sklears_compose/
optimization.rs

1//! Pipeline optimization and validation
2//!
3//! Components for automated hyperparameter optimization, pipeline structure search,
4//! and validation.
5
6use scirs2_core::ndarray::{Array1, ArrayView1, ArrayView2};
7use scirs2_core::random::{thread_rng, Rng};
8use sklears_core::{
9    error::Result as SklResult,
10    prelude::SklearsError,
11    types::{Float, FloatBounds},
12};
13use std::collections::HashMap;
14use std::time::Instant;
15
16use crate::Pipeline;
17
18/// Parameter search strategy
19pub enum SearchStrategy {
20    /// Grid search over all parameter combinations
21    GridSearch,
22    /// Random search with specified number of iterations
23    RandomSearch { n_iter: usize },
24    /// Bayesian optimization (placeholder for future implementation)
25    BayesianOptimization,
26    /// Evolutionary search
27    EvolutionarySearch {
28        population_size: usize,
29        generations: usize,
30    },
31}
32
33/// Parameter space definition
34#[derive(Debug, Clone)]
35pub struct ParameterSpace {
36    /// Parameter name
37    pub name: String,
38    /// Parameter values to search over
39    pub values: Vec<f64>,
40    /// Parameter type (continuous, discrete, categorical)
41    pub param_type: ParameterType,
42}
43
44/// Parameter type enumeration
45#[derive(Debug, Clone)]
46pub enum ParameterType {
47    /// Continuous parameter
48    Continuous { min: f64, max: f64 },
49    /// Discrete integer parameter
50    Discrete { min: i32, max: i32 },
51    /// Categorical parameter
52    Categorical { choices: Vec<String> },
53}
54
55impl ParameterSpace {
56    /// Create a continuous parameter space
57    #[must_use]
58    pub fn continuous(name: &str, min: f64, max: f64, n_points: usize) -> Self {
59        let step = (max - min) / (n_points - 1) as f64;
60        let values = (0..n_points).map(|i| min + i as f64 * step).collect();
61
62        Self {
63            name: name.to_string(),
64            values,
65            param_type: ParameterType::Continuous { min, max },
66        }
67    }
68
69    /// Create a discrete parameter space
70    #[must_use]
71    pub fn discrete(name: &str, min: i32, max: i32) -> Self {
72        let values = (min..=max).map(f64::from).collect();
73
74        Self {
75            name: name.to_string(),
76            values,
77            param_type: ParameterType::Discrete { min, max },
78        }
79    }
80
81    /// Create a categorical parameter space
82    #[must_use]
83    pub fn categorical(name: &str, choices: Vec<String>) -> Self {
84        let values = (0..choices.len()).map(|i| i as f64).collect();
85
86        Self {
87            name: name.to_string(),
88            values,
89            param_type: ParameterType::Categorical { choices },
90        }
91    }
92}
93
94/// Pipeline parameter optimizer
95pub struct PipelineOptimizer {
96    parameter_spaces: Vec<ParameterSpace>,
97    search_strategy: SearchStrategy,
98    cv_folds: usize,
99    scoring: ScoringMetric,
100    n_jobs: Option<i32>,
101    verbose: bool,
102}
103
104/// Scoring metrics for optimization
105#[derive(Debug, Clone)]
106pub enum ScoringMetric {
107    /// Mean squared error (for regression)
108    MeanSquaredError,
109    /// Mean absolute error (for regression)
110    MeanAbsoluteError,
111    /// Accuracy (for classification)
112    Accuracy,
113    /// F1 score (for classification)
114    F1Score,
115    /// Custom scoring function
116    Custom { name: String },
117    /// Multi-objective scoring with multiple metrics
118    MultiObjective { metrics: Vec<ScoringMetric> },
119}
120
121/// Multi-objective optimization results
122#[derive(Debug, Clone)]
123pub struct MultiObjectiveResult {
124    /// Parameter combination
125    pub params: HashMap<String, f64>,
126    /// Scores for each objective
127    pub scores: Vec<f64>,
128    /// Dominated by other solutions
129    pub dominated: bool,
130    /// Rank in Pareto front
131    pub rank: usize,
132}
133
134/// Pareto front analysis for multi-objective optimization
135#[derive(Debug)]
136pub struct ParetoFront {
137    /// All solutions in the Pareto front
138    pub solutions: Vec<MultiObjectiveResult>,
139    /// Number of objectives
140    pub n_objectives: usize,
141    /// Hypervolume indicator
142    pub hypervolume: f64,
143}
144
145impl PipelineOptimizer {
146    /// Create a new pipeline optimizer
147    #[must_use]
148    pub fn new() -> Self {
149        Self {
150            parameter_spaces: Vec::new(),
151            search_strategy: SearchStrategy::GridSearch,
152            cv_folds: 5,
153            scoring: ScoringMetric::MeanSquaredError,
154            n_jobs: None,
155            verbose: false,
156        }
157    }
158
159    /// Add a parameter space to optimize
160    #[must_use]
161    pub fn parameter_space(mut self, space: ParameterSpace) -> Self {
162        self.parameter_spaces.push(space);
163        self
164    }
165
166    /// Set the search strategy
167    #[must_use]
168    pub fn search_strategy(mut self, strategy: SearchStrategy) -> Self {
169        self.search_strategy = strategy;
170        self
171    }
172
173    /// Set the number of cross-validation folds
174    #[must_use]
175    pub fn cv_folds(mut self, folds: usize) -> Self {
176        self.cv_folds = folds;
177        self
178    }
179
180    /// Set the scoring metric
181    #[must_use]
182    pub fn scoring(mut self, metric: ScoringMetric) -> Self {
183        self.scoring = metric;
184        self
185    }
186
187    /// Set verbosity
188    #[must_use]
189    pub fn verbose(mut self, verbose: bool) -> Self {
190        self.verbose = verbose;
191        self
192    }
193
194    /// Optimize pipeline parameters
195    pub fn optimize<S>(
196        &self,
197        pipeline: Pipeline<S>,
198        x: &ArrayView2<'_, Float>,
199        y: &ArrayView1<'_, Float>,
200    ) -> SklResult<OptimizationResults>
201    where
202        S: std::fmt::Debug,
203    {
204        match self.search_strategy {
205            SearchStrategy::GridSearch => self.grid_search(pipeline, x, y),
206            SearchStrategy::RandomSearch { n_iter } => self.random_search(pipeline, x, y, n_iter),
207            SearchStrategy::BayesianOptimization => Err(SklearsError::NotImplemented(
208                "Bayesian optimization not yet implemented".to_string(),
209            )),
210            SearchStrategy::EvolutionarySearch {
211                population_size,
212                generations,
213            } => self.evolutionary_search(pipeline, x, y, population_size, generations),
214        }
215    }
216
217    fn grid_search<S>(
218        &self,
219        pipeline: Pipeline<S>,
220        x: &ArrayView2<'_, Float>,
221        y: &ArrayView1<'_, Float>,
222    ) -> SklResult<OptimizationResults>
223    where
224        S: std::fmt::Debug,
225    {
226        let start_time = Instant::now();
227
228        if self.parameter_spaces.is_empty() {
229            return Err(SklearsError::InvalidInput(
230                "No parameter spaces defined for optimization".to_string(),
231            ));
232        }
233
234        // Generate all parameter combinations
235        let param_combinations = self.generate_grid_combinations()?;
236
237        if self.verbose {
238            println!(
239                "Grid search: evaluating {} parameter combinations",
240                param_combinations.len()
241            );
242        }
243
244        let mut best_score = f64::NEG_INFINITY;
245        let mut best_params = HashMap::new();
246        let mut all_scores = Vec::new();
247
248        // Evaluate each parameter combination
249        for (i, params) in param_combinations.iter().enumerate() {
250            if self.verbose {
251                println!(
252                    "Evaluating combination {}/{}",
253                    i + 1,
254                    param_combinations.len()
255                );
256            }
257
258            // TODO: Apply parameters to pipeline (requires pipeline parameter setting interface)
259            // For now, just use cross-validation with default parameters
260            let cv_score = self.cross_validate_pipeline(&pipeline, x, y)?;
261            all_scores.push(cv_score);
262
263            if cv_score > best_score {
264                best_score = cv_score;
265                best_params = params.clone();
266            }
267        }
268
269        let search_time = start_time.elapsed().as_secs_f64();
270
271        Ok(OptimizationResults {
272            best_params,
273            best_score,
274            cv_scores: all_scores,
275            search_time,
276        })
277    }
278
279    fn random_search<S>(
280        &self,
281        pipeline: Pipeline<S>,
282        x: &ArrayView2<'_, Float>,
283        y: &ArrayView1<'_, Float>,
284        n_iter: usize,
285    ) -> SklResult<OptimizationResults>
286    where
287        S: std::fmt::Debug,
288    {
289        let start_time = Instant::now();
290        let mut rng = thread_rng();
291
292        if self.parameter_spaces.is_empty() {
293            return Err(SklearsError::InvalidInput(
294                "No parameter spaces defined for optimization".to_string(),
295            ));
296        }
297
298        if self.verbose {
299            println!("Random search: evaluating {n_iter} random parameter combinations");
300        }
301
302        let mut best_score = f64::NEG_INFINITY;
303        let mut best_params = HashMap::new();
304        let mut all_scores = Vec::new();
305
306        // Evaluate random parameter combinations
307        for i in 0..n_iter {
308            if self.verbose {
309                println!("Evaluating combination {}/{}", i + 1, n_iter);
310            }
311
312            // Generate random parameter combination
313            let params = self.generate_random_parameters(&mut rng)?;
314
315            // TODO: Apply parameters to pipeline
316            let cv_score = self.cross_validate_pipeline(&pipeline, x, y)?;
317            all_scores.push(cv_score);
318
319            if cv_score > best_score {
320                best_score = cv_score;
321                best_params = params;
322            }
323        }
324
325        let search_time = start_time.elapsed().as_secs_f64();
326
327        Ok(OptimizationResults {
328            best_params,
329            best_score,
330            cv_scores: all_scores,
331            search_time,
332        })
333    }
334
335    fn evolutionary_search<S>(
336        &self,
337        pipeline: Pipeline<S>,
338        x: &ArrayView2<'_, Float>,
339        y: &ArrayView1<'_, Float>,
340        population_size: usize,
341        generations: usize,
342    ) -> SklResult<OptimizationResults>
343    where
344        S: std::fmt::Debug,
345    {
346        let start_time = Instant::now();
347        let mut rng = thread_rng();
348
349        if self.parameter_spaces.is_empty() {
350            return Err(SklearsError::InvalidInput(
351                "No parameter spaces defined for optimization".to_string(),
352            ));
353        }
354
355        if self.verbose {
356            println!(
357                "Evolutionary search: {generations} generations with population size {population_size}"
358            );
359        }
360
361        // Initialize population
362        let mut population = Vec::new();
363        for _ in 0..population_size {
364            let params = self.generate_random_parameters(&mut rng)?;
365            population.push(params);
366        }
367
368        let mut best_score = f64::NEG_INFINITY;
369        let mut best_params = HashMap::new();
370        let mut all_scores = Vec::new();
371
372        // Evolution loop
373        for generation in 0..generations {
374            if self.verbose {
375                println!("Generation {}/{}", generation + 1, generations);
376            }
377
378            // Evaluate fitness for each individual
379            let mut fitness_scores = Vec::new();
380            for params in &population {
381                // TODO: Apply parameters to pipeline
382                let score = self.cross_validate_pipeline(&pipeline, x, y)?;
383                fitness_scores.push(score);
384                all_scores.push(score);
385
386                if score > best_score {
387                    best_score = score;
388                    best_params = params.clone();
389                }
390            }
391
392            // Selection, crossover, and mutation
393            let mut new_population = Vec::new();
394
395            // Keep best individuals (elitism)
396            let elite_count = population_size / 4;
397            let mut indexed_fitness: Vec<(usize, f64)> = fitness_scores
398                .iter()
399                .enumerate()
400                .map(|(i, &score)| (i, score))
401                .collect();
402            indexed_fitness.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
403
404            for i in 0..elite_count {
405                let elite_idx = indexed_fitness[i].0;
406                new_population.push(population[elite_idx].clone());
407            }
408
409            // Generate offspring through crossover and mutation
410            while new_population.len() < population_size {
411                // Tournament selection
412                let parent1_idx = self.tournament_selection(&fitness_scores, &mut rng);
413                let parent2_idx = self.tournament_selection(&fitness_scores, &mut rng);
414
415                // Crossover
416                let offspring =
417                    self.crossover(&population[parent1_idx], &population[parent2_idx], &mut rng)?;
418
419                // Mutation
420                let mutated_offspring = self.mutate(offspring, &mut rng)?;
421
422                new_population.push(mutated_offspring);
423            }
424
425            population = new_population;
426        }
427
428        let search_time = start_time.elapsed().as_secs_f64();
429
430        Ok(OptimizationResults {
431            best_params,
432            best_score,
433            cv_scores: all_scores,
434            search_time,
435        })
436    }
437
438    /// Perform multi-objective optimization
439    pub fn multi_objective_optimize<S>(
440        &self,
441        pipeline: Pipeline<S>,
442        x: &ArrayView2<'_, Float>,
443        y: &ArrayView1<'_, Float>,
444        metrics: Vec<ScoringMetric>,
445    ) -> SklResult<ParetoFront>
446    where
447        S: std::fmt::Debug,
448    {
449        let start_time = Instant::now();
450
451        if metrics.is_empty() {
452            return Err(SklearsError::InvalidInput(
453                "At least one metric must be specified for multi-objective optimization"
454                    .to_string(),
455            ));
456        }
457
458        // Use NSGA-II algorithm for multi-objective optimization
459        let population_size = 100;
460        let generations = 50;
461
462        let results = self.nsga_ii(pipeline, x, y, &metrics, population_size, generations)?;
463
464        let search_time = start_time.elapsed().as_secs_f64();
465
466        if self.verbose {
467            println!("Multi-objective optimization completed in {search_time:.2}s");
468            println!(
469                "Found {} solutions in Pareto front",
470                results.solutions.len()
471            );
472        }
473
474        Ok(results)
475    }
476
477    /// NSGA-II algorithm implementation
478    fn nsga_ii<S>(
479        &self,
480        pipeline: Pipeline<S>,
481        x: &ArrayView2<'_, Float>,
482        y: &ArrayView1<'_, Float>,
483        metrics: &[ScoringMetric],
484        population_size: usize,
485        generations: usize,
486    ) -> SklResult<ParetoFront>
487    where
488        S: std::fmt::Debug,
489    {
490        let mut rng = thread_rng();
491
492        // Initialize population
493        let mut population = Vec::new();
494        for _ in 0..population_size {
495            let params = self.generate_random_parameters(&mut rng)?;
496            let scores = self.evaluate_multi_objective(&pipeline, x, y, &params, metrics)?;
497
498            population.push(MultiObjectiveResult {
499                params,
500                scores,
501                dominated: false,
502                rank: 0,
503            });
504        }
505
506        // Evolution loop
507        for generation in 0..generations {
508            if self.verbose && generation % 10 == 0 {
509                println!("NSGA-II Generation {}/{}", generation + 1, generations);
510            }
511
512            // Create offspring population
513            let mut offspring = Vec::new();
514            while offspring.len() < population_size {
515                // Tournament selection
516                let parent1_idx = rng.gen_range(0..population.len());
517                let parent2_idx = rng.gen_range(0..population.len());
518
519                // Crossover
520                let child_params = self.crossover(
521                    &population[parent1_idx].params,
522                    &population[parent2_idx].params,
523                    &mut rng,
524                )?;
525
526                // Mutation
527                let mutated_params = self.mutate(child_params, &mut rng)?;
528
529                // Evaluate offspring
530                let scores =
531                    self.evaluate_multi_objective(&pipeline, x, y, &mutated_params, metrics)?;
532
533                offspring.push(MultiObjectiveResult {
534                    params: mutated_params,
535                    scores,
536                    dominated: false,
537                    rank: 0,
538                });
539            }
540
541            // Combine parent and offspring populations
542            let mut combined_population = population;
543            combined_population.extend(offspring);
544
545            // Non-dominated sorting and crowding distance selection
546            population = self.select_next_generation(combined_population, population_size);
547        }
548
549        // Extract Pareto front (rank 0 solutions)
550        let pareto_solutions: Vec<MultiObjectiveResult> =
551            population.into_iter().filter(|sol| sol.rank == 0).collect();
552
553        let hypervolume = self.calculate_hypervolume(&pareto_solutions, metrics.len());
554
555        Ok(ParetoFront {
556            solutions: pareto_solutions,
557            n_objectives: metrics.len(),
558            hypervolume,
559        })
560    }
561
562    /// Tournament selection for evolutionary algorithms
563    fn tournament_selection(&self, fitness_scores: &[f64], rng: &mut impl Rng) -> usize {
564        let tournament_size = 3;
565        let mut best_idx = rng.gen_range(0..fitness_scores.len());
566        let mut best_score = fitness_scores[best_idx];
567
568        for _ in 1..tournament_size {
569            let candidate_idx = rng.gen_range(0..fitness_scores.len());
570            let candidate_score = fitness_scores[candidate_idx];
571
572            if candidate_score > best_score {
573                best_idx = candidate_idx;
574                best_score = candidate_score;
575            }
576        }
577
578        best_idx
579    }
580
581    /// Crossover operation for parameter maps
582    fn crossover(
583        &self,
584        parent1: &HashMap<String, f64>,
585        parent2: &HashMap<String, f64>,
586        rng: &mut impl Rng,
587    ) -> SklResult<HashMap<String, f64>> {
588        let mut offspring = HashMap::new();
589
590        for space in &self.parameter_spaces {
591            let value1 = parent1.get(&space.name).copied().unwrap_or(0.0);
592            let value2 = parent2.get(&space.name).copied().unwrap_or(0.0);
593
594            // Uniform crossover: randomly choose from either parent
595            let offspring_value = if rng.gen_bool(0.5) { value1 } else { value2 };
596
597            // For continuous parameters, also try blend crossover
598            let final_value = match &space.param_type {
599                ParameterType::Continuous { min, max } => {
600                    if rng.gen_bool(0.3) {
601                        // Blend crossover
602                        let alpha = 0.5;
603                        let range = (value2 - value1).abs();
604                        let min_blend = value1.min(value2) - alpha * range;
605                        let max_blend = value1.max(value2) + alpha * range;
606
607                        rng.gen_range(min_blend.max(*min)..=max_blend.min(*max))
608                    } else {
609                        offspring_value.clamp(*min, *max)
610                    }
611                }
612                ParameterType::Discrete { min, max } => {
613                    f64::from((offspring_value.round() as i32).clamp(*min, *max))
614                }
615                ParameterType::Categorical { choices } => {
616                    (offspring_value as usize % choices.len()) as f64
617                }
618            };
619
620            offspring.insert(space.name.clone(), final_value);
621        }
622
623        Ok(offspring)
624    }
625
626    /// Mutation operation for parameter maps
627    fn mutate(
628        &self,
629        mut individual: HashMap<String, f64>,
630        rng: &mut impl Rng,
631    ) -> SklResult<HashMap<String, f64>> {
632        let mutation_rate = 0.1;
633
634        for space in &self.parameter_spaces {
635            if rng.gen_bool(mutation_rate) {
636                let current_value = individual.get(&space.name).copied().unwrap_or(0.0);
637
638                let mutated_value = match &space.param_type {
639                    ParameterType::Continuous { min, max } => {
640                        // Gaussian mutation
641                        let sigma = (max - min) * 0.1;
642                        let noise = rng.gen_range(-sigma..=sigma);
643                        (current_value + noise).clamp(*min, *max)
644                    }
645                    ParameterType::Discrete { min, max } => {
646                        // Random integer in range
647                        f64::from(rng.gen_range(*min..=*max))
648                    }
649                    ParameterType::Categorical { choices } => {
650                        // Random choice
651                        rng.gen_range(0..choices.len()) as f64
652                    }
653                };
654
655                individual.insert(space.name.clone(), mutated_value);
656            }
657        }
658
659        Ok(individual)
660    }
661
662    /// Evaluate multiple objectives for a parameter combination
663    fn evaluate_multi_objective<S>(
664        &self,
665        pipeline: &Pipeline<S>,
666        x: &ArrayView2<'_, Float>,
667        y: &ArrayView1<'_, Float>,
668        _params: &HashMap<String, f64>,
669        metrics: &[ScoringMetric],
670    ) -> SklResult<Vec<f64>>
671    where
672        S: std::fmt::Debug,
673    {
674        let mut scores = Vec::new();
675
676        for metric in metrics {
677            // TODO: Apply parameters to pipeline before evaluation
678            let score = if let ScoringMetric::MultiObjective { .. } = metric {
679                return Err(SklearsError::InvalidInput(
680                    "Nested multi-objective metrics not supported".to_string(),
681                ));
682            } else {
683                // Use the existing cross-validation with the specific metric
684                let original_scoring = self.scoring.clone();
685                let temp_optimizer = PipelineOptimizer {
686                    parameter_spaces: Vec::new(),
687                    search_strategy: SearchStrategy::GridSearch,
688                    cv_folds: self.cv_folds,
689                    scoring: metric.clone(),
690                    n_jobs: self.n_jobs,
691                    verbose: false,
692                };
693                temp_optimizer.cross_validate_pipeline(pipeline, x, y)?
694            };
695            scores.push(score);
696        }
697
698        Ok(scores)
699    }
700
701    /// Select next generation using non-dominated sorting and crowding distance
702    fn select_next_generation(
703        &self,
704        mut population: Vec<MultiObjectiveResult>,
705        target_size: usize,
706    ) -> Vec<MultiObjectiveResult> {
707        // Non-dominated sorting
708        let fronts = self.non_dominated_sort(&mut population);
709
710        let mut next_generation = Vec::new();
711
712        for (rank, front) in fronts.iter().enumerate() {
713            if next_generation.len() + front.len() <= target_size {
714                // Add entire front
715                for &idx in front {
716                    population[idx].rank = rank;
717                    next_generation.push(population[idx].clone());
718                }
719            } else {
720                // Add partial front based on crowding distance
721                let remaining_slots = target_size - next_generation.len();
722                let mut front_with_distance: Vec<(usize, f64)> = front
723                    .iter()
724                    .map(|&idx| {
725                        let distance = self.calculate_crowding_distance(&population, front, idx);
726                        (idx, distance)
727                    })
728                    .collect();
729
730                // Sort by crowding distance (descending)
731                front_with_distance.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
732
733                for i in 0..remaining_slots {
734                    let idx = front_with_distance[i].0;
735                    population[idx].rank = rank;
736                    next_generation.push(population[idx].clone());
737                }
738                break;
739            }
740        }
741
742        next_generation
743    }
744
745    /// Non-dominated sorting algorithm
746    fn non_dominated_sort(&self, population: &mut [MultiObjectiveResult]) -> Vec<Vec<usize>> {
747        let n = population.len();
748        let mut fronts = Vec::new();
749        let mut dominated_count = vec![0; n];
750        let mut dominated_solutions: Vec<Vec<usize>> = vec![Vec::new(); n];
751
752        // First front
753        let mut current_front = Vec::new();
754
755        for i in 0..n {
756            for j in 0..n {
757                if i != j {
758                    let dominates = self.dominates(&population[i], &population[j]);
759                    let dominated_by = self.dominates(&population[j], &population[i]);
760
761                    if dominates {
762                        dominated_solutions[i].push(j);
763                    } else if dominated_by {
764                        dominated_count[i] += 1;
765                    }
766                }
767            }
768
769            if dominated_count[i] == 0 {
770                current_front.push(i);
771            }
772        }
773
774        fronts.push(current_front.clone());
775
776        // Subsequent fronts
777        while !current_front.is_empty() {
778            let mut next_front = Vec::new();
779
780            for &i in &current_front {
781                for &j in &dominated_solutions[i] {
782                    dominated_count[j] -= 1;
783                    if dominated_count[j] == 0 {
784                        next_front.push(j);
785                    }
786                }
787            }
788
789            if !next_front.is_empty() {
790                fronts.push(next_front.clone());
791            }
792            current_front = next_front;
793        }
794
795        fronts
796    }
797
798    /// Check if solution a dominates solution b
799    fn dominates(&self, a: &MultiObjectiveResult, b: &MultiObjectiveResult) -> bool {
800        let mut at_least_one_better = false;
801
802        for i in 0..a.scores.len() {
803            if a.scores[i] < b.scores[i] {
804                return false; // a is worse in at least one objective
805            }
806            if a.scores[i] > b.scores[i] {
807                at_least_one_better = true;
808            }
809        }
810
811        at_least_one_better
812    }
813
814    /// Calculate crowding distance for diversity preservation
815    fn calculate_crowding_distance(
816        &self,
817        population: &[MultiObjectiveResult],
818        front: &[usize],
819        individual_idx: usize,
820    ) -> f64 {
821        if front.len() <= 2 {
822            return f64::INFINITY;
823        }
824
825        let n_objectives = population[individual_idx].scores.len();
826        let mut distance = 0.0;
827
828        for obj in 0..n_objectives {
829            // Sort front by this objective
830            let mut sorted_front = front.to_vec();
831            sorted_front.sort_by(|&a, &b| {
832                population[a].scores[obj]
833                    .partial_cmp(&population[b].scores[obj])
834                    .unwrap()
835            });
836
837            // Find position of individual in sorted front
838            let pos = sorted_front
839                .iter()
840                .position(|&idx| idx == individual_idx)
841                .unwrap();
842
843            if pos == 0 || pos == sorted_front.len() - 1 {
844                // Boundary solutions get infinite distance
845                return f64::INFINITY;
846            }
847
848            // Calculate normalized distance
849            let obj_min = population[sorted_front[0]].scores[obj];
850            let obj_max = population[sorted_front[sorted_front.len() - 1]].scores[obj];
851
852            if obj_max > obj_min {
853                let prev_obj = population[sorted_front[pos - 1]].scores[obj];
854                let next_obj = population[sorted_front[pos + 1]].scores[obj];
855                distance += (next_obj - prev_obj) / (obj_max - obj_min);
856            }
857        }
858
859        distance
860    }
861
862    /// Calculate hypervolume indicator for Pareto front quality
863    fn calculate_hypervolume(
864        &self,
865        solutions: &[MultiObjectiveResult],
866        n_objectives: usize,
867    ) -> f64 {
868        if solutions.is_empty() {
869            return 0.0;
870        }
871
872        // Simple hypervolume calculation for 2D case
873        if n_objectives == 2 {
874            let mut sorted_solutions = solutions.to_vec();
875            sorted_solutions.sort_by(|a, b| a.scores[0].partial_cmp(&b.scores[0]).unwrap());
876
877            let mut hypervolume = 0.0;
878            let mut prev_x = 0.0;
879
880            for solution in &sorted_solutions {
881                if solution.scores[0] > prev_x {
882                    hypervolume += (solution.scores[0] - prev_x) * solution.scores[1];
883                    prev_x = solution.scores[0];
884                }
885            }
886
887            hypervolume
888        } else {
889            // For higher dimensions, use approximation
890            solutions.len() as f64
891        }
892    }
893
894    /// Generate all parameter combinations for grid search
895    fn generate_grid_combinations(&self) -> SklResult<Vec<HashMap<String, f64>>> {
896        if self.parameter_spaces.is_empty() {
897            return Ok(vec![HashMap::new()]);
898        }
899
900        let mut combinations = vec![HashMap::new()];
901
902        for space in &self.parameter_spaces {
903            let mut new_combinations = Vec::new();
904
905            for value in &space.values {
906                for existing_combo in &combinations {
907                    let mut new_combo = existing_combo.clone();
908                    new_combo.insert(space.name.clone(), *value);
909                    new_combinations.push(new_combo);
910                }
911            }
912
913            combinations = new_combinations;
914        }
915
916        Ok(combinations)
917    }
918
919    /// Generate random parameter combination
920    fn generate_random_parameters(&self, rng: &mut impl Rng) -> SklResult<HashMap<String, f64>> {
921        let mut params = HashMap::new();
922
923        for space in &self.parameter_spaces {
924            let value = match &space.param_type {
925                ParameterType::Continuous { min, max } => rng.gen_range(*min..*max),
926                ParameterType::Discrete { min, max } => f64::from(rng.gen_range(*min..=*max)),
927                ParameterType::Categorical { choices } => {
928                    let idx = rng.gen_range(0..choices.len());
929                    idx as f64
930                }
931            };
932
933            params.insert(space.name.clone(), value);
934        }
935
936        Ok(params)
937    }
938
939    /// Perform cross-validation on pipeline
940    fn cross_validate_pipeline<S>(
941        &self,
942        _pipeline: &Pipeline<S>,
943        x: &ArrayView2<'_, Float>,
944        y: &ArrayView1<'_, Float>,
945    ) -> SklResult<f64>
946    where
947        S: std::fmt::Debug,
948    {
949        let n_samples = x.nrows();
950        let fold_size = n_samples / self.cv_folds;
951        let mut scores = Vec::new();
952
953        for fold in 0..self.cv_folds {
954            let start_idx = fold * fold_size;
955            let end_idx = if fold == self.cv_folds - 1 {
956                n_samples
957            } else {
958                (fold + 1) * fold_size
959            };
960
961            // Create train/test splits for this fold
962            let mut train_indices = Vec::new();
963            let mut test_indices = Vec::new();
964
965            for i in 0..n_samples {
966                if i >= start_idx && i < end_idx {
967                    test_indices.push(i);
968                } else {
969                    train_indices.push(i);
970                }
971            }
972
973            // For now, return a mock score based on data characteristics
974            // In a real implementation, this would train the pipeline on train set
975            // and evaluate on test set
976            let score = self.compute_mock_score(x, y, &train_indices, &test_indices)?;
977            scores.push(score);
978        }
979
980        // Return mean cross-validation score
981        Ok(scores.iter().sum::<f64>() / scores.len() as f64)
982    }
983
984    /// Compute a mock score for demonstration purposes
985    fn compute_mock_score(
986        &self,
987        x: &ArrayView2<'_, Float>,
988        y: &ArrayView1<'_, Float>,
989        train_indices: &[usize],
990        test_indices: &[usize],
991    ) -> SklResult<f64> {
992        // Simple mock scoring - in reality this would use the fitted pipeline
993        match self.scoring {
994            ScoringMetric::MeanSquaredError => {
995                // For regression, return a score based on target variance
996                let test_targets: Vec<f64> = test_indices.iter().map(|&i| y[i]).collect();
997
998                if test_targets.is_empty() {
999                    return Ok(0.0);
1000                }
1001
1002                let mean = test_targets.iter().sum::<f64>() / test_targets.len() as f64;
1003                let variance = test_targets
1004                    .iter()
1005                    .map(|&val| (val - mean).powi(2))
1006                    .sum::<f64>()
1007                    / test_targets.len() as f64;
1008
1009                // Return negative MSE (higher is better for optimization)
1010                Ok(-variance.sqrt())
1011            }
1012            ScoringMetric::MeanAbsoluteError => {
1013                // Similar to MSE but using absolute differences
1014                let test_targets: Vec<f64> = test_indices.iter().map(|&i| y[i]).collect();
1015
1016                if test_targets.is_empty() {
1017                    return Ok(0.0);
1018                }
1019
1020                let mean = test_targets.iter().sum::<f64>() / test_targets.len() as f64;
1021                let mae = test_targets
1022                    .iter()
1023                    .map(|&val| (val - mean).abs())
1024                    .sum::<f64>()
1025                    / test_targets.len() as f64;
1026
1027                Ok(-mae)
1028            }
1029            ScoringMetric::Accuracy | ScoringMetric::F1Score => {
1030                // For classification, return a score based on class distribution
1031                let unique_classes = y
1032                    .iter()
1033                    .map(|&val| val as i32)
1034                    .collect::<std::collections::HashSet<_>>();
1035
1036                // Simple mock accuracy based on class balance
1037                Ok(1.0 / unique_classes.len() as f64)
1038            }
1039            ScoringMetric::Custom { .. } => {
1040                // Return a default score for custom metrics
1041                Ok(0.8)
1042            }
1043            ScoringMetric::MultiObjective { .. } => {
1044                // For multi-objective metrics in mock scoring, return average score
1045                Ok(0.5)
1046            }
1047        }
1048    }
1049}
1050
1051impl Default for PipelineOptimizer {
1052    fn default() -> Self {
1053        Self::new()
1054    }
1055}
1056
1057/// Results from pipeline optimization
1058#[derive(Debug)]
1059pub struct OptimizationResults {
1060    /// Best parameter combination found
1061    pub best_params: HashMap<String, f64>,
1062    /// Best cross-validation score
1063    pub best_score: f64,
1064    /// All cross-validation scores
1065    pub cv_scores: Vec<f64>,
1066    /// Time taken for search
1067    pub search_time: f64,
1068}
1069
1070/// Pipeline validator for error checking and robustness
1071pub struct PipelineValidator {
1072    check_data_types: bool,
1073    check_missing_values: bool,
1074    check_infinite_values: bool,
1075    check_feature_names: bool,
1076    verbose: bool,
1077}
1078
1079impl PipelineValidator {
1080    /// Create a new pipeline validator
1081    #[must_use]
1082    pub fn new() -> Self {
1083        Self {
1084            check_data_types: true,
1085            check_missing_values: true,
1086            check_infinite_values: true,
1087            check_feature_names: false,
1088            verbose: false,
1089        }
1090    }
1091
1092    /// Enable/disable data type checking
1093    #[must_use]
1094    pub fn check_data_types(mut self, check: bool) -> Self {
1095        self.check_data_types = check;
1096        self
1097    }
1098
1099    /// Enable/disable missing value checking
1100    #[must_use]
1101    pub fn check_missing_values(mut self, check: bool) -> Self {
1102        self.check_missing_values = check;
1103        self
1104    }
1105
1106    /// Enable/disable infinite value checking
1107    #[must_use]
1108    pub fn check_infinite_values(mut self, check: bool) -> Self {
1109        self.check_infinite_values = check;
1110        self
1111    }
1112
1113    /// Enable/disable feature name checking
1114    #[must_use]
1115    pub fn check_feature_names(mut self, check: bool) -> Self {
1116        self.check_feature_names = check;
1117        self
1118    }
1119
1120    /// Set verbosity
1121    #[must_use]
1122    pub fn verbose(mut self, verbose: bool) -> Self {
1123        self.verbose = verbose;
1124        self
1125    }
1126
1127    /// Validate input data
1128    pub fn validate_data(
1129        &self,
1130        x: &ArrayView2<'_, Float>,
1131        y: Option<&ArrayView1<'_, Float>>,
1132    ) -> SklResult<()> {
1133        if self.check_missing_values {
1134            self.check_for_missing_values(x)?;
1135        }
1136
1137        if self.check_infinite_values {
1138            self.check_for_infinite_values(x)?;
1139        }
1140
1141        if let Some(y_values) = y {
1142            self.validate_target(y_values)?;
1143        }
1144
1145        Ok(())
1146    }
1147
1148    fn check_for_missing_values(&self, x: &ArrayView2<'_, Float>) -> SklResult<()> {
1149        for (i, row) in x.rows().into_iter().enumerate() {
1150            for (j, &value) in row.iter().enumerate() {
1151                if value.is_nan() {
1152                    return Err(SklearsError::InvalidData {
1153                        reason: format!("Missing value (NaN) found at position ({i}, {j})"),
1154                    });
1155                }
1156            }
1157        }
1158        Ok(())
1159    }
1160
1161    fn check_for_infinite_values(&self, x: &ArrayView2<'_, Float>) -> SklResult<()> {
1162        for (i, row) in x.rows().into_iter().enumerate() {
1163            for (j, &value) in row.iter().enumerate() {
1164                if value.is_infinite() {
1165                    return Err(SklearsError::InvalidData {
1166                        reason: format!("Infinite value found at position ({i}, {j})"),
1167                    });
1168                }
1169            }
1170        }
1171        Ok(())
1172    }
1173
1174    fn validate_target(&self, y: &ArrayView1<'_, Float>) -> SklResult<()> {
1175        for (i, &value) in y.iter().enumerate() {
1176            if value.is_nan() {
1177                return Err(SklearsError::InvalidData {
1178                    reason: format!("Missing value (NaN) found in target at position {i}"),
1179                });
1180            }
1181            if value.is_infinite() {
1182                return Err(SklearsError::InvalidData {
1183                    reason: format!("Infinite value found in target at position {i}"),
1184                });
1185            }
1186        }
1187        Ok(())
1188    }
1189
1190    /// Validate pipeline structure
1191    pub fn validate_pipeline<S>(&self, _pipeline: &Pipeline<S>) -> SklResult<()>
1192    where
1193        S: std::fmt::Debug,
1194    {
1195        // Placeholder for pipeline structure validation
1196        Ok(())
1197    }
1198}
1199
1200impl Default for PipelineValidator {
1201    fn default() -> Self {
1202        Self::new()
1203    }
1204}
1205
1206/// Robust pipeline execution with error recovery
1207pub struct RobustPipelineExecutor {
1208    max_retries: usize,
1209    fallback_strategy: FallbackStrategy,
1210    error_handling: ErrorHandlingStrategy,
1211    timeout_seconds: Option<u64>,
1212}
1213
1214/// Fallback strategies for failed pipeline execution
1215#[derive(Debug, Clone)]
1216pub enum FallbackStrategy {
1217    /// Return an error
1218    ReturnError,
1219    /// Use a simpler pipeline
1220    SimplerPipeline,
1221    /// Use default values
1222    DefaultValues,
1223    /// Skip the failing step
1224    SkipStep,
1225}
1226
1227/// Error handling strategies
1228#[derive(Debug, Clone)]
1229pub enum ErrorHandlingStrategy {
1230    /// Fail fast on first error
1231    FailFast,
1232    /// Continue with warnings
1233    ContinueWithWarnings,
1234    /// Attempt recovery
1235    AttemptRecovery,
1236}
1237
1238impl RobustPipelineExecutor {
1239    /// Create a new robust pipeline executor
1240    #[must_use]
1241    pub fn new() -> Self {
1242        Self {
1243            max_retries: 3,
1244            fallback_strategy: FallbackStrategy::ReturnError,
1245            error_handling: ErrorHandlingStrategy::FailFast,
1246            timeout_seconds: None,
1247        }
1248    }
1249
1250    /// Set maximum retries
1251    #[must_use]
1252    pub fn max_retries(mut self, retries: usize) -> Self {
1253        self.max_retries = retries;
1254        self
1255    }
1256
1257    /// Set fallback strategy
1258    #[must_use]
1259    pub fn fallback_strategy(mut self, strategy: FallbackStrategy) -> Self {
1260        self.fallback_strategy = strategy;
1261        self
1262    }
1263
1264    /// Set error handling strategy
1265    #[must_use]
1266    pub fn error_handling(mut self, strategy: ErrorHandlingStrategy) -> Self {
1267        self.error_handling = strategy;
1268        self
1269    }
1270
1271    /// Set timeout
1272    #[must_use]
1273    pub fn timeout_seconds(mut self, timeout: u64) -> Self {
1274        self.timeout_seconds = Some(timeout);
1275        self
1276    }
1277
1278    /// Execute pipeline with robust error handling
1279    pub fn execute<S>(
1280        &self,
1281        mut pipeline: Pipeline<S>,
1282        x: &ArrayView2<'_, Float>,
1283        y: Option<&ArrayView1<'_, Float>>,
1284    ) -> SklResult<Array1<f64>>
1285    where
1286        S: std::fmt::Debug,
1287    {
1288        let mut attempt = 0;
1289
1290        while attempt <= self.max_retries {
1291            match self.try_execute(&mut pipeline, x, y) {
1292                Ok(result) => return Ok(result),
1293                Err(error) => match self.error_handling {
1294                    ErrorHandlingStrategy::FailFast => {
1295                        return Err(error);
1296                    }
1297                    ErrorHandlingStrategy::ContinueWithWarnings => {
1298                        eprintln!(
1299                            "Warning: Pipeline execution failed (attempt {}): {:?}",
1300                            attempt + 1,
1301                            error
1302                        );
1303                        if attempt == self.max_retries {
1304                            return self.apply_fallback_strategy(x, y);
1305                        }
1306                    }
1307                    ErrorHandlingStrategy::AttemptRecovery => {
1308                        eprintln!(
1309                            "Attempting recovery from error (attempt {}): {:?}",
1310                            attempt + 1,
1311                            error
1312                        );
1313                        if attempt == self.max_retries {
1314                            return self.apply_fallback_strategy(x, y);
1315                        }
1316                    }
1317                },
1318            }
1319            attempt += 1;
1320        }
1321
1322        self.apply_fallback_strategy(x, y)
1323    }
1324
1325    /// Try to execute pipeline once
1326    fn try_execute<S>(
1327        &self,
1328        _pipeline: &mut Pipeline<S>,
1329        x: &ArrayView2<'_, Float>,
1330        _y: Option<&ArrayView1<'_, Float>>,
1331    ) -> SklResult<Array1<f64>>
1332    where
1333        S: std::fmt::Debug,
1334    {
1335        // TODO: Actually execute the pipeline when Pipeline has predict method
1336        // For now, simulate a potential failure and success
1337        if x.nrows() == 0 {
1338            return Err(SklearsError::InvalidInput("Empty input data".to_string()));
1339        }
1340
1341        // Mock prediction - return mean of each row
1342        let predictions: Vec<f64> = x
1343            .rows()
1344            .into_iter()
1345            .map(|row| row.iter().copied().sum::<f64>() / row.len() as f64)
1346            .collect();
1347
1348        Ok(Array1::from_vec(predictions))
1349    }
1350
1351    /// Apply fallback strategy when pipeline execution fails
1352    fn apply_fallback_strategy(
1353        &self,
1354        x: &ArrayView2<'_, Float>,
1355        _y: Option<&ArrayView1<'_, Float>>,
1356    ) -> SklResult<Array1<f64>> {
1357        match self.fallback_strategy {
1358            FallbackStrategy::ReturnError => Err(SklearsError::InvalidData {
1359                reason: "Pipeline execution failed after maximum retries".to_string(),
1360            }),
1361            FallbackStrategy::SimplerPipeline => {
1362                // Use a very simple prediction strategy
1363                eprintln!("Falling back to simpler pipeline");
1364                let simple_predictions: Vec<f64> = x
1365                    .rows()
1366                    .into_iter()
1367                    .map(|row| {
1368                        // Simple strategy: return the mean of the first feature
1369                        if row.is_empty() {
1370                            0.0
1371                        } else {
1372                            row[0]
1373                        }
1374                    })
1375                    .collect();
1376                Ok(Array1::from_vec(simple_predictions))
1377            }
1378            FallbackStrategy::DefaultValues => {
1379                // Return default values (zeros)
1380                eprintln!("Falling back to default values");
1381                Ok(Array1::zeros(x.nrows()))
1382            }
1383            FallbackStrategy::SkipStep => {
1384                // Return input transformed to 1D (sum of features)
1385                eprintln!("Falling back by skipping failed step");
1386                let fallback_predictions: Vec<f64> = x
1387                    .rows()
1388                    .into_iter()
1389                    .map(|row| row.iter().copied().sum())
1390                    .collect();
1391                Ok(Array1::from_vec(fallback_predictions))
1392            }
1393        }
1394    }
1395}
1396
1397impl Default for RobustPipelineExecutor {
1398    fn default() -> Self {
1399        Self::new()
1400    }
1401}