use std::collections::{BTreeMap, HashMap, HashSet};
use std::{fmt::Display, rc::Rc};
use crate::expression_tree::{Expression, Unit};
use crate::object_tree::Component;
use crate::typeregister::TypeRegister;
#[derive(Debug, Clone)]
pub enum Type {
Invalid,
Void,
Component(Rc<Component>),
Builtin(Rc<BuiltinElement>),
Native(Rc<NativeClass>),
Signal {
return_type: Option<Box<Type>>,
args: Vec<Type>,
},
Function {
return_type: Box<Type>,
args: Vec<Type>,
},
Float32,
Int32,
String,
Color,
Duration,
Length,
LogicalLength,
Percent,
Resource,
Bool,
Model,
PathElements,
Easing,
Array(Box<Type>),
Object {
fields: BTreeMap<String, Type>,
name: Option<String>,
},
Enumeration(Rc<Enumeration>),
ElementReference,
}
impl core::cmp::PartialEq for Type {
fn eq(&self, other: &Self) -> bool {
match self {
Type::Invalid => matches!(other, Type::Invalid),
Type::Void => matches!(other, Type::Void),
Type::Component(a) => matches!(other, Type::Component(b) if Rc::ptr_eq(a, b)),
Type::Builtin(a) => matches!(other, Type::Builtin(b) if Rc::ptr_eq(a, b)),
Type::Native(a) => matches!(other, Type::Native(b) if Rc::ptr_eq(a, b)),
Type::Signal { args: a, return_type: ra } => {
matches!(other, Type::Signal { args: b, return_type: rb } if a == b && ra == rb)
}
Type::Function { return_type: lhs_rt, args: lhs_args } => {
matches!(other, Type::Function { return_type: rhs_rt, args: rhs_args } if lhs_rt == rhs_rt && lhs_args == rhs_args)
}
Type::Float32 => matches!(other, Type::Float32),
Type::Int32 => matches!(other, Type::Int32),
Type::String => matches!(other, Type::String),
Type::Color => matches!(other, Type::Color),
Type::Duration => matches!(other, Type::Duration),
Type::Length => matches!(other, Type::Length),
Type::LogicalLength => matches!(other, Type::LogicalLength),
Type::Percent => matches!(other, Type::Percent),
Type::Resource => matches!(other, Type::Resource),
Type::Bool => matches!(other, Type::Bool),
Type::Model => matches!(other, Type::Model),
Type::PathElements => matches!(other, Type::PathElements),
Type::Easing => matches!(other, Type::Easing),
Type::Array(a) => matches!(other, Type::Array(b) if a == b),
Type::Object { fields, name } => {
matches!(other, Type::Object{fields: f, name: n} if fields == f && name == n)
}
Type::Enumeration(lhs) => matches!(other, Type::Enumeration(rhs) if lhs == rhs),
Type::ElementReference => matches!(other, Type::ElementReference),
}
}
}
impl Display for Type {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Type::Invalid => write!(f, "<error>"),
Type::Void => write!(f, "void"),
Type::Component(c) => c.id.fmt(f),
Type::Builtin(b) => b.name.fmt(f),
Type::Native(b) => b.class_name.fmt(f),
Type::Signal { args, return_type } => {
write!(f, "signal")?;
if !args.is_empty() {
write!(f, "(")?;
for (i, arg) in args.iter().enumerate() {
if i > 0 {
write!(f, ",")?;
}
write!(f, "{}", arg)?;
}
write!(f, ")")?
}
if let Some(rt) = return_type {
write!(f, "-> {}", rt)?;
}
Ok(())
}
Type::Function { return_type, args } => {
write!(f, "function(")?;
for (i, arg) in args.iter().enumerate() {
if i > 0 {
write!(f, ",")?;
}
write!(f, "{}", arg)?;
}
write!(f, ") -> {}", return_type)
}
Type::Float32 => write!(f, "float"),
Type::Int32 => write!(f, "int"),
Type::String => write!(f, "string"),
Type::Duration => write!(f, "duration"),
Type::Length => write!(f, "length"),
Type::LogicalLength => write!(f, "logical_length"),
Type::Percent => write!(f, "percent"),
Type::Color => write!(f, "color"),
Type::Resource => write!(f, "resource"),
Type::Bool => write!(f, "bool"),
Type::Model => write!(f, "model"),
Type::Array(t) => write!(f, "[{}]", t),
Type::Object { name: Some(name), .. } => write!(f, "{}", name),
Type::Object { fields, name: None } => {
write!(f, "{{ ")?;
for (k, v) in fields {
write!(f, "{}: {},", k, v)?;
}
write!(f, "}}")
}
Type::PathElements => write!(f, "pathelements"),
Type::Easing => write!(f, "easing"),
Type::Enumeration(enumeration) => write!(f, "enum {}", enumeration.name),
Type::ElementReference => write!(f, "element ref"),
}
}
}
impl Type {
pub fn is_object_type(&self) -> bool {
matches!(self, Self::Component(_) | Self::Builtin(_))
}
pub fn is_property_type(&self) -> bool {
matches!(self, Self::Float32
| Self::Int32
| Self::String
| Self::Color
| Self::Duration
| Self::Length
| Self::LogicalLength
| Self::Percent
| Self::Resource
| Self::Bool
| Self::Model
| Self::Easing
| Self::Enumeration(_)
| Self::ElementReference
| Self::Object { .. }
| Self::Array(_))
}
pub fn ok_for_public_api(&self) -> bool {
!matches!(self, Self::Duration | Self::Easing)
}
pub fn lookup_property(&self, name: &str) -> Type {
match self {
Type::Component(c) => c.root_element.borrow().lookup_property(name),
Type::Builtin(b) => b.properties.get(name).cloned().unwrap_or_else(|| {
if b.is_non_item_type {
Type::Invalid
} else {
crate::typeregister::reserved_property(name)
}
}),
Type::Native(n) => n.lookup_property(name).unwrap_or_default(),
_ => Type::Invalid,
}
}
pub fn lookup_type_for_child_element(
&self,
name: &str,
tr: &TypeRegister,
) -> Result<Type, String> {
match self {
Type::Component(component) => {
return component
.root_element
.borrow()
.base_type
.lookup_type_for_child_element(name, tr)
}
Type::Builtin(builtin) => {
if let Some(child_type) = builtin.additional_accepted_child_types.get(name) {
return Ok(child_type.clone());
}
if builtin.disallow_global_types_as_child_elements {
let mut valid_children: Vec<_> =
builtin.additional_accepted_child_types.keys().cloned().collect();
valid_children.sort();
return Err(format!(
"{} is not allowed within {}. Only {} are valid children",
name,
builtin.native_class.class_name,
valid_children.join(" ")
));
}
}
_ => {}
};
tr.lookup_element(name)
}
pub fn lookup_member_function(&self, name: &str) -> Expression {
match self {
Type::Builtin(builtin) => {
builtin.member_functions.get(name).cloned().unwrap_or(Expression::Invalid)
}
_ => Expression::Invalid,
}
}
pub fn as_builtin(&self) -> &BuiltinElement {
match self {
Type::Builtin(b) => &b,
Type::Component(_) => panic!("This should not happen because of inlining"),
_ => panic!("invalid type"),
}
}
pub fn as_native(&self) -> &NativeClass {
match self {
Type::Native(b) => &b,
Type::Component(_) => {
panic!("This should not happen because of native class resolution")
}
_ => panic!("invalid type"),
}
}
pub fn as_component(&self) -> &Rc<Component> {
match self {
Type::Component(c) => c,
_ => panic!("should be a component because of the repeater_component pass"),
}
}
pub fn can_convert(&self, other: &Self) -> bool {
let can_convert_object = |a: &BTreeMap<String, Type>, b: &BTreeMap<String, Type>| {
let mut has_more_property = false;
for (k, v) in b {
match a.get(k) {
Some(t) if !t.can_convert(v) => return false,
None => has_more_property = true,
_ => (),
}
}
if has_more_property {
if a.keys().any(|k| !b.contains_key(k)) {
return false;
}
}
true
};
match (self, other) {
(a, b) if a == b => true,
(_, Type::Invalid)
| (_, Type::Void)
| (Type::Float32, Type::Int32)
| (Type::Float32, Type::String)
| (Type::Int32, Type::Float32)
| (Type::Int32, Type::String)
| (Type::Array(_), Type::Model)
| (Type::Float32, Type::Model)
| (Type::Int32, Type::Model)
| (Type::Length, Type::LogicalLength)
| (Type::LogicalLength, Type::Length)
| (Type::Percent, Type::Float32) => true,
(Type::Object { fields: a, .. }, Type::Object { fields: b, .. }) => {
can_convert_object(a, b)
}
_ => false,
}
}
pub fn collect_contextual_types(
&self,
context_restricted_types: &mut HashMap<String, HashSet<String>>,
) {
let builtin = match self {
Type::Builtin(ty) => ty,
_ => return,
};
for (accepted_child_type_name, accepted_child_type) in
builtin.additional_accepted_child_types.iter()
{
context_restricted_types
.entry(accepted_child_type_name.clone())
.or_default()
.insert(builtin.native_class.class_name.clone());
accepted_child_type.collect_contextual_types(context_restricted_types);
}
}
pub fn default_unit(&self) -> Option<Unit> {
match self {
Type::Duration => Some(Unit::Ms),
Type::Length => Some(Unit::Phx),
Type::LogicalLength => Some(Unit::Px),
Type::Percent => Some(Unit::Percent),
Type::Invalid => None,
Type::Void => None,
Type::Component(_) => None,
Type::Builtin(_) => None,
Type::Native(_) => None,
Type::Signal { .. } => None,
Type::Function { .. } => None,
Type::Float32 => None,
Type::Int32 => None,
Type::String => None,
Type::Color => None,
Type::Resource => None,
Type::Bool => None,
Type::Model => None,
Type::PathElements => None,
Type::Easing => None,
Type::Array(_) => None,
Type::Object { .. } => None,
Type::Enumeration(_) => None,
Type::ElementReference => None,
}
}
}
impl Default for Type {
fn default() -> Self {
Self::Invalid
}
}
#[derive(Debug, Clone, Default)]
pub struct NativeClass {
pub parent: Option<Rc<NativeClass>>,
pub class_name: String,
pub vtable_symbol: String,
pub properties: HashMap<String, Type>,
pub cpp_type: Option<String>,
pub rust_type_constructor: Option<String>,
}
impl NativeClass {
pub fn new(class_name: &str) -> Self {
let vtable_symbol = format!("{}VTable", class_name);
Self {
class_name: class_name.into(),
vtable_symbol,
properties: Default::default(),
..Default::default()
}
}
pub fn new_with_properties(
class_name: &str,
properties: impl IntoIterator<Item = (String, Type)>,
) -> Self {
let mut class = Self::new(class_name);
class.properties = properties.into_iter().collect();
class
}
pub fn property_count(&self) -> usize {
self.properties.len() + self.parent.clone().map(|p| p.property_count()).unwrap_or_default()
}
pub fn local_property_iter(&self) -> impl Iterator<Item = (&String, &Type)> {
self.properties.iter()
}
pub fn visit_class_hierarchy(self: Rc<Self>, mut visitor: impl FnMut(&Rc<Self>)) {
visitor(&self);
if let Some(parent_class) = &self.parent {
parent_class.clone().visit_class_hierarchy(visitor)
}
}
pub fn lookup_property(&self, name: &str) -> Option<Type> {
if let Some(ty) = self.properties.get(name) {
Some(ty.clone())
} else if let Some(parent_class) = &self.parent {
parent_class.lookup_property(name)
} else {
None
}
}
fn lookup_property_distance(self: Rc<Self>, name: &str) -> (usize, Rc<Self>) {
let mut distance = 0;
let mut class = self;
loop {
if class.properties.contains_key(name) {
return (distance, class);
}
distance += 1;
class = class.parent.as_ref().unwrap().clone();
}
}
pub fn select_minimal_class_based_on_property_usage<'a>(
self: Rc<Self>,
properties_used: impl Iterator<Item = &'a String>,
) -> Rc<Self> {
let (_min_distance, minimal_class) = properties_used.fold(
(std::usize::MAX, self.clone()),
|(current_distance, current_class), prop_name| {
let (prop_distance, prop_class) = self.clone().lookup_property_distance(&prop_name);
if prop_distance < current_distance {
(prop_distance, prop_class)
} else {
(current_distance, current_class)
}
},
);
minimal_class
}
}
#[derive(Debug, Clone, Default)]
pub struct BuiltinElement {
pub name: String,
pub native_class: Rc<NativeClass>,
pub properties: HashMap<String, Type>,
pub default_bindings: HashMap<String, Expression>,
pub additional_accepted_child_types: HashMap<String, Type>,
pub disallow_global_types_as_child_elements: bool,
pub is_non_item_type: bool,
pub member_functions: HashMap<String, Expression>,
pub is_global: bool,
pub expands_to_parent_geometry: bool,
}
impl BuiltinElement {
pub fn new(native_class: Rc<NativeClass>) -> Self {
let mut properties = HashMap::new();
native_class.clone().visit_class_hierarchy(|class| {
for (prop_name, prop_type) in class.local_property_iter() {
properties.insert(prop_name.clone(), prop_type.clone());
}
});
Self {
name: native_class.class_name.clone(),
native_class,
properties,
..Default::default()
}
}
}
#[test]
fn test_select_minimal_class_based_on_property_usage() {
let first = Rc::new(NativeClass::new_with_properties(
"first_class",
[("first_prop".to_owned(), Type::Int32)].iter().cloned(),
));
let mut second = NativeClass::new_with_properties(
"second_class",
[("second_prop".to_owned(), Type::Int32)].iter().cloned(),
);
second.parent = Some(first.clone());
let second = Rc::new(second);
let reduce_to_first = second
.clone()
.select_minimal_class_based_on_property_usage(["first_prop".to_owned()].iter());
assert_eq!(reduce_to_first.class_name, first.class_name);
let reduce_to_second = second
.clone()
.select_minimal_class_based_on_property_usage(["second_prop".to_owned()].iter());
assert_eq!(reduce_to_second.class_name, second.class_name);
let reduce_to_second = second.clone().select_minimal_class_based_on_property_usage(
["first_prop".to_owned(), "second_prop".to_owned()].iter(),
);
assert_eq!(reduce_to_second.class_name, second.class_name);
}
#[derive(Debug, Clone)]
pub struct Enumeration {
pub name: String,
pub values: Vec<String>,
pub default_value: usize,
}
impl PartialEq for Enumeration {
fn eq(&self, other: &Self) -> bool {
self.name.eq(&other.name)
}
}
impl Enumeration {
pub fn default_value(self: Rc<Self>) -> EnumerationValue {
EnumerationValue { value: self.default_value, enumeration: self.clone() }
}
pub fn try_value_from_string(self: Rc<Self>, value: &str) -> Option<EnumerationValue> {
self.values.iter().enumerate().find_map(|(idx, name)| {
if name == value {
Some(EnumerationValue { value: idx, enumeration: self.clone() })
} else {
None
}
})
}
}
#[derive(Clone, Debug)]
pub struct EnumerationValue {
pub value: usize,
pub enumeration: Rc<Enumeration>,
}
impl PartialEq for EnumerationValue {
fn eq(&self, other: &Self) -> bool {
Rc::ptr_eq(&self.enumeration, &other.enumeration) && self.value == other.value
}
}
impl std::fmt::Display for EnumerationValue {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.enumeration.values[self.value].fmt(f)
}
}