1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
use std::{
    borrow::Cow,
    collections::HashMap,
    future::Future,
    sync::{Arc, Weak},
};

use parking_lot::Mutex as SyncMutex;
use tokio::sync::Mutex;

type SharedMapping<T> = Arc<SyncMutex<HashMap<Cow<'static, str>, BroadcastOnce<T>>>>;

/// SingleFlight represents a class of work and creates a space in which units of work
/// can be executed with duplicate suppression.
#[derive(Debug)]
pub struct SingleFlight<T> {
    mapping: SharedMapping<T>,
}

impl<T> Default for SingleFlight<T> {
    fn default() -> Self {
        Self {
            mapping: Default::default(),
        }
    }
}

// Key is designed to avoid String clone.
enum Key<'a> {
    Static(Cow<'static, str>),
    MaybeBorrowed(Cow<'a, str>),
}

impl<'a> Key<'a> {
    #[inline]
    fn as_str(&'a self) -> &'a str {
        match self {
            Key::Static(cow) => cow.as_ref(),
            Key::MaybeBorrowed(cow) => cow.as_ref(),
        }
    }
}

impl<'a> From<Key<'a>> for Cow<'static, str> {
    fn from(k: Key<'a>) -> Self {
        match k {
            Key::Static(cow) => cow,
            Key::MaybeBorrowed(cow) => Cow::Owned(cow.into_owned()),
        }
    }
}

struct Shared<T> {
    slot: Mutex<Option<T>>,
}

impl<T> Default for Shared<T> {
    fn default() -> Self {
        Self {
            slot: Mutex::new(None),
        }
    }
}

// BroadcastOnce consists of shared slot and notify.
#[derive(Clone)]
struct BroadcastOnce<T> {
    shared: Weak<Shared<T>>,
}

impl<T> BroadcastOnce<T> {
    fn new() -> (Self, Arc<Shared<T>>) {
        let shared = Arc::new(Shared::default());
        (
            Self {
                shared: Arc::downgrade(&shared),
            },
            shared,
        )
    }
}

// After calling BroadcastOnce::waiter we can get a waiter.
// It's in WaitList.
struct BroadcastOnceWaiter<T, F> {
    func: F,
    shared: Arc<Shared<T>>,

    key: Cow<'static, str>,
    mapping: SharedMapping<T>,
}

impl<T> std::fmt::Debug for BroadcastOnce<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "BroadcastOnce")
    }
}

#[allow(clippy::type_complexity)]
impl<T> BroadcastOnce<T> {
    fn try_waiter<F>(
        &self,
        func: F,
        key: Cow<'static, str>,
        mapping: SharedMapping<T>,
    ) -> Result<BroadcastOnceWaiter<T, F>, (F, Cow<'static, str>, SharedMapping<T>)> {
        let Some(upgraded) = self.shared.upgrade() else {
            return Err((func, key, mapping));
        };
        Ok(BroadcastOnceWaiter {
            func,
            shared: upgraded,
            key,
            mapping,
        })
    }

    #[inline]
    const fn waiter<F>(
        shared: Arc<Shared<T>>,
        func: F,
        key: Cow<'static, str>,
        mapping: SharedMapping<T>,
    ) -> BroadcastOnceWaiter<T, F> {
        BroadcastOnceWaiter {
            func,
            shared,
            key,
            mapping,
        }
    }
}

// We already in WaitList, so wait will be fine, we won't miss
// anything after Waiter generated.
impl<T, F, Fut> BroadcastOnceWaiter<T, F>
where
    F: FnOnce() -> Fut,
    Fut: Future<Output = T>,
    T: Clone,
{
    async fn wait(self) -> T {
        let mut slot = self.shared.slot.lock().await;
        if let Some(value) = (*slot).as_ref() {
            return value.clone();
        }

        let value = (self.func)().await;
        *slot = Some(value.clone());

        self.mapping.lock().remove(&self.key);

        value
    }
}

impl<T> SingleFlight<T> {
    /// Create a new BroadcastOnce to do work with.
    #[inline]
    pub fn new() -> Self {
        Self::default()
    }

    /// Execute and return the value for a given function, making sure that only one
    /// operation is in-flight at a given moment. If a duplicate call comes in, that caller will
    /// wait until the original call completes and return the same value.
    ///
    /// The key is a Owned key. The performance will be slightly better than `work`.
    pub fn work_with_owned_key<F, Fut>(
        &self,
        key: Cow<'static, str>,
        func: F,
    ) -> impl Future<Output = T>
    where
        F: FnOnce() -> Fut,
        Fut: Future<Output = T>,
        T: Clone,
    {
        self.work_inner(Key::Static(key), func)
    }

    /// Execute and return the value for a given function, making sure that only one
    /// operation is in-flight at a given moment. If a duplicate call comes in, that caller will
    /// wait until the original call completes and return the same value.
    pub fn work<F, Fut>(&self, key: &str, func: F) -> impl Future<Output = T>
    where
        F: FnOnce() -> Fut,
        Fut: Future<Output = T>,
        T: Clone,
    {
        self.work_inner(Key::MaybeBorrowed(key.into()), func)
    }

    #[inline]
    fn work_inner<'a, 'b: 'a, F, Fut>(&'a self, key: Key<'b>, func: F) -> impl Future<Output = T>
    where
        F: FnOnce() -> Fut,
        Fut: Future<Output = T>,
        T: Clone,
    {
        let owned_mapping = self.mapping.clone();
        let mut mapping = self.mapping.lock();
        let val = mapping.get_mut(key.as_str());
        match val {
            Some(call) => {
                let key: Cow<'static, str> = key.into();
                let (func, key, owned_mapping) = match call.try_waiter(func, key, owned_mapping) {
                    Ok(waiter) => return waiter.wait(),
                    Err(fm) => fm,
                };
                let (new_call, shared) = BroadcastOnce::new();
                *call = new_call;
                let waiter = BroadcastOnce::waiter(shared, func, key, owned_mapping);
                waiter.wait()
            }
            None => {
                let key: Cow<'static, str> = key.into();
                let (call, shared) = BroadcastOnce::new();
                mapping.insert(key.clone(), call);
                let waiter = BroadcastOnce::waiter(shared, func, key, owned_mapping);
                waiter.wait()
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use std::{
        sync::atomic::{
            AtomicUsize,
            Ordering::{AcqRel, Acquire},
        },
        time::Duration,
    };

    use futures_util::{stream::FuturesUnordered, StreamExt};

    use super::*;

    #[tokio::test]
    async fn direct_call() {
        let group = SingleFlight::new();
        let result = group
            .work("key", || async {
                tokio::time::sleep(Duration::from_millis(10)).await;
                "Result".to_string()
            })
            .await;
        assert_eq!(result, "Result");
    }

    #[tokio::test]
    async fn parallel_call() {
        let call_counter = AtomicUsize::default();

        let group = SingleFlight::new();
        let futures = FuturesUnordered::new();
        for _ in 0..10 {
            futures.push(group.work("key", || async {
                tokio::time::sleep(Duration::from_millis(100)).await;
                call_counter.fetch_add(1, AcqRel);
                "Result".to_string()
            }));
        }

        assert!(futures.all(|out| async move { out == "Result" }).await);
        assert_eq!(
            call_counter.load(Acquire),
            1,
            "future should only be executed once"
        );
    }

    #[tokio::test]
    async fn parallel_call_seq_await() {
        let call_counter = AtomicUsize::default();

        let group = SingleFlight::new();
        let mut futures = Vec::new();
        for _ in 0..10 {
            futures.push(group.work("key", || async {
                tokio::time::sleep(Duration::from_millis(100)).await;
                call_counter.fetch_add(1, AcqRel);
                "Result".to_string()
            }));
        }

        for fut in futures.into_iter() {
            assert_eq!(fut.await, "Result");
        }
        assert_eq!(
            call_counter.load(Acquire),
            1,
            "future should only be executed once"
        );
    }

    #[tokio::test]
    async fn call_with_static_str_key() {
        let group = SingleFlight::new();
        let result = group
            .work_with_owned_key("key".into(), || async {
                tokio::time::sleep(Duration::from_millis(1)).await;
                "Result".to_string()
            })
            .await;
        assert_eq!(result, "Result");
    }

    #[tokio::test]
    async fn call_with_static_string_key() {
        let group = SingleFlight::new();
        let result = group
            .work_with_owned_key("key".to_string().into(), || async {
                tokio::time::sleep(Duration::from_millis(1)).await;
                "Result".to_string()
            })
            .await;
        assert_eq!(result, "Result");
    }

    #[tokio::test]
    async fn late_wait() {
        let group = SingleFlight::new();
        let fut_early = group.work_with_owned_key("key".into(), || async {
            tokio::time::sleep(Duration::from_millis(20)).await;
            "Result".to_string()
        });
        let fut_late = group.work_with_owned_key("key".into(), || async { panic!("unexpected") });
        assert_eq!(fut_early.await, "Result");
        tokio::time::sleep(Duration::from_millis(50)).await;
        assert_eq!(fut_late.await, "Result");
    }

    #[tokio::test]
    async fn cancel() {
        let group = SingleFlight::new();

        // the executer cancelled and the other awaiter will create a new future and execute.
        let fut_cancel = group.work_with_owned_key("key".into(), || async {
            tokio::time::sleep(Duration::from_millis(2000)).await;
            "Result1".to_string()
        });
        let _ = tokio::time::timeout(Duration::from_millis(10), fut_cancel).await;
        let fut_late = group.work_with_owned_key("key".into(), || async { "Result2".to_string() });
        assert_eq!(fut_late.await, "Result2");

        // the first executer is slow but not dropped, so the result will be the first ones.
        let begin = tokio::time::Instant::now();
        let fut_1 = group.work_with_owned_key("key".into(), || async {
            tokio::time::sleep(Duration::from_millis(2000)).await;
            "Result1".to_string()
        });
        let fut_2 = group.work_with_owned_key("key".into(), || async { panic!() });
        let (v1, v2) = tokio::join!(fut_1, fut_2);
        assert_eq!(v1, "Result1");
        assert_eq!(v2, "Result1");
        assert!(begin.elapsed() > Duration::from_millis(1500));
    }
}