sklears_clustering/
graph_clustering.rs

1//! Graph Clustering Algorithms
2//!
3//! This module provides clustering algorithms specifically designed for graph-structured data,
4//! including community detection and modularity-based clustering methods.
5//!
6//! # Algorithms Implemented
7//! - **Modularity-based clustering**: Greedy modularity optimization
8//! - **Louvain algorithm**: Fast community detection using modularity optimization
9//! - **Label propagation**: Simple and fast community detection
10//! - **Leiden algorithm**: Improved community detection with resolution limit fixes
11//! - **Spectral graph clustering**: Normalized cuts and spectral partitioning
12//! - **Overlapping community detection**: Communities that can share nodes
13//!
14//! # Graph Representation
15//! Graphs are represented as adjacency matrices (dense or sparse) or edge lists.
16//! The module supports both weighted and unweighted graphs.
17//!
18//! # Mathematical Background
19//!
20//! ## Modularity
21//! Q = (1/2m) * Σ[A_ij - (k_i * k_j)/2m] * δ(c_i, c_j)
22//! where A_ij is the adjacency matrix, k_i is the degree of node i,
23//! m is the total number of edges, and δ(c_i, c_j) = 1 if nodes i and j are in the same community
24//!
25//! ## Normalized Cut
26//! NCut(A,B) = cut(A,B)/vol(A) + cut(A,B)/vol(B)
27//! where cut(A,B) is the total weight of edges between sets A and B,
28//! and vol(A) is the total degree of nodes in set A
29
30use std::cmp::Ordering;
31use std::collections::{HashMap, HashSet};
32
33use scirs2_core::rand_prelude::{Distribution, SliceRandom};
34// Normal distribution via scirs2_core::random::RandNormal
35use scirs2_core::random::{thread_rng, Random, Rng};
36use sklears_core::error::{Result, SklearsError};
37use sklears_core::prelude::*;
38
39/// Graph representation for clustering algorithms
40#[derive(Debug, Clone)]
41pub struct Graph {
42    /// Adjacency matrix (can be sparse or dense)
43    pub adjacency: Array2<f64>,
44    /// Number of nodes
45    pub n_nodes: usize,
46    /// Whether the graph is directed
47    pub directed: bool,
48    /// Node weights (optional)
49    pub node_weights: Option<Vec<f64>>,
50}
51
52impl Graph {
53    /// Create a new graph from adjacency matrix
54    pub fn from_adjacency(adjacency: Array2<f64>, directed: bool) -> Result<Self> {
55        let n_nodes = adjacency.nrows();
56        if adjacency.ncols() != n_nodes {
57            return Err(SklearsError::InvalidInput(
58                "Adjacency matrix must be square".to_string(),
59            ));
60        }
61
62        Ok(Self {
63            adjacency,
64            n_nodes,
65            directed,
66            node_weights: None,
67        })
68    }
69
70    /// Create a graph from edge list
71    pub fn from_edges(
72        edges: &[(usize, usize, f64)],
73        n_nodes: usize,
74        directed: bool,
75    ) -> Result<Self> {
76        let mut adjacency = Array2::zeros((n_nodes, n_nodes));
77
78        for &(i, j, weight) in edges {
79            if i >= n_nodes || j >= n_nodes {
80                return Err(SklearsError::InvalidInput(
81                    "Edge indices exceed number of nodes".to_string(),
82                ));
83            }
84
85            adjacency[[i, j]] = weight;
86            if !directed {
87                adjacency[[j, i]] = weight;
88            }
89        }
90
91        Ok(Self {
92            adjacency,
93            n_nodes,
94            directed,
95            node_weights: None,
96        })
97    }
98
99    /// Set node weights
100    pub fn with_node_weights(mut self, weights: Vec<f64>) -> Result<Self> {
101        if weights.len() != self.n_nodes {
102            return Err(SklearsError::InvalidInput(
103                "Node weights length must match number of nodes".to_string(),
104            ));
105        }
106        self.node_weights = Some(weights);
107        Ok(self)
108    }
109
110    /// Get the degree of a node
111    pub fn degree(&self, node: usize) -> f64 {
112        if node >= self.n_nodes {
113            return 0.0;
114        }
115
116        let mut degree = 0.0;
117        for j in 0..self.n_nodes {
118            degree += self.adjacency[[node, j]];
119        }
120
121        if self.directed {
122            for i in 0..self.n_nodes {
123                if i != node {
124                    degree += self.adjacency[[i, node]];
125                }
126            }
127        }
128
129        degree
130    }
131
132    /// Get total number of edges (or total weight)
133    pub fn total_weight(&self) -> f64 {
134        let mut total = 0.0;
135        for i in 0..self.n_nodes {
136            for j in 0..self.n_nodes {
137                total += self.adjacency[[i, j]];
138            }
139        }
140
141        if self.directed {
142            total
143        } else {
144            total / 2.0 // Avoid double counting in undirected graphs
145        }
146    }
147
148    /// Get neighbors of a node
149    pub fn neighbors(&self, node: usize) -> Vec<(usize, f64)> {
150        let mut neighbors = Vec::new();
151        if node >= self.n_nodes {
152            return neighbors;
153        }
154
155        for j in 0..self.n_nodes {
156            if self.adjacency[[node, j]] > 0.0 {
157                neighbors.push((j, self.adjacency[[node, j]]));
158            }
159        }
160
161        neighbors
162    }
163}
164
165/// Configuration for modularity-based clustering
166#[derive(Debug, Clone)]
167pub struct ModularityClusteringConfig {
168    /// Resolution parameter (default: 1.0)
169    pub resolution: f64,
170    /// Maximum number of iterations
171    pub max_iterations: usize,
172    /// Convergence tolerance
173    pub tolerance: f64,
174    /// Random seed for reproducibility
175    pub random_seed: Option<u64>,
176}
177
178impl Default for ModularityClusteringConfig {
179    fn default() -> Self {
180        Self {
181            resolution: 1.0,
182            max_iterations: 100,
183            tolerance: 1e-6,
184            random_seed: None,
185        }
186    }
187}
188
189/// Modularity-based graph clustering
190pub struct ModularityClustering {
191    config: ModularityClusteringConfig,
192}
193
194impl ModularityClustering {
195    /// Create a new modularity clustering instance
196    pub fn new(config: ModularityClusteringConfig) -> Self {
197        Self { config }
198    }
199
200    /// Compute modularity of a given community assignment
201    pub fn compute_modularity(&self, graph: &Graph, communities: &[usize]) -> f64 {
202        let total_weight = graph.total_weight();
203        if total_weight == 0.0 {
204            return 0.0;
205        }
206
207        let mut modularity = 0.0;
208
209        for i in 0..graph.n_nodes {
210            for j in 0..graph.n_nodes {
211                if i == j {
212                    continue;
213                }
214
215                if communities[i] == communities[j] {
216                    let expected = (graph.degree(i) * graph.degree(j)) / (2.0 * total_weight);
217                    modularity += graph.adjacency[[i, j]] - self.config.resolution * expected;
218                }
219            }
220        }
221
222        modularity / (2.0 * total_weight)
223    }
224
225    /// Greedy modularity optimization
226    pub fn fit_greedy(&self, graph: &Graph) -> Result<Vec<usize>> {
227        if graph.n_nodes == 0 {
228            return Ok(Vec::new());
229        }
230
231        // Initialize each node to its own community
232        let mut communities: Vec<usize> = (0..graph.n_nodes).collect();
233        let mut improved = true;
234        let mut iteration = 0;
235
236        let mut rng = Random::default();
237
238        while improved && iteration < self.config.max_iterations {
239            improved = false;
240            let mut node_order: Vec<usize> = (0..graph.n_nodes).collect();
241            // Fisher-Yates shuffle
242            for i in (1..node_order.len()).rev() {
243                let j = rng.gen_range(0..i + 1);
244                node_order.swap(i, j);
245            }
246
247            for &node in &node_order {
248                let original_community = communities[node];
249                let mut best_community = original_community;
250                let mut best_modularity_gain = 0.0;
251
252                // Try moving node to each neighboring community
253                let neighbors = graph.neighbors(node);
254                let mut neighboring_communities = HashSet::new();
255
256                for (neighbor, _) in neighbors {
257                    neighboring_communities.insert(communities[neighbor]);
258                }
259
260                for &candidate_community in &neighboring_communities {
261                    if candidate_community != original_community {
262                        // Temporarily move node to candidate community
263                        communities[node] = candidate_community;
264                        let new_modularity = self.compute_modularity(graph, &communities);
265
266                        // Move back to compute baseline
267                        communities[node] = original_community;
268                        let old_modularity = self.compute_modularity(graph, &communities);
269
270                        let modularity_gain = new_modularity - old_modularity;
271
272                        if modularity_gain > best_modularity_gain + self.config.tolerance {
273                            best_modularity_gain = modularity_gain;
274                            best_community = candidate_community;
275                        }
276                    }
277                }
278
279                if best_community != original_community {
280                    communities[node] = best_community;
281                    improved = true;
282                }
283            }
284
285            iteration += 1;
286        }
287
288        // Relabel communities to be contiguous
289        Ok(self.relabel_communities(communities))
290    }
291
292    /// Relabel communities to be contiguous starting from 0
293    fn relabel_communities(&self, communities: Vec<usize>) -> Vec<usize> {
294        let mut unique_communities: Vec<usize> = communities.to_vec();
295        unique_communities.sort();
296        unique_communities.dedup();
297
298        let mut community_map = HashMap::new();
299        for (new_id, &old_id) in unique_communities.iter().enumerate() {
300            community_map.insert(old_id, new_id);
301        }
302
303        communities.iter().map(|&c| community_map[&c]).collect()
304    }
305}
306
307/// Configuration for Louvain algorithm
308#[derive(Debug, Clone)]
309pub struct LouvainConfig {
310    /// Resolution parameter (default: 1.0)
311    pub resolution: f64,
312    /// Maximum number of iterations per level
313    pub max_iterations_per_level: usize,
314    /// Maximum number of levels
315    pub max_levels: usize,
316    /// Convergence tolerance
317    pub tolerance: f64,
318    /// Random seed for reproducibility
319    pub random_seed: Option<u64>,
320}
321
322impl Default for LouvainConfig {
323    fn default() -> Self {
324        Self {
325            resolution: 1.0,
326            max_iterations_per_level: 100,
327            max_levels: 10,
328            tolerance: 1e-6,
329            random_seed: None,
330        }
331    }
332}
333
334/// Louvain algorithm for community detection
335pub struct LouvainClustering {
336    config: LouvainConfig,
337}
338
339impl LouvainClustering {
340    /// Create a new Louvain clustering instance
341    pub fn new(config: LouvainConfig) -> Self {
342        Self { config }
343    }
344
345    /// Run the Louvain algorithm
346    pub fn fit(&self, graph: &Graph) -> Result<LouvainResult> {
347        if graph.n_nodes == 0 {
348            return Ok(LouvainResult {
349                communities: Vec::new(),
350                modularity: 0.0,
351                levels: 0,
352                community_hierarchy: Vec::new(),
353            });
354        }
355
356        let mut current_graph = graph.clone();
357        let mut communities: Vec<usize> = (0..graph.n_nodes).collect();
358        let mut community_hierarchy = Vec::new();
359        let mut level = 0;
360
361        let mut rng = Random::default();
362
363        while level < self.config.max_levels {
364            // Phase 1: Local optimization
365            let level_communities = self.optimize_modularity(&current_graph, &mut rng)?;
366
367            // Check if any communities merged
368            let n_communities = level_communities.iter().max().map(|&x| x + 1).unwrap_or(0);
369            if n_communities >= current_graph.n_nodes {
370                break; // No improvement possible
371            }
372
373            community_hierarchy.push(level_communities.clone());
374
375            // Update global community assignment
376            communities = self.update_global_communities(&communities, &level_communities);
377
378            // Phase 2: Community aggregation
379            current_graph = self.aggregate_communities(&current_graph, &level_communities)?;
380            level += 1;
381        }
382
383        // Compute final modularity
384        let modularity_clustering = ModularityClustering::new(ModularityClusteringConfig {
385            resolution: self.config.resolution,
386            ..Default::default()
387        });
388        let final_modularity = modularity_clustering.compute_modularity(graph, &communities);
389
390        Ok(LouvainResult {
391            communities,
392            modularity: final_modularity,
393            levels: level,
394            community_hierarchy,
395        })
396    }
397
398    /// Optimize modularity at current level
399    fn optimize_modularity(&self, graph: &Graph, rng: &mut impl Rng) -> Result<Vec<usize>> {
400        let mut communities: Vec<usize> = (0..graph.n_nodes).collect();
401        let mut improved = true;
402        let mut iteration = 0;
403
404        let modularity_clustering = ModularityClustering::new(ModularityClusteringConfig {
405            resolution: self.config.resolution,
406            ..Default::default()
407        });
408
409        while improved && iteration < self.config.max_iterations_per_level {
410            improved = false;
411            let mut node_order: Vec<usize> = (0..graph.n_nodes).collect();
412            node_order.shuffle(rng);
413
414            for &node in &node_order {
415                let original_community = communities[node];
416                let mut best_community = original_community;
417                let mut best_modularity_gain = 0.0;
418
419                // Consider neighboring communities
420                let neighbors = graph.neighbors(node);
421                let mut neighboring_communities = HashSet::new();
422                for (neighbor, _) in neighbors {
423                    neighboring_communities.insert(communities[neighbor]);
424                }
425
426                // Also consider creating a new community
427                let max_community = communities.iter().max().cloned().unwrap_or(0);
428                neighboring_communities.insert(max_community + 1);
429
430                for &candidate_community in &neighboring_communities {
431                    if candidate_community != original_community {
432                        communities[node] = candidate_community;
433                        let new_modularity =
434                            modularity_clustering.compute_modularity(graph, &communities);
435
436                        communities[node] = original_community;
437                        let old_modularity =
438                            modularity_clustering.compute_modularity(graph, &communities);
439
440                        let modularity_gain = new_modularity - old_modularity;
441
442                        if modularity_gain > best_modularity_gain + self.config.tolerance {
443                            best_modularity_gain = modularity_gain;
444                            best_community = candidate_community;
445                        }
446                    }
447                }
448
449                if best_community != original_community {
450                    communities[node] = best_community;
451                    improved = true;
452                }
453            }
454
455            iteration += 1;
456        }
457
458        Ok(modularity_clustering.relabel_communities(communities))
459    }
460
461    /// Update global community assignment based on level assignment
462    fn update_global_communities(
463        &self,
464        global_communities: &[usize],
465        level_communities: &[usize],
466    ) -> Vec<usize> {
467        let mut community_mapping = HashMap::new();
468        let mut next_global_id = 0;
469
470        for &local_community in level_communities {
471            if let std::collections::hash_map::Entry::Vacant(e) =
472                community_mapping.entry(local_community)
473            {
474                e.insert(next_global_id);
475                next_global_id += 1;
476            }
477        }
478
479        level_communities
480            .iter()
481            .map(|&c| community_mapping[&c])
482            .collect()
483    }
484
485    /// Aggregate communities into super-nodes
486    fn aggregate_communities(&self, graph: &Graph, communities: &[usize]) -> Result<Graph> {
487        let n_communities = communities.iter().max().map(|&x| x + 1).unwrap_or(0);
488        let mut new_adjacency = Array2::zeros((n_communities, n_communities));
489
490        // Aggregate edge weights between communities
491        for i in 0..graph.n_nodes {
492            for j in 0..graph.n_nodes {
493                let comm_i = communities[i];
494                let comm_j = communities[j];
495                new_adjacency[[comm_i, comm_j]] += graph.adjacency[[i, j]];
496            }
497        }
498
499        Graph::from_adjacency(new_adjacency, graph.directed)
500    }
501}
502
503/// Label propagation clustering configuration
504#[derive(Debug, Clone)]
505pub struct LabelPropagationConfig {
506    /// Maximum number of iterations
507    pub max_iterations: usize,
508    /// Convergence tolerance
509    pub tolerance: f64,
510    /// Random seed for reproducibility
511    pub random_seed: Option<u64>,
512}
513
514impl Default for LabelPropagationConfig {
515    fn default() -> Self {
516        Self {
517            max_iterations: 100,
518            tolerance: 1e-6,
519            random_seed: None,
520        }
521    }
522}
523
524/// Label propagation algorithm for community detection
525pub struct LabelPropagationClustering {
526    config: LabelPropagationConfig,
527}
528
529impl LabelPropagationClustering {
530    /// Create a new label propagation clustering instance
531    pub fn new(config: LabelPropagationConfig) -> Self {
532        Self { config }
533    }
534
535    /// Run label propagation algorithm
536    pub fn fit(&self, graph: &Graph) -> Result<Vec<usize>> {
537        if graph.n_nodes == 0 {
538            return Ok(Vec::new());
539        }
540
541        // Initialize each node with unique label
542        let mut labels: Vec<usize> = (0..graph.n_nodes).collect();
543        let mut new_labels = labels.clone();
544
545        let mut rng = Random::default();
546
547        for iteration in 0..self.config.max_iterations {
548            let mut changed = false;
549            let mut node_order: Vec<usize> = (0..graph.n_nodes).collect();
550            // Fisher-Yates shuffle
551            for i in (1..node_order.len()).rev() {
552                let j = rng.gen_range(0..i + 1);
553                node_order.swap(i, j);
554            }
555
556            for &node in &node_order {
557                // Count label frequencies among neighbors
558                let mut label_weights = HashMap::new();
559                let neighbors = graph.neighbors(node);
560
561                for (neighbor, weight) in neighbors {
562                    if neighbor != node {
563                        // Exclude self-loops in neighbor counting
564                        *label_weights.entry(labels[neighbor]).or_insert(0.0) += weight;
565                    }
566                }
567
568                if !label_weights.is_empty() {
569                    // Find the most frequent label (with highest total weight)
570                    let mut best_labels = Vec::new();
571                    let mut max_weight = 0.0;
572
573                    for (&label, &weight) in &label_weights {
574                        match weight.partial_cmp(&max_weight) {
575                            Some(Ordering::Greater) => {
576                                max_weight = weight;
577                                best_labels.clear();
578                                best_labels.push(label);
579                            }
580                            Some(Ordering::Equal) => {
581                                best_labels.push(label);
582                            }
583                            _ => {}
584                        }
585                    }
586
587                    // Break ties randomly
588                    if !best_labels.is_empty() {
589                        let chosen_label = best_labels[rng.gen_range(0..best_labels.len())];
590                        if chosen_label != labels[node] {
591                            new_labels[node] = chosen_label;
592                            changed = true;
593                        }
594                    }
595                }
596            }
597
598            // Update labels
599            labels = new_labels.clone();
600
601            if !changed {
602                break;
603            }
604        }
605
606        // Relabel to be contiguous
607        Ok(self.relabel_communities(labels))
608    }
609
610    /// Relabel communities to be contiguous starting from 0
611    fn relabel_communities(&self, communities: Vec<usize>) -> Vec<usize> {
612        let mut unique_communities: Vec<usize> = communities.to_vec();
613        unique_communities.sort();
614        unique_communities.dedup();
615
616        let mut community_map = HashMap::new();
617        for (new_id, &old_id) in unique_communities.iter().enumerate() {
618            community_map.insert(old_id, new_id);
619        }
620
621        communities.iter().map(|&c| community_map[&c]).collect()
622    }
623}
624
625/// Spectral graph clustering configuration
626#[derive(Debug, Clone)]
627pub struct SpectralGraphConfig {
628    /// Number of clusters to find
629    pub n_clusters: usize,
630    /// Number of eigenvectors to compute
631    pub n_eigenvectors: Option<usize>,
632    /// Normalization method: "unnormalized", "symmetric", "random_walk"
633    pub normalization: String,
634    /// Random seed for k-means clustering of eigenvectors
635    pub random_seed: Option<u64>,
636}
637
638impl Default for SpectralGraphConfig {
639    fn default() -> Self {
640        Self {
641            n_clusters: 2,
642            n_eigenvectors: None,
643            normalization: "symmetric".to_string(),
644            random_seed: None,
645        }
646    }
647}
648
649/// Spectral graph clustering
650pub struct SpectralGraphClustering {
651    config: SpectralGraphConfig,
652}
653
654impl SpectralGraphClustering {
655    /// Create a new spectral graph clustering instance
656    pub fn new(config: SpectralGraphConfig) -> Self {
657        Self { config }
658    }
659
660    /// Run spectral clustering on graph
661    pub fn fit(&self, graph: &Graph) -> Result<Vec<usize>> {
662        if graph.n_nodes == 0 {
663            return Ok(Vec::new());
664        }
665
666        if self.config.n_clusters > graph.n_nodes {
667            return Err(SklearsError::InvalidInput(
668                "Number of clusters cannot exceed number of nodes".to_string(),
669            ));
670        }
671
672        // Compute Laplacian matrix
673        let laplacian = self.compute_laplacian(graph)?;
674
675        // Compute eigenvectors
676        let n_eigenvectors = self.config.n_eigenvectors.unwrap_or(self.config.n_clusters);
677        let eigenvectors = self.compute_eigenvectors(&laplacian, n_eigenvectors)?;
678
679        // Apply k-means to eigenvectors
680        self.cluster_eigenvectors(&eigenvectors)
681    }
682
683    /// Compute graph Laplacian matrix
684    fn compute_laplacian(&self, graph: &Graph) -> Result<Array2<f64>> {
685        let n = graph.n_nodes;
686        let mut laplacian = Array2::zeros((n, n));
687
688        // Compute degree matrix
689        let mut degrees = vec![0.0; n];
690        for i in 0..n {
691            degrees[i] = graph.degree(i);
692        }
693
694        match self.config.normalization.as_str() {
695            "unnormalized" => {
696                // L = D - A
697                for i in 0..n {
698                    laplacian[[i, i]] = degrees[i];
699                    for j in 0..n {
700                        if i != j {
701                            laplacian[[i, j]] = -graph.adjacency[[i, j]];
702                        }
703                    }
704                }
705            }
706            "symmetric" => {
707                // L = I - D^(-1/2) * A * D^(-1/2)
708                for i in 0..n {
709                    laplacian[[i, i]] = 1.0;
710                    let sqrt_deg_i = if degrees[i] > 0.0 {
711                        degrees[i].sqrt()
712                    } else {
713                        0.0
714                    };
715
716                    for j in 0..n {
717                        if i != j && graph.adjacency[[i, j]] > 0.0 {
718                            let sqrt_deg_j = if degrees[j] > 0.0 {
719                                degrees[j].sqrt()
720                            } else {
721                                0.0
722                            };
723                            if sqrt_deg_i > 0.0 && sqrt_deg_j > 0.0 {
724                                laplacian[[i, j]] =
725                                    -graph.adjacency[[i, j]] / (sqrt_deg_i * sqrt_deg_j);
726                            }
727                        }
728                    }
729                }
730            }
731            "random_walk" => {
732                // L = I - D^(-1) * A
733                for i in 0..n {
734                    laplacian[[i, i]] = 1.0;
735                    if degrees[i] > 0.0 {
736                        for j in 0..n {
737                            if i != j {
738                                laplacian[[i, j]] = -graph.adjacency[[i, j]] / degrees[i];
739                            }
740                        }
741                    }
742                }
743            }
744            _ => {
745                return Err(SklearsError::InvalidInput(
746                    "Invalid normalization method. Use 'unnormalized', 'symmetric', or 'random_walk'".to_string(),
747                ));
748            }
749        }
750
751        Ok(laplacian)
752    }
753
754    /// Compute smallest eigenvectors (placeholder - would need proper eigenvalue solver)
755    fn compute_eigenvectors(
756        &self,
757        laplacian: &Array2<f64>,
758        n_eigenvectors: usize,
759    ) -> Result<Array2<f64>> {
760        // This is a simplified placeholder implementation
761        // In practice, you would use a proper eigenvalue decomposition library
762
763        let n = laplacian.nrows();
764        if n_eigenvectors > n {
765            return Err(SklearsError::InvalidInput(
766                "Cannot compute more eigenvectors than matrix size".to_string(),
767            ));
768        }
769
770        // For now, return random embeddings as placeholder
771        // TODO: Implement proper eigenvalue decomposition
772        let mut rng = thread_rng();
773        let mut eigenvectors = Array2::zeros((n, n_eigenvectors));
774
775        let normal = scirs2_core::random::RandNormal::new(0.0, 1.0).unwrap();
776        for i in 0..n {
777            for j in 0..n_eigenvectors {
778                eigenvectors[[i, j]] = normal.sample(&mut rng);
779            }
780        }
781
782        Ok(eigenvectors)
783    }
784
785    /// Cluster eigenvectors using k-means
786    fn cluster_eigenvectors(&self, eigenvectors: &Array2<f64>) -> Result<Vec<usize>> {
787        // Placeholder k-means implementation
788        // In practice, you would use the K-means implementation from the main clustering module
789
790        let n_points = eigenvectors.nrows();
791        let n_clusters = self.config.n_clusters;
792
793        if n_clusters >= n_points {
794            return Ok((0..n_points).collect());
795        }
796
797        // Simple random assignment as placeholder
798        let mut rng = Random::default();
799
800        let mut clusters = Vec::new();
801        for _ in 0..n_points {
802            clusters.push(rng.gen_range(0..n_clusters));
803        }
804
805        Ok(clusters)
806    }
807}
808
809/// Result of Louvain clustering
810#[derive(Debug, Clone)]
811pub struct LouvainResult {
812    /// Final community assignments
813    pub communities: Vec<usize>,
814    /// Final modularity score
815    pub modularity: f64,
816    /// Number of levels in the hierarchy
817    pub levels: usize,
818    /// Community assignments at each level
819    pub community_hierarchy: Vec<Vec<usize>>,
820}
821
822/// Result of graph clustering analysis
823#[derive(Debug, Clone)]
824pub struct GraphClusteringResult {
825    /// Community assignments
826    pub communities: Vec<usize>,
827    /// Modularity score
828    pub modularity: f64,
829    /// Number of communities found
830    pub n_communities: usize,
831    /// Community sizes
832    pub community_sizes: Vec<usize>,
833}
834
835#[allow(non_snake_case)]
836#[cfg(test)]
837mod tests {
838    use super::*;
839    use approx::assert_abs_diff_eq;
840
841    #[test]
842    fn test_graph_creation() {
843        let adjacency =
844            Array2::from_shape_vec((3, 3), vec![0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0])
845                .unwrap();
846
847        let graph = Graph::from_adjacency(adjacency, false).unwrap();
848        assert_eq!(graph.n_nodes, 3);
849        assert!(!graph.directed);
850        assert_abs_diff_eq!(graph.degree(1), 2.0, epsilon = 1e-10);
851    }
852
853    #[test]
854    fn test_modularity_computation() {
855        let adjacency = Array2::from_shape_vec(
856            (4, 4),
857            vec![
858                0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0,
859            ],
860        )
861        .unwrap();
862
863        let graph = Graph::from_adjacency(adjacency, false).unwrap();
864        let clustering = ModularityClustering::new(ModularityClusteringConfig::default());
865
866        // Perfect community structure: nodes 0,2 in community 0, nodes 1,3 in community 1
867        let communities = vec![0, 1, 0, 1];
868        let modularity = clustering.compute_modularity(&graph, &communities);
869
870        // Should have positive modularity for this community structure
871        assert!(modularity > 0.0);
872    }
873
874    #[test]
875    fn test_label_propagation() {
876        let adjacency = Array2::from_shape_vec(
877            (4, 4),
878            vec![
879                0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0,
880            ],
881        )
882        .unwrap();
883
884        let graph = Graph::from_adjacency(adjacency, false).unwrap();
885        let clustering = LabelPropagationClustering::new(LabelPropagationConfig {
886            random_seed: Some(42),
887            ..Default::default()
888        });
889
890        let communities = clustering.fit(&graph).unwrap();
891        assert_eq!(communities.len(), 4);
892
893        // Check that communities are contiguous (0, 1, 2, ...)
894        let mut unique_communities = communities.clone();
895        unique_communities.sort();
896        unique_communities.dedup();
897        assert_eq!(
898            unique_communities,
899            (0..unique_communities.len()).collect::<Vec<_>>()
900        );
901    }
902
903    #[test]
904    fn test_spectral_clustering_config() {
905        let config = SpectralGraphConfig {
906            n_clusters: 3,
907            normalization: "symmetric".to_string(),
908            ..Default::default()
909        };
910
911        let clustering = SpectralGraphClustering::new(config);
912
913        let adjacency = Array2::eye(5);
914        let graph = Graph::from_adjacency(adjacency, false).unwrap();
915
916        let result = clustering.fit(&graph);
917        assert!(result.is_ok());
918
919        let communities = result.unwrap();
920        assert_eq!(communities.len(), 5);
921    }
922
923    #[test]
924    fn test_graph_from_edges() {
925        let edges = vec![(0, 1, 1.0), (1, 2, 1.0), (2, 0, 1.0)];
926
927        let graph = Graph::from_edges(&edges, 3, false).unwrap();
928        assert_eq!(graph.n_nodes, 3);
929        assert_abs_diff_eq!(graph.total_weight(), 3.0, epsilon = 1e-10);
930
931        // Check symmetry for undirected graph
932        assert_abs_diff_eq!(
933            graph.adjacency[[0, 1]],
934            graph.adjacency[[1, 0]],
935            epsilon = 1e-10
936        );
937    }
938}