1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
//! Algorithm for simplifying points to a bezier curve
//!
//! ## Example
//!
//! ```rust
//! // example: https://bit.ly/2UYdxLw
//! let points = vec![
//!     Point { x:256.0,                    y:318.0},
//!     Point { x:258.6666666666667,        y:315.3333333333333},
//!     Point { x:266.6666666666667,        y:308.6666666666667},
//!     Point { x:314.0,                    y:274.6666666666667},
//!     Point { x:389.3333333333333,        y:218.0},
//!     Point { x:448.6666666666667,        y:176.0},
//!     Point { x:472.0,                    y:160.66666666666666},
//!     Point { x:503.3333333333333,        y:145.33333333333334},
//!     Point { x:516.0,                    y:144.66666666666666},
//!     Point { x:520.0,                    y:156.66666666666666},
//!     Point { x:479.3333333333333,        y:220.66666666666666},
//!     Point { x:392.6666666666667,        y:304.0},
//!     Point { x:314.0,                    y:376.6666666666667},
//!     Point { x:253.33333333333334,       y:436.6666666666667},
//!     Point { x:238.0,                    y:454.6666666666667},
//!     Point { x:228.66666666666666,       y:468.0},
//!     Point { x:236.0,                    y:467.3333333333333},
//!     Point { x:293.3333333333333,        y:428.0},
//!     Point { x:428.0,                    y:337.3333333333333},
//!     Point { x:516.6666666666666,        y:283.3333333333333},
//!     Point { x:551.3333333333334,        y:262.0},
//!     Point { x:566.6666666666666,        y:253.33333333333334},
//!     Point { x:579.3333333333334,        y:246.0},
//!     Point { x:590.0,                    y:241.33333333333334},
//!     Point { x:566.6666666666666,        y:260.0},
//!     Point { x:532.0,                    y:290.6666666666667},
//!     Point { x:516.6666666666666,        y:306.0},
//!     Point { x:510.6666666666667,        y:313.3333333333333},
//!     Point { x:503.3333333333333,        y:324.6666666666667},
//!     Point { x:527.3333333333334,        y:324.6666666666667},
//!     Point { x:570.6666666666666,        y:313.3333333333333},
//!     Point { x:614.0,                    y:302.6666666666667},
//!     Point { x:631.3333333333334,        y:301.3333333333333},
//!     Point { x:650.0,                    y:300.0},
//!     Point { x:658.6666666666666,        y:304.0},
//!     Point { x:617.3333333333334,        y:333.3333333333333},
//!     Point { x:546.0,                    y:381.3333333333333},
//!     Point { x:518.6666666666666,        y:400.6666666666667},
//!     Point { x:505.3333333333333,        y:412.6666666666667},
//!     Point { x:488.0,                    y:430.6666666666667},
//!     Point { x:489.3333333333333,        y:435.3333333333333},
//!     Point { x:570.6666666666666,        y:402.0},
//!     Point { x:700.0,                    y:328.6666666666667},
//!     Point { x:799.3333333333334,        y:266.0},
//!     Point { x:838.0,                    y:240.0},
//!     Point { x:854.0,                    y:228.66666666666666},
//!     Point { x:868.0,                    y:218.66666666666666},
//!     Point { x:879.3333333333334,        y:210.66666666666666},
//!     Point { x:872.6666666666666,        y:216.0},
//!     Point { x:860.0,                    y:223.33333333333334},
//! ];
//!
//! let result = simplify_rs::simplify(&points, 800.0);
//!
//! if result.is_empty() {
//!     println!("no solution!");
//! } else if result.len() == 1 {
//!     println!("solution:\r\n\tpoint {:?}", result[0]);
//! } else if result.len() == 2 {
//!     println!("solution:\r\n\tline {:?} - {:?}", result[0], result[1]);
//! } else {
//!     println!("solution:");
//!     for cubic_curve in result.chunks_exact(4) {
//!         println!("\tcubic curve: [");
//!         println!("\t\t{:?}", cubic_curve[0]);
//!         println!("\t\t{:?}", cubic_curve[1]);
//!         println!("\t\t{:?}", cubic_curve[2]);
//!         println!("\t\t{:?}", cubic_curve[3]);
//!         println!("\t]");
//!     }
//! }
//! ```
//!
//! ## Performance
//!
//! The JavaScript (paper.js) version takes about 6 - 7ms to generalize the 50 points,
//! the Rust version takes ~40 - 50µs.

extern crate core;

use core::ops::Range;
use core::hint::unreachable_unchecked;
use core::fmt;

use wasm_bindgen::prelude::*;
use serde::{Serialize, Deserialize};
use serde_wasm_bindgen::{to_value, from_value};

#[cfg(feature = "double_precision")]
type Float = f32;
#[cfg(not(feature = "double_precision"))]
type Float = f64;

/// A 2D point
#[wasm_bindgen]
#[derive(Copy, Clone, PartialEq, PartialOrd, Serialize, Deserialize)]
pub struct Point { pub x: Float, pub y: Float }

impl fmt::Debug for Point {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{{\"x\":{},\"y\":{}}}", self.x, self.y)
    }
}

#[wasm_bindgen]
impl Point {
    #[wasm_bindgen(constructor)]
    pub fn new(x: f64, y: f64) -> Point {
        Point { x, y }
    }
    #[inline]
    fn add(&self, p: Point) -> Point {
        Point {
            x: self.x + p.x,
            y: self.y + p.y
        }
    }

    #[inline]
    fn subtract(&self, p: Point) -> Point {
        Point {
            x: self.x - p.x,
            y: self.y - p.y
        }
    }

    #[inline]
    fn multiply(&self, f: Float) -> Point {
        Point {
            x: self.x * f,
            y: self.y * f
        }
    }

    #[inline]
    fn negate(&self) -> Point {
        Point {
            x: -self.x,
            y: -self.y
        }
    }

    #[inline]
    fn distance(&self, p: Point) -> Float {
        let dx = p.x - self.x;
        let dy = p.y - self.y;
        dx.hypot(dy)
    }

    #[inline]
    fn dot(&self, p: Point) -> Float {
        self.x * p.x + self.y * p.y
    }

    #[inline]
    fn normalize(&self, length: Float) -> Point {
        let current =  self.x.hypot(self.y);
        let scale = if current.abs() > Float::EPSILON { length / current } else { 0.0 };
        let res = Point { x: self.x * scale, y: self.y * scale };
        res
    }
}

/// Default value for the `simplify(tolerance)` parameter
pub const DEFAULT_TOLERANCE: f32 = 2.5;
pub const TARGET_AUTO_SCALE_AREA: Float = 1000000.0;

/// WASM function to simplify a path represented by a sequence of points
/// to a bezier curve with a maximum error tolerance.
/// The input points are expected to be in the format:
/// [{x: 0, y: 0}, {x: 1, y: 1}, ...]
///
/// - `tolerance`: the allowed maximum error when fitting the curves through the segment points
///
/// - `auto_scale_for_precision``: if true, the polygon will be scaled to a target area
/// of TARGET_AUTO_SCALE_AREA before simplification and scaled back to the original scale
/// after simplification. This increases the precision of the simplification.
///
/// # Returns
///
/// The output is a sequence of cubic bezier curves, each represented by 4 points:
/// [{x: 0, y: 0}, {x: 1, y: 1}, {x: 2, y: 2}, {x: 3, y: 3}]
/// [0] = start point
/// [1] = control point 1
/// [2] = control point 2
/// [3] = end point
#[wasm_bindgen]
pub fn simplify_js(points_js: &JsValue, tolerance: f64, auto_scale_for_precision: bool) -> JsValue {
    // Deserialize the points from JsValue using serde_wasm_bindgen
    let mut points: Vec<Point> = from_value(points_js.clone()).unwrap();

    let mut scale = 1.0;
    // calculate area of the polygon
    if auto_scale_for_precision {
        let mut area = 0.0;
        let mut j = points.len() - 1;
        for i in 0..points.len() {
            area += (points[j].x + points[i].x) * (points[j].y - points[i].y);
            j = i;
        }
        area *= 0.5;
        area = area.abs();

        // scale the polygon to a target area
        scale = TARGET_AUTO_SCALE_AREA / area;

        for p in points.iter_mut() {
            p.x *= scale;
            p.y *= scale;
        }
    }

    let scaled_tolerance = tolerance as Float * scale;

    // Call the existing Rust `simplify` function with deserialized points
    let mut simplified = simplify(&points, scaled_tolerance);

    // scale the simplified polygon back to the original scale
    if auto_scale_for_precision {
        for p in simplified.iter_mut() {
            p.x /= scale;
            p.y /= scale;
        }
    }

    // Serialize the result back into JsValue using serde_wasm_bindgen
    to_value(&simplified).unwrap()
}

/// Fits a sequence of as few curves as possible through the path's anchor
/// points, ignoring the path items's curve-handles, with an allowed maximum
/// error. This method can be used to process and simplify the point data received
/// from a mouse or touch device.
///
/// - `tolerance`: the allowed maximum error when fitting the curves through the segment points
///
/// # Returns
///
/// - returns the input if the input is less than 3 points
/// - x * 4 points (representing cubic bezier curves with duplicated start / end points)
///   if the input is more than 3 points
///
/// **NOTE**: Depending on the tolerance, the endpoint of the input points and
/// the endpoint of the simplified curve do not have to match up
pub fn simplify(points: &[Point], tolerance: Float) -> Vec<Point> {

    // filter points for duplicates
    let mut cur_points = points.windows(2).filter_map(|w| {
        let first = w.get(0)?;
        let next = w.get(1)?;
        if first == next { None } else { Some(*first) }
    }).collect::<Vec<Point>>();

    // windows() is fast, but excludes the last point
    if let (Some(last_minus_one), Some(last)) = (points.get(points.len() - 2), points.last()) {
        if last_minus_one != last { cur_points.push(*last); }
    }

    // sanity check
    if cur_points.len() < 2 {
        return cur_points;
    } else if cur_points.len() == 2 {
        return vec![cur_points[0], cur_points[1]];
    }

    // cur_points.len() is assured to be greater than 2
    let closed = cur_points.first() == cur_points.last();

    // We need to duplicate the first and last point when
    // simplifying a closed path
    if closed {
        let last = match points.last().copied() {
            Some(s) => s,
            None => unsafe { unreachable_unchecked() },
        };
        let first = match points.first().copied() {
            Some(s) => s,
            None => unsafe { unreachable_unchecked() },
        };
        let mut new_cur_points = vec![last];
        new_cur_points.extend(cur_points.drain(..));
        new_cur_points.push(first);
        cur_points = new_cur_points;
    }

    fit(&cur_points[..], tolerance)
}

#[derive(Clone)]
struct Split {
    global_range: Range<usize>,
    tan1: Point,
    tan2: Point,
}

#[inline]
fn fit(points: &[Point], tolerance: Float) -> Vec<Point> {

    // To support reducing paths with multiple points in the same place
    // to one segment:
    let mut segments = Vec::new();
    let distances = chord_length_parametrize(points);

    if distances.len() != points.len() {
        return segments; // never happens, necessary for compiler
    }

    // elide bounds checks
    if points.len() == 0 {
        return Vec::new();
    } else if points.len() == 1 {
        return vec![points[0]];
    } else if points.len() == 2 {
        return vec![points[0], points[1]];
    } else {
        let mut splits_to_eval = vec![Split {
            global_range: 0..points.len(),
            tan1: points[1].subtract(points[0]),
            tan2: points[points.len() - 2].subtract(points[points.len() - 1]),
        }];

        while let Some(split) = splits_to_eval.pop() {

            // elide slice checks
            if split.global_range.end > points.len() || split.global_range.end > distances.len() {
                continue;
            }

            let result = fit_cubic(FitCubicParams {
                points: &points[split.global_range.clone()],
                chord_lengths: &distances[split.global_range.clone()],
                segments: &mut segments,
                error: tolerance,
                tan1: split.tan1,
                tan2: split.tan2,
            });

            if let Some(r) = result {
                // elide slice checks
                if split.global_range.start > split.global_range.start + r + 1 ||
                   split.global_range.start + r > split.global_range.end {
                    continue;
                }
                if split.global_range.start + r + 1 >= points.len() || split.global_range.start + r - 1 >= points.len() {
                    continue;
                }
                // Fitting failed -- split at max error point and fit recursively
                let tan_center = points[split.global_range.start + r - 1].subtract(points[split.global_range.start + r + 1]);

                splits_to_eval.extend_from_slice(&[
                    Split {
                        global_range: (split.global_range.start + r)..split.global_range.end,
                        tan1: tan_center.negate(),
                        tan2: split.tan2,
                    },
                    Split {
                        global_range: split.global_range.start..(split.global_range.start + r + 1),
                        tan1: split.tan1,
                        tan2: tan_center,
                    },
                ]);
            }
        }

        segments
    }

}

struct FitCubicParams<'a> {
    segments: &'a mut Vec<Point>,
    points: &'a [Point],
    chord_lengths: &'a [Float],
    error: Float,
    tan1: Point,
    tan2: Point,
}

#[inline]
fn fit_cubic(params: FitCubicParams) -> Option<usize> {

    let FitCubicParams { segments, points, chord_lengths, error, tan1, tan2 } = params;

    // Use heuristic if region only has two points in it
    if points.len() < 2 {
        return None;
    } else if points.len() == 2 {
        let pt1 = points[0];
        let pt2 = points[1];
        let dist = pt1.distance(pt2) / 3.0;
        add_curve(segments, &[
            pt1,
            pt1.add(tan1.normalize(dist)),
            pt2.add(tan2.normalize(dist)),
            pt2
        ]);
        return None;
    }

    // points.len() at least 4

    // Parameterize points, and attempt to fit curve
    // (Slightly) faster version of chord lengths, re-uses the results from original count
    let mut u_prime = chord_lengths.to_owned();
    let u_prime_first = match u_prime.first().copied() {
        Some(s) => s,
        None => unsafe { unreachable_unchecked() },
    };
    let u_prime_last = match u_prime.last().copied() {
        Some(s) => s,
        None => unsafe { unreachable_unchecked() },
    };
    let u_prime_last = u_prime_last - u_prime_first;
    u_prime.iter_mut().for_each(|p| { *p = (*p - u_prime_first) / u_prime_last; });

    let mut max_error = error.max(error.powi(2));
    let mut parameters_in_order = true;
    let mut split = 2;

    // Try 4 iterations
    for _ in 0..4 {

        let curve = generate_bezier(points, &u_prime, tan1, tan2);

        //  Find max deviation of points to fitted curve
        let max = find_max_error(points, &curve, &u_prime);

        if max.error < error && parameters_in_order {
            // solution found
            add_curve(segments, &curve);
            return None;
        }

        split = max.index;

        // If error not too large, try reparameterization and iteration
        if max.error >= max_error {
            break;
        }
        parameters_in_order = reparameterize(points, &mut u_prime, &curve);
        max_error = max.error;
    }

    Some(split)
}

#[inline]
fn add_curve(segments: &mut Vec<Point>, curve: &[Point;4]) {
    segments.extend_from_slice(curve);
}

#[inline]
#[allow(non_snake_case)]
fn generate_bezier(points: &[Point], u_prime: &[Float], tan1: Point, tan2: Point) -> [Point;4] {

    const BEZIER_EPSILON: Float = 1e-12;

    debug_assert!(u_prime.len() > 2);
    debug_assert!(points.len() > 2);
    debug_assert!(u_prime.len() == points.len());

    let pt1 = &points[0];
    let pt2 = &points[points.len() - 1];

    // Create the C and X matrices
    let mut C = [
        [0.0, 0.0],
        [0.0, 0.0]
    ];
    let mut X = [0.0, 0.0];

    for (p, u) in points.iter().zip(u_prime.iter()) {

        let t = 1.0 - u;
        let b = 3.0 * u * t;
        let b0 = t * t * t;
        let b1 = b * t;
        let b2 = b * u;
        let b3 = u * u * u;
        let a1 = tan1.normalize(b1);
        let a2 = tan2.normalize(b2);
        let pt1_multiplied = pt1.multiply(b0 + b1);
        let pt2_multiplied = pt2.multiply(b2 + b3);
        let tmp = p.subtract(pt1_multiplied).subtract(pt2_multiplied);

        C[0][0] += a1.dot(a1);
        C[0][1] += a1.dot(a2);
        C[1][0] = C[0][1];
        C[1][1] += a2.dot(a2);

        X[0] += a1.dot(tmp);
        X[1] += a2.dot(tmp);
    }

    // Compute the determinants of C and X
    let det_c0_c1 = C[0][0] * C[1][1] - C[1][0] * C[0][1];

    let mut alpha1;
    let mut alpha2;

    if det_c0_c1.abs() > BEZIER_EPSILON {
        // Kramer's rule
        let det_c0_x = C[0][0] * X[1]    - C[1][0] * X[0];
        let det_x_c1 = X[0]    * C[1][1] - X[1]    * C[0][1];
        // Derive alpha values
        alpha1 = det_x_c1 / det_c0_c1;
        alpha2 = det_c0_x / det_c0_c1;
    } else {
        // Matrix is under-determined, try assuming alpha1 == alpha2
        let c0 = C[0][0] + C[0][1];
        let c1 = C[1][0] + C[1][1];
        alpha1 = if c0.abs() > BEZIER_EPSILON {
            X[0] / c0
        } else if c1.abs() > BEZIER_EPSILON {
            X[1] / c1
        } else {
            0.0
        };
        alpha2 = alpha1;
    }

    // If alpha negative, use the Wu/Barsky heuristic (see text)
    // (if alpha is 0, you get coincident control points that lead to
    // divide by zero in any subsequent NewtonRaphsonRootFind() call.
    let seg_length = pt2.distance(*pt1);
    let eps = BEZIER_EPSILON * seg_length;
    let mut handle1_2 = None;

    if alpha1 < eps || alpha2 < eps {
        // fall back on standard (probably inaccurate) formula,
        // and subdivide further if needed.
        alpha1 = seg_length / 3.0;
        alpha2 = alpha1;
    } else {
        // Check if the found control points are in the right order when
        // projected onto the line through pt1 and pt2.
        let line = pt2.subtract(*pt1);

        // Control points 1 and 2 are positioned an alpha distance out
        // on the tangent vectors, left and right, respectively
        let tmp_handle_1 = tan1.normalize(alpha1);
        let tmp_handle_2 = tan2.normalize(alpha2);

        let seg_length_squared = seg_length * seg_length;

        if tmp_handle_1.dot(line) - tmp_handle_2.dot(line) > seg_length_squared {
            // Fall back to the Wu/Barsky heuristic above.
            alpha1 = seg_length / 3.0;
            alpha2 = alpha1;
            // Force recalculation
            handle1_2 = None;
        } else {
            handle1_2 = Some((tmp_handle_1, tmp_handle_2));
        }
    }

    // First and last control points of the Bezier curve are
    // positioned exactly at the first and last data points
    if let Some((h1, h2)) = handle1_2 {
        [*pt1, pt1.add(h1), pt2.add(h2), *pt2]
    } else {
        [*pt1, pt1.add(tan1.normalize(alpha1)), pt2.add(tan2.normalize(alpha2)), *pt2]
    }
}

/// Given set of points and their parameterization, try to find
/// a better parameterization.
#[inline]
fn reparameterize(points: &[Point], u: &mut [Float], curve: &[Point;4]) -> bool {

    points.iter().zip(u.iter_mut()).for_each(|(p, u)| { *u = find_root(curve, p, *u); });

    // Detect if the new parameterization has reordered the points.
    // In that case, we would fit the points of the path in the wrong order.
    !u.windows(2).any(|w| w[1] <= w[0])
}

#[inline]
fn find_root(curve: &[Point;4], point: &Point, u: Float) -> Float {

    let mut curve1 = [Point { x: 0.0, y: 0.0 };3];
    let mut curve2 = [Point { x: 0.0, y: 0.0 };2];

    // Generate control vertices for Q'
    for i in 0..curve1.len() {
        curve1[i] = curve[i + 1].subtract(curve[i]).multiply(3.0);
    }

    // Generate control vertices for Q''
    for i in 0..curve2.len() {
        curve2[i] = curve1[i + 1].subtract(curve1[i]).multiply(2.0);
    }

    // Compute Q(u), Q'(u) and Q''(u)
    let pt = evaluate_4(&curve, u);
    let pt1 = evaluate_3(&curve1, u);
    let pt2 = evaluate_2(&curve2, u);
    let diff = pt.subtract(*point);
    let df = pt1.dot(pt1) + diff.dot(pt2);

    // Newton: u = u - f(u) / f'(u)
    if df.abs() < Float::EPSILON {
        u
    } else {
        u - diff.dot(pt1) / df
    }
}

macro_rules! evaluate {
    ($curve:expr, $t:expr) => {{
        // Copy curve
        let mut tmp = *$curve;

        // Triangle computation
        for i in 1..$curve.len() {
            for j in 0..($curve.len() - i) {
                tmp[j] = tmp[j].multiply(1.0 - $t).add(tmp[j + 1].multiply($t));
            }
        }

        tmp[0]
    }};
}

// evaluate the bezier curve at point t
#[inline]
fn evaluate_4(curve: &[Point;4], t: Float) -> Point { let ret = evaluate!(curve, t); ret }
#[inline]
fn evaluate_3(curve: &[Point;3], t: Float) -> Point { let ret = evaluate!(curve, t); ret }
#[inline]
fn evaluate_2(curve: &[Point;2], t: Float) -> Point { let ret = evaluate!(curve, t); ret }

// chord length parametrize the curve points[first..last]
#[inline]
fn chord_length_parametrize(points: &[Point]) -> Vec<Float> {

    let mut u = vec![0.0;points.len()];
    let mut last_dist = 0.0;

    for (prev, (next_id, next)) in points.iter().zip(points.iter().enumerate().skip(1)) {
        let new_dist = last_dist + prev.distance(*next);
        unsafe { *u.get_unchecked_mut(next_id) = new_dist; }
        last_dist = new_dist;
    }

    for val in u.iter_mut() {
        *val /= last_dist;
    }

    u
}

struct FindMaxErrorReturn {
    error: Float,
    index: usize
}

// find maximum squared distance error between real points and curve
#[inline]
fn find_max_error(points: &[Point], curve: &[Point;4], u: &[Float]) -> FindMaxErrorReturn {

    let mut index = points.len() / 2.0 as usize;
    let mut max_dist = 0.0;

    for (i, (p, u)) in points.iter().zip(u.iter()).enumerate() {
        let point_on_curve = evaluate_4(curve, *u);
        let dist = point_on_curve.subtract(*p);
        let dist_squared = dist.x.mul_add(dist.x, dist.y.powi(2)); // compute squared distance

        if dist_squared >= max_dist {
            max_dist = dist_squared;
            index = i;
        }
    }

    FindMaxErrorReturn {
        error: max_dist,
        index: index
    }
}