1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
/* LICENSE BEGIN
    This file is part of the SixtyFPS Project -- https://sixtyfps.io
    Copyright (c) 2020 Olivier Goffart <olivier.goffart@sixtyfps.io>
    Copyright (c) 2020 Simon Hausmann <simon.hausmann@sixtyfps.io>

    SPDX-License-Identifier: GPL-3.0-only
    This file is also available under commercial licensing terms.
    Please contact info@sixtyfps.io for more information.
LICENSE END */
use std::collections::{BTreeMap, HashMap, HashSet};
use std::{fmt::Display, rc::Rc};

use crate::expression_tree::{Expression, Unit};
use crate::object_tree::Component;
use crate::typeregister::TypeRegister;

#[derive(Debug, Clone)]
pub enum Type {
    /// Correspond to an uninitialized type, or an error
    Invalid,
    /// The type of an expression that return nothing
    Void,
    Component(Rc<Component>),
    Builtin(Rc<BuiltinElement>),
    Native(Rc<NativeClass>),

    Signal {
        return_type: Option<Box<Type>>,
        args: Vec<Type>,
    },
    Function {
        return_type: Box<Type>,
        args: Vec<Type>,
    },

    // Other property types:
    Float32,
    Int32,
    String,
    Color,
    Duration,
    Length,
    LogicalLength,
    Percent,
    Resource,
    Bool,
    Model,
    PathElements,
    Easing,

    Array(Box<Type>),
    Object {
        fields: BTreeMap<String, Type>,
        name: Option<String>,
    },
    Enumeration(Rc<Enumeration>),

    ElementReference,
}

impl core::cmp::PartialEq for Type {
    fn eq(&self, other: &Self) -> bool {
        match self {
            Type::Invalid => matches!(other, Type::Invalid),
            Type::Void => matches!(other, Type::Void),
            Type::Component(a) => matches!(other, Type::Component(b) if Rc::ptr_eq(a, b)),
            Type::Builtin(a) => matches!(other, Type::Builtin(b) if Rc::ptr_eq(a, b)),
            Type::Native(a) => matches!(other, Type::Native(b) if Rc::ptr_eq(a, b)),
            Type::Signal { args: a, return_type: ra } => {
                matches!(other, Type::Signal { args: b, return_type: rb } if a == b && ra == rb)
            }
            Type::Function { return_type: lhs_rt, args: lhs_args } => {
                matches!(other, Type::Function { return_type: rhs_rt, args: rhs_args } if lhs_rt == rhs_rt && lhs_args == rhs_args)
            }
            Type::Float32 => matches!(other, Type::Float32),
            Type::Int32 => matches!(other, Type::Int32),
            Type::String => matches!(other, Type::String),
            Type::Color => matches!(other, Type::Color),
            Type::Duration => matches!(other, Type::Duration),
            Type::Length => matches!(other, Type::Length),
            Type::LogicalLength => matches!(other, Type::LogicalLength),
            Type::Percent => matches!(other, Type::Percent),
            Type::Resource => matches!(other, Type::Resource),
            Type::Bool => matches!(other, Type::Bool),
            Type::Model => matches!(other, Type::Model),
            Type::PathElements => matches!(other, Type::PathElements),
            Type::Easing => matches!(other, Type::Easing),
            Type::Array(a) => matches!(other, Type::Array(b) if a == b),
            Type::Object { fields, name } => {
                matches!(other, Type::Object{fields: f, name: n} if fields == f && name == n)
            }
            Type::Enumeration(lhs) => matches!(other, Type::Enumeration(rhs) if lhs == rhs),
            Type::ElementReference => matches!(other, Type::ElementReference),
        }
    }
}

impl Display for Type {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Type::Invalid => write!(f, "<error>"),
            Type::Void => write!(f, "void"),
            Type::Component(c) => c.id.fmt(f),
            Type::Builtin(b) => b.name.fmt(f),
            Type::Native(b) => b.class_name.fmt(f),
            Type::Signal { args, return_type } => {
                write!(f, "signal")?;
                if !args.is_empty() {
                    write!(f, "(")?;
                    for (i, arg) in args.iter().enumerate() {
                        if i > 0 {
                            write!(f, ",")?;
                        }
                        write!(f, "{}", arg)?;
                    }
                    write!(f, ")")?
                }
                if let Some(rt) = return_type {
                    write!(f, "-> {}", rt)?;
                }
                Ok(())
            }
            Type::Function { return_type, args } => {
                write!(f, "function(")?;
                for (i, arg) in args.iter().enumerate() {
                    if i > 0 {
                        write!(f, ",")?;
                    }
                    write!(f, "{}", arg)?;
                }
                write!(f, ") -> {}", return_type)
            }
            Type::Float32 => write!(f, "float"),
            Type::Int32 => write!(f, "int"),
            Type::String => write!(f, "string"),
            Type::Duration => write!(f, "duration"),
            Type::Length => write!(f, "length"),
            Type::LogicalLength => write!(f, "logical_length"),
            Type::Percent => write!(f, "percent"),
            Type::Color => write!(f, "color"),
            Type::Resource => write!(f, "resource"),
            Type::Bool => write!(f, "bool"),
            Type::Model => write!(f, "model"),
            Type::Array(t) => write!(f, "[{}]", t),
            Type::Object { name: Some(name), .. } => write!(f, "{}", name),
            Type::Object { fields, name: None } => {
                write!(f, "{{ ")?;
                for (k, v) in fields {
                    write!(f, "{}: {},", k, v)?;
                }
                write!(f, "}}")
            }

            Type::PathElements => write!(f, "pathelements"),
            Type::Easing => write!(f, "easing"),
            Type::Enumeration(enumeration) => write!(f, "enum {}", enumeration.name),
            Type::ElementReference => write!(f, "element ref"),
        }
    }
}

impl Type {
    pub fn is_object_type(&self) -> bool {
        matches!(self, Self::Component(_) | Self::Builtin(_))
    }

    /// valid type for properties
    pub fn is_property_type(&self) -> bool {
        matches!(self, Self::Float32
            | Self::Int32
            | Self::String
            | Self::Color
            | Self::Duration
            | Self::Length
            | Self::LogicalLength
            | Self::Percent
            | Self::Resource
            | Self::Bool
            | Self::Model
            | Self::Easing
            | Self::Enumeration(_)
            | Self::ElementReference
            | Self::Object { .. }
            | Self::Array(_))
    }

    pub fn ok_for_public_api(&self) -> bool {
        // Duration and Easing don't have good types for public API exposure yet.
        !matches!(self, Self::Duration | Self::Easing)
    }

    pub fn lookup_property(&self, name: &str) -> Type {
        match self {
            Type::Component(c) => c.root_element.borrow().lookup_property(name),
            Type::Builtin(b) => b.properties.get(name).cloned().unwrap_or_else(|| {
                if b.is_non_item_type {
                    Type::Invalid
                } else {
                    crate::typeregister::reserved_property(name)
                }
            }),
            Type::Native(n) => n.lookup_property(name).unwrap_or_default(),
            _ => Type::Invalid,
        }
    }

    pub fn lookup_type_for_child_element(
        &self,
        name: &str,
        tr: &TypeRegister,
    ) -> Result<Type, String> {
        match self {
            Type::Component(component) => {
                return component
                    .root_element
                    .borrow()
                    .base_type
                    .lookup_type_for_child_element(name, tr)
            }
            Type::Builtin(builtin) => {
                if let Some(child_type) = builtin.additional_accepted_child_types.get(name) {
                    return Ok(child_type.clone());
                }
                if builtin.disallow_global_types_as_child_elements {
                    let mut valid_children: Vec<_> =
                        builtin.additional_accepted_child_types.keys().cloned().collect();
                    valid_children.sort();

                    return Err(format!(
                        "{} is not allowed within {}. Only {} are valid children",
                        name,
                        builtin.native_class.class_name,
                        valid_children.join(" ")
                    ));
                }
            }
            _ => {}
        };
        tr.lookup_element(name)
    }

    pub fn lookup_member_function(&self, name: &str) -> Expression {
        match self {
            Type::Builtin(builtin) => {
                builtin.member_functions.get(name).cloned().unwrap_or(Expression::Invalid)
            }
            _ => Expression::Invalid,
        }
    }

    /// Assume this is a builtin type, panic if it isn't
    pub fn as_builtin(&self) -> &BuiltinElement {
        match self {
            Type::Builtin(b) => &b,
            Type::Component(_) => panic!("This should not happen because of inlining"),
            _ => panic!("invalid type"),
        }
    }

    /// Assume this is a builtin type, panic if it isn't
    pub fn as_native(&self) -> &NativeClass {
        match self {
            Type::Native(b) => &b,
            Type::Component(_) => {
                panic!("This should not happen because of native class resolution")
            }
            _ => panic!("invalid type"),
        }
    }

    /// Assime it is a Component, panic if it isn't
    pub fn as_component(&self) -> &Rc<Component> {
        match self {
            Type::Component(c) => c,
            _ => panic!("should be a component because of the repeater_component pass"),
        }
    }

    /// Return true if the type can be converted to the other type
    pub fn can_convert(&self, other: &Self) -> bool {
        let can_convert_object = |a: &BTreeMap<String, Type>, b: &BTreeMap<String, Type>| {
            // the object `b` has property that the object `a` doesn't
            let mut has_more_property = false;
            for (k, v) in b {
                match a.get(k) {
                    Some(t) if !t.can_convert(v) => return false,
                    None => has_more_property = true,
                    _ => (),
                }
            }
            if has_more_property {
                // we should reject the conversion if `a` has property that `b` doesn't have
                if a.keys().any(|k| !b.contains_key(k)) {
                    return false;
                }
            }
            true
        };

        match (self, other) {
            (a, b) if a == b => true,
            (_, Type::Invalid)
            | (_, Type::Void)
            | (Type::Float32, Type::Int32)
            | (Type::Float32, Type::String)
            | (Type::Int32, Type::Float32)
            | (Type::Int32, Type::String)
            | (Type::Array(_), Type::Model)
            | (Type::Float32, Type::Model)
            | (Type::Int32, Type::Model)
            | (Type::Length, Type::LogicalLength)
            | (Type::LogicalLength, Type::Length)
            | (Type::Percent, Type::Float32) => true,
            (Type::Object { fields: a, .. }, Type::Object { fields: b, .. }) => {
                can_convert_object(a, b)
            }
            _ => false,
        }
    }

    pub fn collect_contextual_types(
        &self,
        context_restricted_types: &mut HashMap<String, HashSet<String>>,
    ) {
        let builtin = match self {
            Type::Builtin(ty) => ty,
            _ => return,
        };
        for (accepted_child_type_name, accepted_child_type) in
            builtin.additional_accepted_child_types.iter()
        {
            context_restricted_types
                .entry(accepted_child_type_name.clone())
                .or_default()
                .insert(builtin.native_class.class_name.clone());

            accepted_child_type.collect_contextual_types(context_restricted_types);
        }
    }

    /// If this is a number type which should be used with an unit, this returns the default unit
    /// otherwise, returns None
    pub fn default_unit(&self) -> Option<Unit> {
        match self {
            Type::Duration => Some(Unit::Ms),
            Type::Length => Some(Unit::Phx),
            Type::LogicalLength => Some(Unit::Px),
            Type::Percent => Some(Unit::Percent),
            Type::Invalid => None,
            Type::Void => None,
            Type::Component(_) => None,
            Type::Builtin(_) => None,
            Type::Native(_) => None,
            Type::Signal { .. } => None,
            Type::Function { .. } => None,
            Type::Float32 => None,
            Type::Int32 => None,
            Type::String => None,
            Type::Color => None,
            Type::Resource => None,
            Type::Bool => None,
            Type::Model => None,
            Type::PathElements => None,
            Type::Easing => None,
            Type::Array(_) => None,
            Type::Object { .. } => None,
            Type::Enumeration(_) => None,
            Type::ElementReference => None,
        }
    }
}

impl Default for Type {
    fn default() -> Self {
        Self::Invalid
    }
}

#[derive(Debug, Clone, Default)]
pub struct NativeClass {
    pub parent: Option<Rc<NativeClass>>,
    pub class_name: String,
    pub vtable_symbol: String,
    pub properties: HashMap<String, Type>,
    pub cpp_type: Option<String>,
    pub rust_type_constructor: Option<String>,
}

impl NativeClass {
    pub fn new(class_name: &str) -> Self {
        let vtable_symbol = format!("{}VTable", class_name);
        Self {
            class_name: class_name.into(),
            vtable_symbol,
            properties: Default::default(),
            ..Default::default()
        }
    }

    pub fn new_with_properties(
        class_name: &str,
        properties: impl IntoIterator<Item = (String, Type)>,
    ) -> Self {
        let mut class = Self::new(class_name);
        class.properties = properties.into_iter().collect();
        class
    }

    pub fn property_count(&self) -> usize {
        self.properties.len() + self.parent.clone().map(|p| p.property_count()).unwrap_or_default()
    }

    pub fn local_property_iter(&self) -> impl Iterator<Item = (&String, &Type)> {
        self.properties.iter()
    }

    pub fn visit_class_hierarchy(self: Rc<Self>, mut visitor: impl FnMut(&Rc<Self>)) {
        visitor(&self);
        if let Some(parent_class) = &self.parent {
            parent_class.clone().visit_class_hierarchy(visitor)
        }
    }

    pub fn lookup_property(&self, name: &str) -> Option<Type> {
        if let Some(ty) = self.properties.get(name) {
            Some(ty.clone())
        } else if let Some(parent_class) = &self.parent {
            parent_class.lookup_property(name)
        } else {
            None
        }
    }

    fn lookup_property_distance(self: Rc<Self>, name: &str) -> (usize, Rc<Self>) {
        let mut distance = 0;
        let mut class = self;
        loop {
            if class.properties.contains_key(name) {
                return (distance, class);
            }
            distance += 1;
            class = class.parent.as_ref().unwrap().clone();
        }
    }

    pub fn select_minimal_class_based_on_property_usage<'a>(
        self: Rc<Self>,
        properties_used: impl Iterator<Item = &'a String>,
    ) -> Rc<Self> {
        let (_min_distance, minimal_class) = properties_used.fold(
            (std::usize::MAX, self.clone()),
            |(current_distance, current_class), prop_name| {
                let (prop_distance, prop_class) = self.clone().lookup_property_distance(&prop_name);

                if prop_distance < current_distance {
                    (prop_distance, prop_class)
                } else {
                    (current_distance, current_class)
                }
            },
        );
        minimal_class
    }
}

#[derive(Debug, Clone, Default)]
pub struct BuiltinElement {
    pub name: String,
    pub native_class: Rc<NativeClass>,
    pub properties: HashMap<String, Type>,
    pub default_bindings: HashMap<String, Expression>,
    pub additional_accepted_child_types: HashMap<String, Type>,
    pub disallow_global_types_as_child_elements: bool,
    /// Non-item type do not have reserved properties (x/width/rowspan/...) added to them  (eg: PropertyAnimation)
    pub is_non_item_type: bool,
    pub member_functions: HashMap<String, Expression>,
    pub is_global: bool,
    /// True if this type has a default `width:100%; height:100%`
    pub expands_to_parent_geometry: bool,
}

impl BuiltinElement {
    pub fn new(native_class: Rc<NativeClass>) -> Self {
        let mut properties = HashMap::new();
        native_class.clone().visit_class_hierarchy(|class| {
            for (prop_name, prop_type) in class.local_property_iter() {
                properties.insert(prop_name.clone(), prop_type.clone());
            }
        });
        Self {
            name: native_class.class_name.clone(),
            native_class,
            properties,
            ..Default::default()
        }
    }
}

#[test]
fn test_select_minimal_class_based_on_property_usage() {
    let first = Rc::new(NativeClass::new_with_properties(
        "first_class",
        [("first_prop".to_owned(), Type::Int32)].iter().cloned(),
    ));

    let mut second = NativeClass::new_with_properties(
        "second_class",
        [("second_prop".to_owned(), Type::Int32)].iter().cloned(),
    );
    second.parent = Some(first.clone());
    let second = Rc::new(second);

    let reduce_to_first = second
        .clone()
        .select_minimal_class_based_on_property_usage(["first_prop".to_owned()].iter());

    assert_eq!(reduce_to_first.class_name, first.class_name);

    let reduce_to_second = second
        .clone()
        .select_minimal_class_based_on_property_usage(["second_prop".to_owned()].iter());

    assert_eq!(reduce_to_second.class_name, second.class_name);

    let reduce_to_second = second.clone().select_minimal_class_based_on_property_usage(
        ["first_prop".to_owned(), "second_prop".to_owned()].iter(),
    );

    assert_eq!(reduce_to_second.class_name, second.class_name);
}

#[derive(Debug, Clone)]
pub struct Enumeration {
    pub name: String,
    pub values: Vec<String>,
    pub default_value: usize, // index in values
}

impl PartialEq for Enumeration {
    fn eq(&self, other: &Self) -> bool {
        self.name.eq(&other.name)
    }
}

impl Enumeration {
    pub fn default_value(self: Rc<Self>) -> EnumerationValue {
        EnumerationValue { value: self.default_value, enumeration: self.clone() }
    }

    pub fn try_value_from_string(self: Rc<Self>, value: &str) -> Option<EnumerationValue> {
        self.values.iter().enumerate().find_map(|(idx, name)| {
            if name == value {
                Some(EnumerationValue { value: idx, enumeration: self.clone() })
            } else {
                None
            }
        })
    }
}

#[derive(Clone, Debug)]
pub struct EnumerationValue {
    pub value: usize, // index in enumeration.values
    pub enumeration: Rc<Enumeration>,
}

impl PartialEq for EnumerationValue {
    fn eq(&self, other: &Self) -> bool {
        Rc::ptr_eq(&self.enumeration, &other.enumeration) && self.value == other.value
    }
}

impl std::fmt::Display for EnumerationValue {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.enumeration.values[self.value].fmt(f)
    }
}