1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
// SPDX-License-Identifier: CC0-1.0

//! # Simplicity values
//!
//! Simplicity processes data in terms of [`Value`]s,
//! i.e., inputs, intermediate results and outputs.

use crate::dag::{Dag, DagLike, NoSharing};

use std::collections::VecDeque;
use std::convert::TryInto;
use std::fmt;
use std::hash::Hash;
use std::sync::Arc;

/// Value of some type.
///
/// The _unit value_ is the only value of the _unit type_.
/// This is the basis for everything we are doing.
/// Because there is only a single unit value, there is no information contained in it.
/// Instead, we wrap unit values in sum and product values to encode information.
///
/// A _sum value_ wraps another value.
/// The _left sum value_ `L(a)` wraps a value `a` from the _left type_ `A`.
/// The _right sum value_ `R(b)` wraps a value `b` from the _right type_ `B`.
/// The type of the sum value is the _sum type_ `A + B` of the left type and the right type.
///
/// We represent the false bit as a left value that wraps a unit value.
/// The true bit is represented as a right value that wraps a unit value.
///
/// A _product value_ `(a, b)` wraps two values:
/// a value `a` from the _left type_ `A` and a value `b` from the _right type_ `B`.
/// The type of the product value is the _product type_ `A × B` of the left type and the right type.
///
/// We represent bit strings (tuples of bits) as trees of nested product values
/// that have bit values (sum values wrapping the unit value) at their leaves.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Value {
    /// Unit value
    Unit,
    /// Sum value that wraps a left value
    SumL(Arc<Value>),
    /// Sum value that wraps a right value
    SumR(Arc<Value>),
    /// Product value that wraps a left and a right value
    Prod(Arc<Value>, Arc<Value>),
}

impl<'a> DagLike for &'a Value {
    type Node = Value;

    fn data(&self) -> &Value {
        self
    }

    fn as_dag_node(&self) -> Dag<Self> {
        match self {
            Value::Unit => Dag::Nullary,
            Value::SumL(child) | Value::SumR(child) => Dag::Unary(child),
            Value::Prod(left, right) => Dag::Binary(left, right),
        }
    }
}

impl Value {
    /// Create the unit value.
    pub fn unit() -> Arc<Self> {
        Arc::new(Self::Unit)
    }

    /// Create a sum value that wraps a left value.
    pub fn sum_l(left: Arc<Self>) -> Arc<Self> {
        Arc::new(Value::SumL(left))
    }

    /// Create a sum value that wraps a right value.
    pub fn sum_r(right: Arc<Self>) -> Arc<Self> {
        Arc::new(Value::SumR(right))
    }

    /// Create a product value that wraps a left and a right value.
    pub fn prod(left: Arc<Self>, right: Arc<Self>) -> Arc<Self> {
        Arc::new(Value::Prod(left, right))
    }

    #[allow(clippy::len_without_is_empty)]
    /// The length, in bits, of the value when encoded in the Bit Machine
    pub fn len(&self) -> usize {
        self.pre_order_iter::<NoSharing>()
            .filter(|inner| matches!(inner, Value::SumL(_) | Value::SumR(_)))
            .count()
    }

    /// Encode a single bit as a value. Will panic if the input is out of range
    pub fn u1(n: u8) -> Arc<Self> {
        match n {
            0 => Value::sum_l(Value::unit()),
            1 => Value::sum_r(Value::unit()),
            x => panic!("{} out of range for Value::u1", x),
        }
    }

    /// Encode a two-bit number as a value. Will panic if the input is out of range
    pub fn u2(n: u8) -> Arc<Self> {
        let b0 = (n & 2) / 2;
        let b1 = n & 1;
        assert!(n <= 3, "{} out of range for Value::u2", n);
        Value::prod(Value::u1(b0), Value::u1(b1))
    }

    /// Encode a four-bit number as a value. Will panic if the input is out of range
    pub fn u4(n: u8) -> Arc<Self> {
        let w0 = (n & 12) / 4;
        let w1 = n & 3;
        assert!(n <= 15, "{} out of range for Value::u2", n);
        Value::prod(Value::u2(w0), Value::u2(w1))
    }

    /// Encode an eight-bit number as a value
    pub fn u8(n: u8) -> Arc<Self> {
        let w0 = n >> 4;
        let w1 = n & 0xf;
        Value::prod(Value::u4(w0), Value::u4(w1))
    }

    /// Encode a 16-bit number as a value
    pub fn u16(n: u16) -> Arc<Self> {
        let w0 = (n >> 8) as u8;
        let w1 = (n & 0xff) as u8;
        Value::prod(Value::u8(w0), Value::u8(w1))
    }

    /// Encode a 32-bit number as a value
    pub fn u32(n: u32) -> Arc<Self> {
        let w0 = (n >> 16) as u16;
        let w1 = (n & 0xffff) as u16;
        Value::prod(Value::u16(w0), Value::u16(w1))
    }

    /// Encode a 64-bit number as a value
    pub fn u64(n: u64) -> Arc<Self> {
        let w0 = (n >> 32) as u32;
        let w1 = (n & 0xffff_ffff) as u32;
        Value::prod(Value::u32(w0), Value::u32(w1))
    }

    /// Encode a 128-bit number as a value
    pub fn u128(n: u128) -> Arc<Self> {
        let w0 = (n >> 64) as u64;
        let w1 = n as u64; // Cast safety: picking last 64 bits
        Value::prod(Value::u64(w0), Value::u64(w1))
    }

    /// Encode a 32-byte number as a value
    ///
    /// Useful for encoding public keys and hashes
    pub fn u256_from_slice(v: &[u8]) -> Arc<Self> {
        assert_eq!(32, v.len(), "Expect 32-byte slice");

        Value::prod(
            Value::prod(
                Value::u64(u64::from_be_bytes(v[0..8].try_into().unwrap())),
                Value::u64(u64::from_be_bytes(v[8..16].try_into().unwrap())),
            ),
            Value::prod(
                Value::u64(u64::from_be_bytes(v[16..24].try_into().unwrap())),
                Value::u64(u64::from_be_bytes(v[24..32].try_into().unwrap())),
            ),
        )
    }

    /// Encode a 64-byte number as a value
    ///
    /// Useful for encoding signatures
    pub fn u512_from_slice(v: &[u8]) -> Arc<Self> {
        assert_eq!(64, v.len(), "Expect 64-byte slice");

        Value::prod(
            Value::u256_from_slice(&v[0..32]),
            Value::u256_from_slice(&v[32..64]),
        )
    }

    /// Encode a byte slice as a value.
    ///
    /// The length of the slice must be a power of two.
    pub fn power_of_two(v: &[u8]) -> Arc<Self> {
        assert!(
            v.len().is_power_of_two(),
            "Slice length must be a power of two"
        );
        let mut values: VecDeque<_> = v.iter().map(|b| Value::u8(*b)).collect();

        while values.len() > 1 {
            let mut alt_values = VecDeque::with_capacity(values.len() / 2);

            while let (Some(left), Some(right)) = (values.pop_front(), values.pop_front()) {
                alt_values.push_back(Value::prod(left, right));
            }

            values = alt_values;
        }

        values.into_iter().next().unwrap()
    }

    /// Execute function `f` on each bit of the encoding of the value.
    pub fn do_each_bit<F>(&self, mut f: F)
    where
        F: FnMut(bool),
    {
        for val in self.pre_order_iter::<NoSharing>() {
            match val {
                Value::Unit => {}
                Value::SumL(..) => f(false),
                Value::SumR(..) => f(true),
                Value::Prod(..) => {}
            }
        }
    }

    /// Encode value as big-endian byte string.
    /// Fails if underlying bit string has length not divisible by 8
    pub fn try_to_bytes(&self) -> Result<Vec<u8>, &str> {
        let (bytes, bit_length) = self.to_bytes_len();

        if bit_length % 8 == 0 {
            Ok(bytes)
        } else {
            Err("Length of bit string that encodes this value is not divisible by 8!")
        }
    }

    /// Encode value as big-endian byte string.
    /// Trailing zeroes are added as padding if underlying bit string has length not divisible by 8.
    /// The length of said bit string is returned as second argument
    pub fn to_bytes_len(&self) -> (Vec<u8>, usize) {
        let mut bytes = vec![];
        let mut unfinished_byte = Vec::with_capacity(8);
        let update_bytes = |bit: bool| {
            unfinished_byte.push(bit);

            if unfinished_byte.len() == 8 {
                bytes.push(
                    unfinished_byte
                        .iter()
                        .fold(0, |acc, &b| acc * 2 + u8::from(b)),
                );
                unfinished_byte.clear();
            }
        };

        self.do_each_bit(update_bytes);
        let bit_length = bytes.len() * 8 + unfinished_byte.len();

        if !unfinished_byte.is_empty() {
            unfinished_byte.resize(8, false);
            bytes.push(
                unfinished_byte
                    .iter()
                    .fold(0, |acc, &b| acc * 2 + u8::from(b)),
            );
        }

        (bytes, bit_length)
    }
}

impl fmt::Debug for Value {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(self, f)
    }
}

impl fmt::Display for Value {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for data in self.verbose_pre_order_iter::<NoSharing>() {
            match data.node {
                Value::Unit => {
                    if data.n_children_yielded == 0
                        && !matches!(data.parent, Some(Value::SumL(_)) | Some(Value::SumR(_)))
                    {
                        f.write_str("ε")?;
                    }
                }
                Value::SumL(..) => {
                    if data.n_children_yielded == 0 {
                        f.write_str("0")?;
                    }
                }
                Value::SumR(..) => {
                    if data.n_children_yielded == 0 {
                        f.write_str("1")?;
                    }
                }
                Value::Prod(..) => match data.n_children_yielded {
                    0 => f.write_str("(")?,
                    1 => f.write_str(",")?,
                    2 => f.write_str(")")?,
                    _ => unreachable!(),
                },
            }
        }
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn value_display() {
        // Only test a couple values becasue we probably want to change this
        // at some point and will have to redo this test.
        assert_eq!(Value::u1(0).to_string(), "0",);
        assert_eq!(Value::u1(1).to_string(), "1",);
        assert_eq!(Value::u4(6).to_string(), "((0,1),(1,0))",);
    }
}