Vec::new();
673
674        // Detect memory bottlenecks
675        for (stage_name, stage) in &session.stages {
676            if let Some(max_memory) = stage
677                .memory_samples
678                .iter()
679                .map(|s| s.heap_usage_mb)
680                .fold(None, |acc, x| Some(acc.map_or(x, |acc: f64| acc.max(x))))
681            {
682                if max_memory > 1000.0 {
683                    // > 1GB
684                    bottlenecks.push(Bottleneck {
685                        bottleneck_type: BottleneckType::MemoryConstraint,
686                        affected_stage: stage_name.clone(),
687                        severity: if max_memory > 4000.0 {
688                            BottleneckSeverity::Critical
689                        } else {
690                            BottleneckSeverity::High
691                        },
692                        impact_factor: (max_memory / 1000.0).min(5.0),
693                        description: format!(
694                            "High memory usage: {max_memory:.1}MB in stage '{stage_name}'"
695                        ),
696                        metrics: BottleneckMetrics {
697                            time_spent_waiting_ms: 0.0,
698                            resource_utilization: max_memory / 8192.0, // Assume 8GB system
699                            efficiency_score: 1.0 - (max_memory / 8192.0),
700                            improvement_potential: 0.3,
701                        },
702                    });
703                }
704            }
705
706            // Detect computational bottlenecks
707            if stage.execution_time.as_secs_f64() > 10.0 {
708                let severity = if stage.execution_time.as_secs_f64() > 60.0 {
709                    BottleneckSeverity::Critical
710                } else if stage.execution_time.as_secs_f64() > 30.0 {
711                    BottleneckSeverity::High
712                } else {
713                    BottleneckSeverity::Medium
714                };
715
716                bottlenecks.push(Bottleneck {
717                    bottleneck_type: BottleneckType::ComputationalBottleneck,
718                    affected_stage: stage_name.clone(),
719                    severity,
720                    impact_factor: stage.execution_time.as_secs_f64() / 10.0,
721                    description: format!(
722                        "Slow execution: {:.1}s in stage '{}'",
723                        stage.execution_time.as_secs_f64(),
724                        stage_name
725                    ),
726                    metrics: BottleneckMetrics {
727                        time_spent_waiting_ms: stage.execution_time.as_millis() as f64,
728                        resource_utilization: 0.8,
729                        efficiency_score: 1.0 / stage.execution_time.as_secs_f64().max(1.0),
730                        improvement_potential: 0.5,
731                    },
732                });
733            }
734        }
735
736        bottlenecks
737    }
738
739    /// Generate optimization recommendations
740    fn generate_optimization_hints(&self, session: &ProfileSession) -> Vec<OptimizationHint> {
741        let mut hints = Vec::new();
742
743        // Memory optimization hints
744        if session.overall_metrics.peak_memory_usage_mb > 2000.0 {
745            hints.push(OptimizationHint {
746                category: OptimizationCategory::MemoryOptimization,
747                priority: OptimizationPriority::High,
748                title: "High Memory Usage Detected".to_string(),
749                description: format!(
750                    "Pipeline uses {:.1}MB peak memory. Consider chunked processing or streaming.",
751                    session.overall_metrics.peak_memory_usage_mb
752                ),
753                expected_improvement: 0.4,
754                implementation_difficulty: ImplementationDifficulty::Moderate,
755                code_examples: vec![
756                    "Use streaming: pipeline.enable_streaming(chunk_size=1000)".to_string(),
757                    "Enable memory optimization: config.memory_efficient = true".to_string(),
758                ],
759            });
760        }
761
762        // Parallel processing hints
763        if session.overall_metrics.parallel_efficiency < 0.5 {
764            hints.push(OptimizationHint {
765                category: OptimizationCategory::ParallelProcessing,
766                priority: OptimizationPriority::Medium,
767                title: "Low Parallel Efficiency".to_string(),
768                description: format!(
769                    "Parallel efficiency is {:.1}%. Consider enabling more parallelization.",
770                    session.overall_metrics.parallel_efficiency * 100.0
771                ),
772                expected_improvement: 0.6,
773                implementation_difficulty: ImplementationDifficulty::Easy,
774                code_examples: vec![
775                    "Set parallel jobs: pipeline.set_n_jobs(-1)".to_string(),
776                    "Enable SIMD: config.enable_simd = true".to_string(),
777                ],
778            });
779        }
780
781        // Algorithm selection hints
782        for (stage_name, stage) in &session.stages {
783            if stage.execution_time.as_secs_f64() > 30.0
784                && stage.component_type.contains("estimator")
785            {
786                hints.push(OptimizationHint {
787                    category: OptimizationCategory::AlgorithmSelection,
788                    priority: OptimizationPriority::High,
789                    title: format!("Slow Algorithm in {stage_name}"),
790                    description: format!(
791                        "Stage '{}' takes {:.1}s. Consider faster algorithms or approximations.",
792                        stage_name,
793                        stage.execution_time.as_secs_f64()
794                    ),
795                    expected_improvement: 0.7,
796                    implementation_difficulty: ImplementationDifficulty::Moderate,
797                    code_examples: vec![
798                        "Use approximate algorithms where applicable".to_string(),
799                        "Consider ensemble methods for better speed/accuracy trade-off".to_string(),
800                    ],
801                });
802            }
803        }
804
805        hints
806    }
807
808    /// Get all completed sessions
809    #[must_use]
810    pub fn get_completed_sessions(&self) -> Vec<ProfileSession> {
811        let completed = self.completed_sessions.lock().unwrap();
812        completed.clone()
813    }
814
815    /// Generate comprehensive performance report
816    #[must_use]
817    pub fn generate_report(&self, session_id: Option<&str>) -> PerformanceReport {
818        let sessions = if let Some(id) = session_id {
819            let completed = self.completed_sessions.lock().unwrap();
820            completed
821                .iter()
822                .filter(|s| s.session_id == id)
823                .cloned()
824                .collect()
825        } else {
826            self.get_completed_sessions()
827        };
828
829        PerformanceReport::from_sessions(sessions)
830    }
831}
832
833impl Default for OverallMetrics {
834    fn default() -> Self {
835        Self {
836            total_execution_time: Duration::from_secs(0),
837            peak_memory_usage_mb: 0.0,
838            average_cpu_usage: 0.0,
839            average_gpu_usage: 0.0,
840            total_data_processed_mb: 0.0,
841            throughput_samples_per_second: 0.0,
842            cache_hit_ratio: 0.0,
843            parallel_efficiency: 0.0,
844            pipeline_stages: 0,
845            data_transformations: 0,
846        }
847    }
848}
849
850/// Comprehensive performance report
851#[derive(Debug, Clone, Serialize, Deserialize)]
852pub struct PerformanceReport {
853    pub report_id: String,
854    pub generated_at: DateTime<Utc>,
855    pub sessions_analyzed: usize,
856    pub summary_metrics: SummaryMetrics,
857    pub bottleneck_analysis: BottleneckAnalysis,
858    pub optimization_recommendations: Vec<OptimizationHint>,
859    pub trend_analysis: TrendAnalysis,
860    pub comparative_analysis: ComparativeAnalysis,
861}
862
863#[derive(Debug, Clone, Serialize, Deserialize)]
864pub struct SummaryMetrics {
865    pub average_execution_time: Duration,
866    pub fastest_execution_time: Duration,
867    pub slowest_execution_time: Duration,
868    pub average_memory_usage: f64,
869    pub peak_memory_across_sessions: f64,
870    pub average_throughput: f64,
871    pub best_parallel_efficiency: f64,
872}
873
874#[derive(Debug, Clone, Serialize, Deserialize)]
875pub struct BottleneckAnalysis {
876    pub most_common_bottleneck: BottleneckType,
877    pub bottleneck_frequency: HashMap<String, u32>,
878    pub severity_distribution: HashMap<BottleneckSeverity, u32>,
879    pub impact_analysis: HashMap<String, f64>,
880}
881
882#[derive(Debug, Clone, Serialize, Deserialize)]
883pub struct TrendAnalysis {
884    pub performance_trend: TrendDirection,
885    pub memory_usage_trend: TrendDirection,
886    pub throughput_trend: TrendDirection,
887    pub session_performance_scores: Vec<f64>,
888}
889
890#[derive(Debug, Clone, Serialize, Deserialize)]
891pub enum TrendDirection {
892    /// Improving
893    Improving,
894    /// Stable
895    Stable,
896    /// Degrading
897    Degrading,
898    /// InsufficientData
899    InsufficientData,
900}
901
902#[derive(Debug, Clone, Serialize, Deserialize)]
903pub struct ComparativeAnalysis {
904    pub best_performing_session: String,
905    pub worst_performing_session: String,
906    pub performance_variance: f64,
907    pub consistency_score: f64,
908}
909
910impl PerformanceReport {
911    #[must_use]
912    pub fn from_sessions(sessions: Vec<ProfileSession>) -> Self {
913        let report_id = format!("report_{}", uuid::Uuid::new_v4());
914
915        let summary_metrics = Self::calculate_summary_metrics(&sessions);
916        let bottleneck_analysis = Self::analyze_bottlenecks(&sessions);
917        let trend_analysis = Self::analyze_trends(&sessions);
918        let comparative_analysis = Self::comparative_analysis(&sessions);
919
920        // Aggregate optimization recommendations
921        let mut all_hints: Vec<OptimizationHint> = sessions
922            .iter()
923            .flat_map(|s| s.optimization_hints.iter())
924            .cloned()
925            .collect();
926
927        // Deduplicate and prioritize hints
928        all_hints.sort_by(|a, b| b.priority.cmp(&a.priority));
929        all_hints.truncate(10); // Keep top 10 recommendations
930
931        Self {
932            report_id,
933            generated_at: Utc::now(),
934            sessions_analyzed: sessions.len(),
935            summary_metrics,
936            bottleneck_analysis,
937            optimization_recommendations: all_hints,
938            trend_analysis,
939            comparative_analysis,
940        }
941    }
942
943    fn calculate_summary_metrics(sessions: &[ProfileSession]) -> SummaryMetrics {
944        if sessions.is_empty() {
945            return SummaryMetrics {
946                average_execution_time: Duration::from_secs(0),
947                fastest_execution_time: Duration::from_secs(0),
948                slowest_execution_time: Duration::from_secs(0),
949                average_memory_usage: 0.0,
950                peak_memory_across_sessions: 0.0,
951                average_throughput: 0.0,
952                best_parallel_efficiency: 0.0,
953            };
954        }
955
956        let execution_times: Vec<Duration> = sessions
957            .iter()
958            .map(|s| s.overall_metrics.total_execution_time)
959            .collect();
960
961        let average_execution = Duration::from_secs_f64(
962            execution_times
963                .iter()
964                .map(std::time::Duration::as_secs_f64)
965                .sum::<f64>()
966                / sessions.len() as f64,
967        );
968
969        /// SummaryMetrics
970        SummaryMetrics {
971            average_execution_time: average_execution,
972            fastest_execution_time: *execution_times.iter().min().unwrap(),
973            slowest_execution_time: *execution_times.iter().max().unwrap(),
974            average_memory_usage: sessions
975                .iter()
976                .map(|s| s.overall_metrics.peak_memory_usage_mb)
977                .sum::<f64>()
978                / sessions.len() as f64,
979            peak_memory_across_sessions: sessions
980                .iter()
981                .map(|s| s.overall_metrics.peak_memory_usage_mb)
982                .fold(0.0, f64::max),
983            average_throughput: sessions
984                .iter()
985                .map(|s| s.overall_metrics.throughput_samples_per_second)
986                .sum::<f64>()
987                / sessions.len() as f64,
988            best_parallel_efficiency: sessions
989                .iter()
990                .map(|s| s.overall_metrics.parallel_efficiency)
991                .fold(0.0, f64::max),
992        }
993    }
994
995    fn analyze_bottlenecks(sessions: &[ProfileSession]) -> BottleneckAnalysis {
996        let all_bottlenecks: Vec<&Bottleneck> =
997            sessions.iter().flat_map(|s| &s.bottlenecks).collect();
998
999        let mut bottleneck_frequency = HashMap::new();
1000        let mut severity_distribution = HashMap::new();
1001        let mut impact_analysis = HashMap::new();
1002
1003        for bottleneck in &all_bottlenecks {
1004            *bottleneck_frequency
1005                .entry(bottleneck.affected_stage.clone())
1006                .or_insert(0) += 1;
1007            *severity_distribution
1008                .entry(bottleneck.severity.clone())
1009                .or_insert(0) += 1;
1010            *impact_analysis
1011                .entry(bottleneck.affected_stage.clone())
1012                .or_insert(0.0) += bottleneck.impact_factor;
1013        }
1014
1015        let most_common_bottleneck = all_bottlenecks
1016            .iter()
1017            .fold(HashMap::new(), |mut acc, b| {
1018                *acc.entry(format!("{:?}", b.bottleneck_type)).or_insert(0) += 1;
1019                acc
1020            })
1021            .into_iter()
1022            .max_by_key(|(_, count)| *count)
1023            .map_or(
1024                BottleneckType::ComputationalBottleneck,
1025                |(bottleneck_type, _)| match bottleneck_type.as_str() {
1026                    "MemoryConstraint" => BottleneckType::MemoryConstraint,
1027                    "ComputationalBottleneck" => BottleneckType::ComputationalBottleneck,
1028                    _ => BottleneckType::ComputationalBottleneck,
1029                },
1030            );
1031
1032        /// BottleneckAnalysis
1033        BottleneckAnalysis {
1034            most_common_bottleneck,
1035            bottleneck_frequency,
1036            severity_distribution,
1037            impact_analysis,
1038        }
1039    }
1040
1041    fn analyze_trends(sessions: &[ProfileSession]) -> TrendAnalysis {
1042        if sessions.len() < 3 {
1043            return TrendAnalysis {
1044                performance_trend: TrendDirection::InsufficientData,
1045                memory_usage_trend: TrendDirection::InsufficientData,
1046                throughput_trend: TrendDirection::InsufficientData,
1047                session_performance_scores: Vec::new(),
1048            };
1049        }
1050
1051        let performance_scores: Vec<f64> = sessions
1052            .iter()
1053            .map(|s| {
1054                1000.0
1055                    / s.overall_metrics
1056                        .total_execution_time
1057                        .as_secs_f64()
1058                        .max(1.0)
1059            })
1060            .collect();
1061
1062        let performance_trend = Self::calculate_trend_direction(&performance_scores);
1063
1064        let memory_scores: Vec<f64> = sessions
1065            .iter()
1066            .map(|s| s.overall_metrics.peak_memory_usage_mb)
1067            .collect();
1068        let memory_usage_trend = Self::calculate_trend_direction(&memory_scores);
1069
1070        let throughput_scores: Vec<f64> = sessions
1071            .iter()
1072            .map(|s| s.overall_metrics.throughput_samples_per_second)
1073            .collect();
1074        let throughput_trend = Self::calculate_trend_direction(&throughput_scores);
1075
1076        /// TrendAnalysis
1077        TrendAnalysis {
1078            performance_trend,
1079            memory_usage_trend,
1080            throughput_trend,
1081            session_performance_scores: performance_scores,
1082        }
1083    }
1084
1085    fn calculate_trend_direction(values: &[f64]) -> TrendDirection {
1086        if values.len() < 3 {
1087            return TrendDirection::InsufficientData;
1088        }
1089
1090        let mid_point = values.len() / 2;
1091        let first_half_avg = values[..mid_point].iter().sum::<f64>() / mid_point as f64;
1092        let second_half_avg =
1093            values[mid_point..].iter().sum::<f64>() / (values.len() - mid_point) as f64;
1094
1095        let change_percentage =
1096            (second_half_avg - first_half_avg) / first_half_avg.abs().max(1e-10);
1097
1098        if change_percentage > 0.05 {
1099            TrendDirection::Improving
1100        } else if change_percentage < -0.05 {
1101            TrendDirection::Degrading
1102        } else {
1103            TrendDirection::Stable
1104        }
1105    }
1106
1107    fn comparative_analysis(sessions: &[ProfileSession]) -> ComparativeAnalysis {
1108        if sessions.is_empty() {
1109            return ComparativeAnalysis {
1110                best_performing_session: "none".to_string(),
1111                worst_performing_session: "none".to_string(),
1112                performance_variance: 0.0,
1113                consistency_score: 0.0,
1114            };
1115        }
1116
1117        let (best_session, worst_session) = sessions.iter().fold(
1118            (sessions[0].clone(), sessions[0].clone()),
1119            |(best, worst), session| {
1120                let best_next = if session.overall_metrics.total_execution_time
1121                    < best.overall_metrics.total_execution_time
1122                {
1123                    session.clone()
1124                } else {
1125                    best
1126                };
1127
1128                let worst_next = if session.overall_metrics.total_execution_time
1129                    > worst.overall_metrics.total_execution_time
1130                {
1131                    session.clone()
1132                } else {
1133                    worst
1134                };
1135
1136                (best_next, worst_next)
1137            },
1138        );
1139
1140        let execution_times: Vec<f64> = sessions
1141            .iter()
1142            .map(|s| s.overall_metrics.total_execution_time.as_secs_f64())
1143            .collect();
1144
1145        let mean_time = execution_times.iter().sum::<f64>() / sessions.len() as f64;
1146        let variance = execution_times
1147            .iter()
1148            .map(|t| (t - mean_time).powi(2))
1149            .sum::<f64>()
1150            / sessions.len() as f64;
1151
1152        let consistency_score = 1.0 / (1.0 + variance.sqrt() / mean_time);
1153
1154        /// ComparativeAnalysis
1155        ComparativeAnalysis {
1156            best_performing_session: best_session.session_id,
1157            worst_performing_session: worst_session.session_id,
1158            performance_variance: variance,
1159            consistency_score,
1160        }
1161    }
1162}
1163
1164#[allow(non_snake_case)]
1165#[cfg(test)]
1166mod tests {
1167    use super::*;
1168
1169    #[test]
1170    fn test_profiler_creation() {
1171        let profiler = PerformanceProfiler::default();
1172        assert_eq!(profiler.config.enable_timing, true);
1173        assert_eq!(profiler.config.enable_memory_tracking, true);
1174    }
1175
1176    #[test]
1177    fn test_session_lifecycle() {
1178        let profiler = PerformanceProfiler::default();
1179        let session_id = profiler.start_session("test_pipeline");
1180
1181        // Start and end a stage
1182        profiler
1183            .start_stage(&session_id, "preprocessing", "transformer")
1184            .unwrap();
1185        thread::sleep(Duration::from_millis(10));
1186        let stage_duration = profiler.end_stage(&session_id, "preprocessing").unwrap();
1187
1188        assert!(stage_duration > Duration::from_millis(5));
1189
1190        // End session
1191        let completed_session = profiler.end_session(&session_id).unwrap();
1192        assert_eq!(completed_session.pipeline_name, "test_pipeline");
1193        assert_eq!(completed_session.stages.len(), 1);
1194    }
1195
1196    #[test]
1197    fn test_bottleneck_detection() {
1198        let profiler = PerformanceProfiler::default();
1199        let session_id = profiler.start_session("test_pipeline");
1200
1201        // Simulate a slow stage
1202        profiler
1203            .start_stage(&session_id, "slow_stage", "estimator")
1204            .unwrap();
1205        thread::sleep(Duration::from_millis(50)); // Simulate slow execution
1206        profiler.end_stage(&session_id, "slow_stage").unwrap();
1207
1208        let completed_session = profiler.end_session(&session_id).unwrap();
1209
1210        // Check that bottlenecks were detected (though timing may be too short for actual detection)
1211        assert_eq!(completed_session.stages.len(), 1);
1212    }
1213
1214    #[test]
1215    fn test_performance_report_generation() {
1216        let profiler = PerformanceProfiler::default();
1217
1218        // Create multiple sessions for analysis
1219        for i in 0..3 {
1220            let session_id = profiler.start_session(&format!("pipeline_{}", i));
1221            profiler
1222                .start_stage(&session_id, "stage", "transformer")
1223                .unwrap();
1224            thread::sleep(Duration::from_millis(10));
1225            profiler.end_stage(&session_id, "stage").unwrap();
1226            profiler.end_session(&session_id).unwrap();
1227        }
1228
1229        let report = profiler.generate_report(None);
1230        assert_eq!(report.sessions_analyzed, 3);
1231        assert!(report.summary_metrics.average_execution_time > Duration::from_secs(0));
1232    }
1233}