1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
// SPDX-License-Identifier: CC0-1.0
//! Types and Type Inference
//!
//! Every Simplicity expression has two types associated with it: a source and
//! a target. We refer to this pair of types as an "arrow". The types are
//! inferred from the structure of the program.
//!
//! Simplicity types are one of three things
//! * A unit type, which has one value
//! * A sum of two other types
//! * A product of two other types
//!
//! During type inference, types are initially "free", meaning that there are
//! no constraints on what they will eventually be. The program structure then
//! imposes additional constraints (for example, the `comp` combinator requires
//! that its left child's target type be the same as its right child's source
//! type), and by unifying all these constraints, all types can be inferred.
//!
//! In this module, during inference types are characterized by their [`Bound`],
//! which describes the constraints on the type. The bound of a type can be
//! obtained by the [`Type::bound`] method, and is an enum with four variants:
//!
//! * [`Bound::Free`] means that the type has no constraints; it is a free
//! variable. The type has a name which can be used to identify it in error
//! messages.
//! * [`Bound::Sum`] and [`Bound::Product`] means that the the type is a sum
//! (resp. product) of two other types, which are characterized by their
//! own bounds.
//! * [`Bound::Complete`] means that the type has no free variables at all,
//! and has an already-computed [`Final`] structure suitable for use in
//! contexts that require complete types. (Unit types are always complete,
//! and therefore use this variant rather than getting their own.)
//!
//! During inference, it is possible for a type to be complete, in the sense
//! of having no free variables, without its bound being [`Bound::Complete`].
//! This occurs, for example, if a type is a sum of two incomplete types, then
//! the child types are completed during type inference on an unrelated part
//! of the type hierarchy. The type would then have a [`Bound::Sum`] with two
//! children, both of which are complete.
//!
//! The inference engine makes an effort to notice when this happens and set
//! the bound of complete types to [`Bound::Complete`], but since type inference
//! is inherently non-local this cannot always be done.
//!
//! When the distinction matters, we say a type is "finalized" only if its bound
//! is `Complete` and "complete" if it has no free variables. But the distinction
//! usually does not matter, so we prefer to use the word "complete".
//!
//! Type inference is done progressively during construction of Simplicity
//! expressions. It is completed by the [`Type::finalize`] method, which
//! recursively completes types by setting any remaining free variables to unit.
//! If any type constraints are incompatible with each other (e.g. a type is
//! bound to be both a product and a sum type) then inference fails at that point
//! by returning an error.
//!
//! In addition to completing types [`Type::finalize`], does one additional
//! check, the "occurs check", to ensures that there are no infinitely-sized
//! types. Such types occur when a type has itself as a child, are illegal in
//! Simplicity, and could not be represented by our data structures.
//!
//! There are three main types in this module:
//! * [`Type`] is the main type representing a Simplicity type, whether it is
//! complete or not. Its main methods are [`Type::bound`] which returns the
//! current state of the type and [`Type::bind`] which adds a new constraint
//! to the type.
//! * `Final` is a mutex-free structure that can be obtained from a complete
//! type. It includes the TMR and the complete bound describing the type.
//! * `Bound` defines the structure of a type: whether it is free, complete,
//! or a sum or product of other types.
//!
use self::union_bound::UbElement;
use crate::dag::{Dag, DagLike, NoSharing};
use crate::Tmr;
use std::collections::HashSet;
use std::fmt;
use std::sync::Arc;
pub mod arrow;
mod final_data;
mod precomputed;
mod union_bound;
mod variable;
pub use final_data::{CompleteBound, Final};
/// Error type for simplicity
#[non_exhaustive]
#[derive(Clone, Debug)]
pub enum Error {
/// An attempt to bind a type conflicted with an existing bound on the type
Bind {
existing_bound: Bound,
new_bound: Bound,
hint: &'static str,
},
/// Two unequal complete types were attempted to be unified
CompleteTypeMismatch {
type1: Arc<Final>,
type2: Arc<Final>,
hint: &'static str,
},
/// A type is recursive (i.e., occurs within itself), violating the "occurs check"
OccursCheck,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Error::Bind {
ref existing_bound,
ref new_bound,
hint,
} => {
write!(
f,
"failed to apply bound `{}` to existing bound `{}`: {}",
new_bound, existing_bound, hint,
)
}
Error::CompleteTypeMismatch {
ref type1,
ref type2,
hint,
} => {
write!(
f,
"attempted to unify unequal types `{}` and `{}`: {}",
type1, type2, hint,
)
}
Error::OccursCheck => f.write_str("detected infinitely-sized type"),
}
}
}
impl std::error::Error for Error {}
mod bound_mutex {
use super::{Bound, CompleteBound, Error, Final};
use std::sync::{Arc, Mutex};
/// Source or target type of a Simplicity expression
#[derive(Debug)]
pub struct BoundMutex {
/// The type's status according to the union-bound algorithm.
inner: Mutex<Arc<Bound>>,
}
impl BoundMutex {
pub fn new(bound: Bound) -> Self {
BoundMutex {
inner: Mutex::new(Arc::new(bound)),
}
}
pub fn get(&self) -> Arc<Bound> {
Arc::clone(&self.inner.lock().unwrap())
}
pub fn set(&self, new: Arc<Bound>) {
let mut lock = self.inner.lock().unwrap();
assert!(
!matches!(**lock, Bound::Complete(..)),
"tried to modify finalized type",
);
*lock = new;
}
pub fn bind(&self, bound: Arc<Bound>, hint: &'static str) -> Result<(), Error> {
let existing_bound = self.get();
let bind_error = || Error::Bind {
existing_bound: existing_bound.shallow_clone(),
new_bound: bound.shallow_clone(),
hint,
};
match (existing_bound.as_ref(), bound.as_ref()) {
// Binding a free type to anything is a no-op
(_, Bound::Free(_)) => Ok(()),
// Free types are simply dropped and replaced by the new bound
(Bound::Free(_), _) => {
// Free means non-finalized, so set() is ok.
self.set(bound);
Ok(())
}
// Binding complete->complete shouldn't ever happen, but if so, we just
// compare the two types and return a pass/fail
(Bound::Complete(ref existing_final), Bound::Complete(ref new_final)) => {
if existing_final == new_final {
Ok(())
} else {
Err(bind_error())
}
}
// Binding an incomplete to a complete type requires recursion.
(Bound::Complete(complete), incomplete)
| (incomplete, Bound::Complete(complete)) => {
match (complete.bound(), incomplete) {
// A unit might match a Bound::Free(..) or a Bound::Complete(..),
// and both cases were handled above. So this is an error.
(CompleteBound::Unit, _) => Err(bind_error()),
(
CompleteBound::Product(ref comp1, ref comp2),
Bound::Product(ref ty1, ref ty2),
)
| (
CompleteBound::Sum(ref comp1, ref comp2),
Bound::Sum(ref ty1, ref ty2),
) => {
ty1.bind(Arc::new(Bound::Complete(Arc::clone(comp1))), hint)?;
ty2.bind(Arc::new(Bound::Complete(Arc::clone(comp2))), hint)
}
_ => Err(bind_error()),
}
}
(Bound::Sum(ref x1, ref x2), Bound::Sum(ref y1, ref y2))
| (Bound::Product(ref x1, ref x2), Bound::Product(ref y1, ref y2)) => {
x1.unify(y1, hint)?;
x2.unify(y2, hint)?;
// This type was not complete, but it may be after unification, giving us
// an opportunity to finaliize it. We do this eagerly to make sure that
// "complete" (no free children) is always equivalent to "finalized" (the
// bound field having variant Bound::Complete(..)), even during inference.
//
// It also gives the user access to more information about the type,
// prior to finalization.
if let (Some(data1), Some(data2)) = (y1.final_data(), y2.final_data()) {
self.set(Arc::new(Bound::Complete(Arc::new(
if let Bound::Sum(..) = *bound {
Final::sum(data1, data2)
} else {
Final::product(data1, data2)
},
))));
}
Ok(())
}
(x, y) => Err(Error::Bind {
existing_bound: x.shallow_clone(),
new_bound: y.shallow_clone(),
hint,
}),
}
}
}
}
/// The state of a [`Type`] based on all constraints currently imposed on it.
#[derive(Clone)]
pub enum Bound {
/// Fully-unconstrained type
Free(String),
/// Fully-constrained (i.e. complete) type, which has no free variables.
Complete(Arc<Final>),
/// A sum of two other types
Sum(Type, Type),
/// A product of two other types
Product(Type, Type),
}
impl Bound {
/// Clones the `Bound`.
///
/// This is the same as just calling `.clone()` but has a different name to
/// emphasize that what's being cloned is (at most) a pair of ref-counted
/// pointers.
pub fn shallow_clone(&self) -> Bound {
self.clone()
}
fn free(name: String) -> Self {
Bound::Free(name)
}
fn unit() -> Self {
Bound::Complete(Arc::new(Final::unit()))
}
fn sum(a: Type, b: Type) -> Self {
if let (Some(adata), Some(bdata)) = (a.final_data(), b.final_data()) {
Bound::Complete(Arc::new(Final::sum(adata, bdata)))
} else {
Bound::Sum(a, b)
}
}
fn product(a: Type, b: Type) -> Self {
if let (Some(adata), Some(bdata)) = (a.final_data(), b.final_data()) {
Bound::Complete(Arc::new(Final::product(adata, bdata)))
} else {
Bound::Product(a, b)
}
}
}
impl fmt::Debug for Bound {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let arc = Arc::new(self.shallow_clone());
for data in arc.verbose_pre_order_iter::<NoSharing>() {
match (&*data.node, data.n_children_yielded) {
(Bound::Free(ref s), _) => f.write_str(s)?,
(Bound::Complete(ref comp), _) => fmt::Debug::fmt(comp, f)?,
(Bound::Sum(..), 0) | (Bound::Product(..), 0) => f.write_str("(")?,
(Bound::Sum(..), 2) | (Bound::Product(..), 2) => f.write_str(")")?,
(Bound::Sum(..), _) => f.write_str(" + ")?,
(Bound::Product(..), _) => f.write_str(" × ")?,
}
}
Ok(())
}
}
impl fmt::Display for Bound {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let arc = Arc::new(self.shallow_clone());
for data in arc.verbose_pre_order_iter::<NoSharing>() {
match (&*data.node, data.n_children_yielded) {
(Bound::Free(ref s), _) => f.write_str(s)?,
(Bound::Complete(ref comp), _) => fmt::Display::fmt(comp, f)?,
(Bound::Sum(..), 0) | (Bound::Product(..), 0) => {
if data.index > 0 {
f.write_str("(")?
}
}
(Bound::Sum(..), 2) | (Bound::Product(..), 2) => {
if data.index > 0 {
f.write_str(")")?
}
}
(Bound::Sum(..), _) => f.write_str(" + ")?,
(Bound::Product(..), _) => f.write_str(" × ")?,
}
}
Ok(())
}
}
impl DagLike for Arc<Bound> {
type Node = Bound;
fn data(&self) -> &Bound {
self
}
fn as_dag_node(&self) -> Dag<Self> {
match **self {
Bound::Free(..) | Bound::Complete(..) => Dag::Nullary,
Bound::Sum(ref ty1, ref ty2) | Bound::Product(ref ty1, ref ty2) => {
Dag::Binary(ty1.bound.root().get(), ty2.bound.root().get())
}
}
}
}
/// Source or target type of a Simplicity expression.
///
/// Internally this type is essentially just a refcounted pointer; it is
/// therefore quite cheap to clone, but be aware that cloning will not
/// actually create a new independent type, just a second pointer to the
/// first one.
#[derive(Clone, Debug)]
pub struct Type {
/// A set of constraints, which maintained by the union-bound algorithm and
/// is progressively tightened as type inference proceeds.
bound: UbElement<bound_mutex::BoundMutex>,
}
impl Type {
/// Return an unbound type with the given name
pub fn free(name: String) -> Self {
Type::from(Bound::free(name))
}
/// Return a unit type.
pub fn unit() -> Self {
Type::from(Bound::unit())
}
/// Return a precomputed copy of 2^(2^n), for given n.
pub fn two_two_n(n: usize) -> Self {
precomputed::nth_power_of_2(n)
}
/// Return the sum of the given two types.
pub fn sum(a: Self, b: Self) -> Self {
Type::from(Bound::sum(a, b))
}
/// Return the product of the given two types.
pub fn product(a: Self, b: Self) -> Self {
Type::from(Bound::product(a, b))
}
/// Clones the `Type`.
///
/// This is the same as just calling `.clone()` but has a different name to
/// emphasize that what's being cloned is merely a ref-counted pointer.
pub fn shallow_clone(&self) -> Type {
self.clone()
}
/// Binds the type to a given bound. If this fails, attach the provided
/// hint to the error.
///
/// Fails if the type has an existing incompatible bound.
pub fn bind(&self, bound: Arc<Bound>, hint: &'static str) -> Result<(), Error> {
let root = self.bound.root();
root.bind(bound, hint)
}
/// Unify the type with another one.
///
/// Fails if the bounds on the two types are incompatible
pub fn unify(&self, other: &Self, hint: &'static str) -> Result<(), Error> {
self.bound.unify(&other.bound, |x_bound, y_bound| {
x_bound.bind(y_bound.get(), hint)
})
}
/// Accessor for this type's bound
pub fn bound(&self) -> Arc<Bound> {
self.bound.root().get()
}
/// Accessor for the TMR of this type, if it is final
pub fn tmr(&self) -> Option<Tmr> {
self.final_data().map(|data| data.tmr())
}
/// Accessor for the data of this type, if it is complete
pub fn final_data(&self) -> Option<Arc<Final>> {
if let Bound::Complete(ref data) = *self.bound.root().get() {
Some(Arc::clone(data))
} else {
None
}
}
/// Whether this type is known to be final
///
/// During type inference this may be false even though the type is, in fact,
/// complete, since its children may have been unified to a complete type. To
/// ensure a type is complete, call [`Type::finalize`].
pub fn is_final(&self) -> bool {
matches!(*self.bound.root().get(), Bound::Complete(..))
}
/// Attempts to finalize the type. Returns its TMR on success.
pub fn finalize(&self) -> Result<Arc<Final>, Error> {
let root = self.bound.root();
let bound = root.get();
if let Bound::Complete(ref data) = *bound {
return Ok(Arc::clone(data));
}
// First, do occurs-check to ensure that we have no infinitely sized types.
let mut occurs_check = HashSet::new();
for data in bound.verbose_pre_order_iter::<NoSharing>() {
if data.is_complete {
occurs_check.remove(&(data.node.as_ref() as *const _));
} else if data.n_children_yielded == 0
&& !occurs_check.insert(data.node.as_ref() as *const _)
{
return Err(Error::OccursCheck);
}
}
// Now that we know our types have finite size, we can safely use a
// post-order iterator to finalize them.
let mut finalized = vec![];
for data in self.shallow_clone().post_order_iter::<NoSharing>() {
let bound = data.node.bound.root();
let bound_get = bound.get();
let final_data = match *bound_get {
Bound::Free(_) => Arc::new(Final::unit()),
Bound::Complete(ref arc) => Arc::clone(arc),
Bound::Sum(..) => Arc::new(Final::sum(
Arc::clone(&finalized[data.left_index.unwrap()]),
Arc::clone(&finalized[data.right_index.unwrap()]),
)),
Bound::Product(..) => Arc::new(Final::product(
Arc::clone(&finalized[data.left_index.unwrap()]),
Arc::clone(&finalized[data.right_index.unwrap()]),
)),
};
if !matches!(*bound_get, Bound::Complete(..)) {
// set() ok because we are if-guarded on this variable not being complete
bound.set(Arc::new(Bound::Complete(Arc::clone(&final_data))));
}
finalized.push(final_data);
}
Ok(finalized.pop().unwrap())
}
/// Return a vector containing the types 2^(2^i) for i from 0 to n-1.
pub fn powers_of_two(n: usize) -> Vec<Self> {
let mut ret = Vec::with_capacity(n);
let unit = Type::unit();
let mut two = Type::sum(unit.shallow_clone(), unit);
for _ in 0..n {
ret.push(two.shallow_clone());
two = Type::product(two.shallow_clone(), two);
}
ret
}
}
impl fmt::Display for Type {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.bound.root().get(), f)
}
}
impl From<Bound> for Type {
/// Promotes a `Bound` to a type defined by that constraint
fn from(bound: Bound) -> Type {
Type {
bound: UbElement::new(Arc::new(bound_mutex::BoundMutex::new(bound))),
}
}
}
impl DagLike for Type {
type Node = Type;
fn data(&self) -> &Type {
self
}
fn as_dag_node(&self) -> Dag<Self> {
match *self.bound.root().get() {
Bound::Free(..) | Bound::Complete(..) => Dag::Nullary,
Bound::Sum(ref ty1, ref ty2) | Bound::Product(ref ty1, ref ty2) => {
Dag::Binary(ty1.shallow_clone(), ty2.shallow_clone())
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::jet::Core;
use crate::node::{ConstructNode, CoreConstructible};
#[test]
fn inference_failure() {
// unit: A -> 1
let unit = Arc::<ConstructNode<Core>>::unit(); // 1 -> 1
// Force unit to be 1->1
Arc::<ConstructNode<Core>>::comp(&unit, &unit).unwrap();
// take unit: 1 * B -> 1
let take_unit = Arc::<ConstructNode<Core>>::take(&unit); // 1*1 -> 1
// Pair will try to unify 1 and 1*B
Arc::<ConstructNode<Core>>::pair(&unit, &take_unit).unwrap_err();
// Trying to do it again should not work.
Arc::<ConstructNode<Core>>::pair(&unit, &take_unit).unwrap_err();
}
}