1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
extern crate proc_macro;
#[macro_use]
extern crate quote;

use fnv::FnvHashMap;
use proc_macro::TokenStream;
use syn::{Ident, Token};
use syn::parse::{Parse, ParseStream, Result};
use itertools::Itertools;
use permutator::Combination;
use std::{collections::HashSet, fmt::{self, Display, Formatter}};
use std::iter::{once, repeat};
use proc_macro2::TokenStream as TokenStream2;

struct InHypersphere {
    /// The list to index on
    list: Ident,
    /// The indexing function
    index_fn: Ident,
    /// The list of indexes
    indexes: Vec<Ident>,
}

impl Parse for InHypersphere {
    fn parse(input: ParseStream) -> Result<Self> {
        let list: Ident = input.parse()?;
        input.parse::<Token![,]>()?;
        let index_fn: Ident = input.parse()?;
        input.parse::<Token![,]>()?;
        let indexes = input.parse_terminated::<Ident, Token![,]>(Ident::parse)?;
        
        Ok(InHypersphere {
            list,
            index_fn,
            indexes: indexes.into_iter().collect()
        })
    }
}

/// Sub-determinant of the original matrix.
/// Row the last is implicity included.
/// Column the last (the column of 1's) is implicity included.
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash, PartialOrd, Ord)]
struct Determinant {
    rows: Vec<usize>,
    cols: Vec<usize>,
}

impl Determinant {
    fn new(rows: Vec<usize>, cols: Vec<usize>) -> Self {
        Self { rows, cols }
    }

    fn nonzero(self, zero_dets: &mut HashSet<Determinant>) -> Option<Self> {
        if zero_dets.contains(&self) {
            return None;
        };

        // Smaller determinants
        for i in 1..self.cols.len() {
            if self.rows.combination(i).any(|combo_r|
                self.cols.combination(i).all(|combo_c|
                    zero_dets.contains(&Determinant::new(combo_r.iter().copied().copied().collect(),
                        combo_c.into_iter().copied().collect()))))
            {
                // Determinant is 0 because a whole row/rows of subdeterminants are 0
                return None;
            }
        }

        Some(self)
    }

    /// To be called after prepare_dets_for_cases
    fn vector_tokens(&self, points: &[Ident]) -> TokenStream2 {
        let dim = points.len() - 2;
        let mut cols = self.cols.clone();

        // Magnitude column; replace with missing coordinates
        if cols[cols.len() - 1] == dim {
            cols.pop();
            cols.extend((0..dim).filter(|i| !self.cols.contains(i)));
        }

        let vector = format_ident!("Vector{}", cols.len());

        self.rows.iter().map(|r| {
            let point = &points[*r];
            let mut coords = cols.iter().map(|c| {
                quote! { #point[#c], }
            }).collect::<Vec<_>>();

            if coords.len() > 1 {
                let coords = coords.into_iter().collect::<TokenStream2>();
                quote! { nalgebra::#vector::new(#coords), }
            } else {
                coords.pop().unwrap()
            }
        }).collect()
    }

    fn to_grid(&self, indexes: &[Ident]) -> Vec<String> {
        let coords = "xyzw".chars().collect::<Vec<_>>();
        let mut lines = vec![];
        for row in self.rows.iter().copied().chain(once(indexes.len() - 1)) {
            let mut line = "│ ".to_string();

            for col in self.cols.iter().copied().chain(once(indexes.len() - 1)) {
                if col == indexes.len() - 1 {
                    line += "1 ";
                } else if col == indexes.len() - 2 {
                    line += &(0..indexes.len() - 2).map(|i| format!("{}{}²", indexes[row], coords[i])).join("+");
                    line += "  ";
                } else {
                    line += &format!("{}{}  ", indexes[row], coords[col]);
                }
            }

            lines.push(line + "│");
        }

        //let pad = repeat(" ").take(lines[0].chars().count() - 2).collect::<String>();
        //lines.insert(0, format!("│{}│", pad));
        //lines.push(format!("│{}│", pad));
        lines
    }
}

#[derive(Clone, Debug, PartialEq, Eq, Hash)]
struct Term {
    const_mult: i32,
    /// Says location of term to multiply by.
    var_mult: Option<[usize; 2]>,
    det: Determinant,
}

impl Term {
    fn new(const_mult: i32, var_mult: Option<[usize; 2]>, det: Determinant) -> Self {
        Self { const_mult, var_mult, det }
    }

    fn nonzero(mut self, zero_dets: &mut HashSet<Determinant>) -> Option<Self> {
        if let Some(det) = std::mem::take(&mut self.det).nonzero(zero_dets) {
            self.det = det;
            Some(self)
        } else {
            None
        }
    }

    fn to_grid(&self, indexes: &[Ident]) -> Vec<String> {
        let coords = "xyzw".chars().collect::<Vec<_>>();
        let mut lines = self.det.to_grid(indexes);

        let mut coeff = if self.const_mult >= 0 {"+ "} else {"- "}.to_owned();
        if self.const_mult.abs() != 1 {
            coeff += &self.const_mult.abs().to_string();
        }
        if let Some([r, c]) = self.var_mult {
            coeff += &format!("{}{}", indexes[r], coords[c]);
        }

        let mid = (lines.len() - 1) / 2;
        let pad = repeat(" ").take(coeff.chars().count()).collect::<String>();
        lines[mid] = coeff + &lines[mid];
        for (i, line) in lines.iter_mut().enumerate() {
            if i != mid {
                *line = pad.clone() + line;
            }
        }
        
        lines
    }
}

#[derive(Clone, Debug, Default)]
struct TermSum {
    terms: Vec<Term>,
}

impl TermSum {
    fn new() -> Self {
        Self::default()
    }

    fn without_zero_dets(mut self, dim: usize, zero_dets: &mut HashSet<Determinant>) -> Option<Self> {
        self.terms = self.terms.into_iter().flat_map(|t| t.nonzero(zero_dets)).collect::<Vec<_>>();

        if self.terms.len() == 1 && self.terms[0].var_mult.is_none() {
            let det = &self.terms[0].det;
            zero_dets.insert(det.clone());

            // Special case: coordinates equal, so the magnitudes do as well.
            if det.cols.len() == 1 && (0..dim).all(|i| 
                zero_dets.contains(&Determinant::new(vec![det.rows[0]], vec![i])))
            {
                zero_dets.insert(Determinant::new(vec![det.rows[0]], vec![dim]));
            }
        }

        if self.terms.is_empty() { None } else { Some(self) }
    }

    fn prepare_dets_for_cases(&mut self, dim: usize) {
        for term in &mut self.terms {
            // For convenience of including the last point
            term.det.rows.push(dim + 1);

            if term.const_mult < 0 {
                term.const_mult *= -1;
                let n = term.det.rows.len();
                term.det.rows.swap(n - 2, n - 1);
            }
        }
    }

    fn case(mut self, points: &[Ident]) -> TokenStream2 {
        let coords = "xyzw".chars().collect::<Vec<_>>();
        let dim = points.len() - 2;
        self.prepare_dets_for_cases(dim);

        if self.terms.len() == 1 && self.terms[0].det.cols.len() == dim + 1 {
            assert_eq!(self.terms[0].const_mult, 1);
            assert_eq!(self.terms[0].var_mult, None);

            if dim == 2 {
                let [i, j, k, l] = [&points[0], &points[1], &points[2], &points[3]];
                quote! {
                    let val = rg::in_circle(#i, #j, #k, #l);
                    if val != 0.0 {
                        return (val > 0.0) != odd;
                    }
                }
            } else if dim == 3 {
                let [i, j, k, l, m] = [&points[0], &points[1], &points[2], &points[3], &points[4]];
                quote! {
                    let val = rg::in_sphere(#i, #j, #k, #l, #m);
                    if val != 0.0 {
                        return (val > 0.0) != odd;
                    }
                }
            } else {
                panic!("Unsupported # of dimensions: {}", dim)
            }
        } else if self.terms.len() == 1 && self.terms[0].det.cols.last() == Some(&dim) {
            assert_eq!(self.terms[0].const_mult, 1);
            assert_eq!(self.terms[0].var_mult, None);

            let det = self.terms[0].det.vector_tokens(points);
            let func = if self.terms[0].det.cols.len() == 1 {
                format_ident!("magnitude_cmp_{}d", dim)
            } else {
                format_ident!(
                    "sign_det_{}{}",
                    coords[..self.terms[0].det.cols.len() - 1].iter().map(|c| c.to_string() + "_").join(""),
                    coords[..dim].iter().map(|c| c.to_string() + "2").join(""),
                )
            };
            quote! {
                let val = rg::#func(#det);
                if val != 0.0 {
                    return (val > 0.0) != odd;
                }
            }
        } else if self.terms.len() == 1 {
            assert_eq!(self.terms[0].const_mult, 1);
            assert_eq!(self.terms[0].var_mult, None);
            
            if self.terms[0].det.cols.len() == 0 {
                quote! { !odd }
            } else if self.terms[0].det.cols.len() == 1 {
                let coord = self.terms[0].det.cols[0];
                let p1 = &points[self.terms[0].det.rows[0]];
                let p2 = &points[self.terms[0].det.rows[1]];
                quote! {
                    if #p1[#coord] != #p2[#coord] {
                        return (#p1[#coord] > #p2[#coord]) != odd;
                    }
                }
            } else {
                let det = self.terms[0].det.vector_tokens(points);
                let func = format_ident!("orient_{}d", self.terms[0].det.cols.len());
                quote! {
                    let val = rg::#func(#det);
                    if val != 0.0 {
                        return (val > 0.0) != odd;
                    }
                }
            }
        } else if self.terms.len() == 2 && self.terms[0].var_mult.is_none() {
            assert_eq!(self.terms[0].const_mult, 1);
            assert_eq!(*self.terms[0].det.cols.last().unwrap(), dim);
            assert_eq!(self.terms[1].const_mult, 2);
            assert!(self.terms[1].var_mult.is_some());
            assert_ne!(*self.terms[1].det.cols.last().unwrap(), dim);

            let det1 = self.terms[0].det.vector_tokens(points);
            let det2 = self.terms[1].det.vector_tokens(points);
            let mult = &points[self.terms[1].var_mult.unwrap()[0]];
            let mult_coord = self.terms[1].var_mult.unwrap()[1];
            let func = format_ident!(
                "sign_det_{}{}_plus_2x_det_{}",
                coords[..self.terms[0].det.cols.len() - 1].iter().map(|c| c.to_string() + "_").join(""),
                coords[..dim].iter().map(|c| c.to_string() + "2").join(""),
                coords[..self.terms[1].det.cols.len()].iter().join("_"),
            );
            quote! { 
                let val = rg::#func(#det1 #mult[#mult_coord], #det2);
                if val != 0.0 {
                    return (val > 0.0) != odd;
                }
            }
        } else if self.terms.len() == 2 {
            assert_eq!(self.terms[0].const_mult, 2);
            assert_ne!(self.terms[0].det.cols.last(), Some(&dim));
            assert_eq!(self.terms[1].const_mult, 2);
            assert!(self.terms[1].var_mult.is_some());
            assert_eq!(self.terms[0].det, self.terms[1].det);

            let mult1 = &points[self.terms[0].var_mult.unwrap()[0]];
            let mult1_coord = self.terms[0].var_mult.unwrap()[1];
            let mult2 = &points[self.terms[1].var_mult.unwrap()[0]];
            let mult2_coord = self.terms[1].var_mult.unwrap()[1];
            
            let inner = if self.terms[0].det.cols.len() == 0 {
                quote! { return negate == odd; }
            } else if self.terms[0].det.cols.len() == 1 {
                let coord = self.terms[0].det.cols[0];
                let p1 = &points[self.terms[0].det.rows[0]];
                let p2 = &points[self.terms[0].det.rows[1]];
                quote! {
                    if #p1[#coord] != #p2[#coord] {
                        return (#p1[#coord] > #p2[#coord]) != (negate != odd);
                    }
                }
            } else {
                let det = self.terms[0].det.vector_tokens(points);
                let func = format_ident!("orient_{}d", self.terms[0].det.cols.len());
                quote! {
                    let val = rg::#func(#det);
                    if val != 0.0 {
                        return (val > 0.0) != (negate != odd);
                    }
                }
            };

            quote! {
                if #mult1[#mult1_coord] != -#mult2[#mult2_coord] {
                    let negate = #mult1[#mult1_coord] < -#mult2[#mult2_coord];
                    #inner
                }
            }
        } else {
            panic!("Unsupported determinant: {}", self.to_grid(points).join("\n"))
        }
    }

    fn to_grid(&self, indexes: &[Ident]) -> Vec<String> {
        let mut lines = self.terms[0].to_grid(indexes);
        for term in &self.terms[1..] {
            for (i, line) in term.to_grid(indexes).into_iter().enumerate() {
                lines[i] += &format!(" {}", line);
            }
        }
        lines
    }
}

/// An ε-factor, represented as an exponent of ε.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct EFactor(u64);

impl EFactor {
    fn new(dim: usize, coords: impl IntoIterator<Item = [usize; 2]>) -> Self {
        Self(coords.into_iter().map(|[r, c]| 3u64.pow((dim * r + dim - 1 - c) as u32)).sum())
    }

    fn to_repr(mut self, indexes: &[Ident]) -> String {
        let coords = "xyzw".chars().collect::<Vec<_>>();
        let mut res = String::new();

        for index in indexes {
            for c in 0..indexes.len() - 2 {
                let rem = self.0 % 3;
                self.0 /= 3;

                if rem > 0 {
                    if !res.is_empty() {
                        res += "·";
                    }
                    res += &format!("ε{}{}", index, coords[indexes.len() - 3 - c]);
                }
                if rem == 2 {
                    res += "²";
                }
            }
        }

        res
    }
}

impl Display for EFactor {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        let mut res = String::new();
        let mut num = self.0;

        while num > 0 {
            res += &(num % 3).to_string();
            num /= 3;
        }

        res = res.chars().rev().collect();
        f.pad(&res)
    }
}

fn terms(dim: usize) -> Vec<(EFactor, Term)> {
    let mut terms = vec![];

    // The biggest relevant ε-factor.
    let big_e = EFactor::new(dim, (0..dim - 1).map(|i| [i, i]).chain(vec![[dim - 1, dim - 1], [dim - 1, dim - 1], [dim, dim - 1]]));

    let all = (0..=dim).collect::<Vec<_>>();

    // General term
    terms.push((EFactor::new(dim, vec![]), Term::new(1, None, Determinant::new(all.clone(), all.clone()))));

    // Degenerate terms
    let mut rows = all.clone();
    let mut cols = all.clone();
    let mut e_factors = vec![];
    for i in 1..=dim + 1 {
        let mut remove = vec![0; 2 * i];

        while remove[0] <= dim - (i - 1) {
            // Trying not to have a million allocations here
            rows.clear();
            rows.extend(all.iter().copied());
            cols.clear();
            cols.extend(all.iter().copied());
            e_factors.clear();

            let mut mult = 1;
            for rc in remove.chunks_exact(2) {
                let er = rows.remove(rc[0]);
                let ec = cols.remove(rc[1]);
                if (er + ec) % 2 == 1 {
                    mult *= -1;
                }
                e_factors.push([er, ec]);
            }

            let det = Determinant::new(rows.clone(), cols.clone());

            // Column dim is the magnitude column, so do special things with it.
            // For example, (x + εx)² + (y + εy)² expands to
            // (x² + y²) + εx·2x + εx² + εy·2y + εy²
            if let Some(mag_r) = e_factors.iter().position(|[_, c]| *c == dim).map(|i| e_factors.remove(i)[0]) {
                for j in 0..dim {
                    let factor = EFactor::new(dim, e_factors.iter().copied().chain(once([mag_r, j])));
                    if factor <= big_e {
                        terms.push((factor, Term::new(mult * 2, Some([mag_r, j]), det.clone())));
                    }

                    let factor = EFactor::new(dim, e_factors.iter().copied().chain(repeat([mag_r, j]).take(2)));
                    if factor <= big_e {
                        terms.push((factor, Term::new(mult, None, det.clone())));
                    }
                }
            } else {
                let factor = EFactor::new(dim, e_factors.drain(..));
                if factor <= big_e {
                    terms.push((factor, Term::new(mult, None, det)));
                }
            }

            // Count in base factorial to iterate through permutations
            // Row index shouldn't decrease so permutations aren't repeated.
            let mut j = 2 * i - 1;
            while {
                remove[j] += 1;
                if j % 2 == 0 && remove[j] <= dim - (i - 1) {
                    let row = remove[j];
                    for n in remove[j + 2..].iter_mut().step_by(2) {
                        *n = row;
                    }
                }

                remove[j] > dim - if j % 2 == 0 {i - 1} else {j / 2} && j > 0
            } {
                if j % 2 == 0 {
                    let row = remove[j - 2];
                    for n in remove[j..].iter_mut().step_by(2) {
                        *n = row;
                    }
                } else {
                    remove[j] = 0;
                };

                j -= 1;
            }
        }
    }

    terms
}

// Ordered by ε-factor exponent
fn term_sums(dim: usize) -> Vec<(EFactor, TermSum)> {
    let mut sums = FnvHashMap::default();

    for (e, term) in terms(dim) {
        sums.entry(e).or_insert(TermSum::new()).terms.push(term);
    }

    let mut sums = sums.into_iter().collect::<Vec<_>>();
    sums.sort_by_key(|(e, _)| *e);
    sums
}

fn fn_body(h: InHypersphere, sums: Vec<(EFactor, TermSum)>) -> TokenStream2 {
    let list = h.list;
    let index_fn = h.index_fn;
    let dim = h.indexes.len() - 2;

    let sorted = format_ident!("sorted_{}", h.indexes.len());
    let index_seq = h.indexes.iter().map(|index| quote!{#index,}).collect::<TokenStream2>();

    let points = h.indexes.iter().map(|index| format_ident!("p{}", index)).collect::<Vec<_>>();
    let indexing_seq = h.indexes.iter().zip(points.iter()).map(|(index, point)| quote! {
        let #point = #index_fn(#list, #index);
    }).collect::<TokenStream2>();

    let mut zero_dets = HashSet::new();
    let cases = sums.into_iter()
        .flat_map(|(e, sum)| sum.without_zero_dets(dim, &mut zero_dets).map(|sum| (e, sum)))
        .map(|(_, sum)| sum.case(&points))
        .collect::<TokenStream2>();

    let tokens = quote! { 
        let ([#index_seq], odd) = #sorted([#index_seq]);

        #indexing_seq

        #cases
    };

    tokens
}

#[proc_macro]
pub fn generate_in_hypersphere(input: TokenStream) -> TokenStream {
    let h = syn::parse_macro_input!(input as InHypersphere);

    let sums = term_sums(h.indexes.len() - 2);
    //let mut msg = "Cases:\n```".to_owned();

    //let mut zero_dets = HashSet::new();
    //for (e, sum) in &sums {
    //    msg += &format!("{}:\n", e.to_repr(&h.indexes));

    //    if let Some(sum) = sum.clone().without_zero_dets(h.indexes.len() - 2, &mut zero_dets) {
    //        msg += &format!("{}\n", sum.to_grid(&h.indexes).into_iter().join("\n"));
    //    } else {
    //        msg += "Impossible!\n";
    //    }
    //    msg += "\n";
    //}
    //msg += "```";

    //let ident = quote::format_ident!("__test_macro_{}", h.indexes.len() - 2);
    //let stream = msg.split('\n').map(|line| quote! {
    //    #[doc = #line]
    //}).chain(once(quote! {
    //    pub fn #ident() {}
    //})).collect::<TokenStream2>();

    TokenStream::from(fn_body(h, sums))
}