1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
// SPDX-License-Identifier: CC0-1.0

use crate::analysis::Cost;
use crate::jet::Elements;
use crate::node::{RedeemNode, WitnessNode};
use crate::policy::ToXOnlyPubkey;
use crate::{Cmr, Error, Policy, Value};
use elements::bitcoin;

use elements::locktime::Height;
use elements::taproot::TapLeafHash;
use hashes::Hash;

use std::convert::TryFrom;
use std::sync::Arc;

/// Type alias for 32-byte preimage.
pub type Preimage32 = [u8; 32];

/// Lookup table for signatures, hash preimages, etc.
///
/// Every method has a default implementation that simply returns `None`
/// on every query. Users are expected to override the methods that they
/// have data for.
pub trait Satisfier<Pk: ToXOnlyPubkey> {
    /// Given a public key, look up a Schnorr signature with that key.
    fn lookup_tap_leaf_script_sig(&self, _: &Pk, _: &TapLeafHash) -> Option<elements::SchnorrSig> {
        None
    }

    /// Given a SHA256 hash, look up its preimage.
    fn lookup_sha256(&self, _: &Pk::Sha256) -> Option<Preimage32> {
        None
    }

    /// Assert that a relative locktime is satisfied.
    fn check_older(&self, _: elements::Sequence) -> bool {
        false
    }

    /// Assert that an absolute locktime is satisfied.
    fn check_after(&self, _: elements::LockTime) -> bool {
        false
    }

    /// Given a CMR, look up a matching satisfied Simplicity program.
    ///
    /// It is the **responsibility of the satisfier** to make sure that given **program is satisfied**.
    /// That is, each witness note is populated with a value of the correct type
    /// and the program successfully runs on the Bit Machine.
    ///
    /// If the satisfier provides an unsatisfied program,
    /// then this may **corrupt** the computation of an **overall satisfaction**.
    /// That is, the resulting "satisfaction" fails to satisfy the program.
    fn lookup_asm_program(&self, _: Cmr) -> Option<Arc<WitnessNode<Elements>>> {
        None
    }
}

impl<Pk: ToXOnlyPubkey> Satisfier<Pk> for elements::Sequence {
    fn check_older(&self, n: elements::Sequence) -> bool {
        use elements::bitcoin::locktime::relative::LockTime::*;

        let this = match bitcoin::Sequence(self.0).to_relative_lock_time() {
            Some(x) => x,
            None => return false,
        };
        let n = match bitcoin::Sequence(n.0).to_relative_lock_time() {
            Some(x) => x,
            None => return false,
        };

        match (n, this) {
            (Blocks(n), Blocks(lock_time)) => n <= lock_time,
            (Time(n), Time(lock_time)) => n <= lock_time,
            _ => false, // Not the same units
        }
    }
}

impl<Pk: ToXOnlyPubkey> Satisfier<Pk> for elements::LockTime {
    fn check_after(&self, n: elements::LockTime) -> bool {
        use elements::LockTime::*;

        match (n, *self) {
            (Blocks(n), Blocks(lock_time)) => n <= lock_time,
            (Seconds(n), Seconds(lock_time)) => n <= lock_time,
            _ => false, // Not the same units.
        }
    }
}

impl<Pk: ToXOnlyPubkey> Policy<Pk> {
    fn satisfy_internal<S: Satisfier<Pk>>(
        &self,
        satisfier: &S,
    ) -> Result<Arc<WitnessNode<Elements>>, Error> {
        let node = match *self {
            Policy::Unsatisfiable(entropy) => super::serialize::unsatisfiable(entropy),
            Policy::Trivial => super::serialize::trivial(),
            Policy::Key(ref key) => {
                let sig_wit = satisfier
                    .lookup_tap_leaf_script_sig(key, &TapLeafHash::all_zeros())
                    .map(|sig| Value::u512_from_slice(sig.sig.as_ref()));
                super::serialize::key(key, sig_wit)
            }
            Policy::After(n) => {
                let node = super::serialize::after::<Arc<_>>(n);
                let height = Height::from_consensus(n).expect("timelock is valid");
                if satisfier.check_after(elements::LockTime::Blocks(height)) {
                    node
                } else {
                    node.pruned()
                }
            }
            Policy::Older(n) => {
                let node = super::serialize::older::<Arc<_>>(n);
                if satisfier.check_older(elements::Sequence((n).into())) {
                    node
                } else {
                    node.pruned()
                }
            }
            Policy::Sha256(ref hash) => {
                let preimage_wit = satisfier
                    .lookup_sha256(hash)
                    .map(|preimage| Value::u256_from_slice(preimage.as_ref()));
                super::serialize::sha256::<Pk, _, _>(hash, preimage_wit)
            }
            Policy::And {
                ref left,
                ref right,
            } => {
                let left = left.satisfy_internal(satisfier)?;
                let right = right.satisfy_internal(satisfier)?;
                super::serialize::and(&left, &right)
            }
            Policy::Or {
                ref left,
                ref right,
            } => {
                let left = left.satisfy_internal(satisfier)?;
                let right = right.satisfy_internal(satisfier)?;

                let take_right = match (left.must_prune(), right.must_prune()) {
                    (false, false) => {
                        let left_cost = left.finalize()?.bounds().cost;
                        let right_cost = right.finalize()?.bounds().cost;
                        left_cost > right_cost
                    }
                    (false, true) => false,
                    (true, false) => true,
                    // If both children are must_prune the choice doesn't matter,
                    // the case node itself will be marked must_prune.
                    (true, true) => false,
                };

                if take_right {
                    super::serialize::or(&left.pruned(), &right, Some(Value::u1(1)))
                } else {
                    super::serialize::or(&left, &right.pruned(), Some(Value::u1(0)))
                }
                .prune_and_retype()
            }
            Policy::Threshold(k, ref subs) => {
                let nodes: Result<Vec<Arc<WitnessNode<_>>>, Error> = subs
                    .iter()
                    .map(|sub| sub.satisfy_internal(satisfier))
                    .collect();
                let mut nodes = nodes?;
                let mut costs = vec![Cost::CONSENSUS_MAX; subs.len()];
                // 0 means skip, 1 means don't skip
                let mut witness_bits = vec![Some(Value::u1(0)); subs.len()];

                for (cost, node) in costs.iter_mut().zip(nodes.iter()) {
                    if !node.must_prune() {
                        *cost = node.finalize()?.bounds().cost;
                    }
                }

                // Sort by witness cost and mark everything except the cheapest k as to-prune
                let mut sorted_costs: Vec<_> = costs.iter().copied().enumerate().collect();
                sorted_costs.sort_by_key(|pair| pair.1);
                let b1 = Value::u1(1);
                let mut threshold_failed = false;
                for &(idx, _) in &sorted_costs[..k] {
                    if nodes[idx].must_prune() {
                        // Unlike in the `or` case, where two pruned branches will automatically
                        // cause the `or` itself to be pruned, with thresholds we have to track
                        // this manually.
                        threshold_failed = true;
                    }
                    witness_bits[idx] = Some(Arc::clone(&b1));
                }
                for &(idx, _) in &sorted_costs[k..] {
                    nodes[idx] = nodes[idx].pruned();
                }

                let k = u32::try_from(k).expect("k less than 2^32");
                if threshold_failed {
                    super::serialize::threshold(k, &nodes, &witness_bits).pruned()
                } else {
                    super::serialize::threshold(k, &nodes, &witness_bits)
                }
                .prune_and_retype()
            }
            Policy::Assembly(cmr) => satisfier
                .lookup_asm_program(cmr)
                .ok_or(Error::IncompleteFinalization)?,
        };
        Ok(node)
    }

    pub fn satisfy<S: Satisfier<Pk>>(
        &self,
        satisfier: &S,
    ) -> Result<Arc<RedeemNode<Elements>>, Error> {
        let witnode = self.satisfy_internal(satisfier)?;
        if witnode.must_prune() {
            Err(Error::IncompleteFinalization)
        } else {
            WitnessNode::finalize(&witnode.prune_and_retype())
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::dag::{DagLike, NoSharing};
    use crate::jet::elements::ElementsEnv;
    use crate::node::{CoreConstructible, JetConstructible, SimpleFinalizer, WitnessConstructible};
    use crate::policy::serialize;
    use crate::{BitMachine, FailEntropy, SimplicityKey};
    use elements::bitcoin::key::{Keypair, XOnlyPublicKey};
    use elements::secp256k1_zkp;
    use hashes::{sha256, Hash};
    use std::collections::HashMap;
    use std::sync::Arc;

    pub struct PolicySatisfier<'a, Pk: SimplicityKey> {
        pub preimages: HashMap<Pk::Sha256, Preimage32>,
        pub signatures: HashMap<Pk, elements::SchnorrSig>,
        pub assembly: HashMap<Cmr, Arc<WitnessNode<Elements>>>,
        pub tx: &'a elements::Transaction,
        pub index: usize,
    }

    impl<'a, Pk: ToXOnlyPubkey> Satisfier<Pk> for PolicySatisfier<'a, Pk> {
        fn lookup_tap_leaf_script_sig(
            &self,
            pk: &Pk,
            _: &TapLeafHash,
        ) -> Option<elements::SchnorrSig> {
            self.signatures.get(pk).copied()
        }

        fn lookup_sha256(&self, hash: &Pk::Sha256) -> Option<Preimage32> {
            self.preimages.get(hash).copied()
        }

        fn check_older(&self, sequence: elements::Sequence) -> bool {
            let self_sequence = self.tx.input[self.index].sequence;
            <elements::Sequence as Satisfier<Pk>>::check_older(&self_sequence, sequence)
        }

        fn check_after(&self, locktime: elements::LockTime) -> bool {
            <elements::LockTime as Satisfier<Pk>>::check_after(&self.tx.lock_time, locktime)
        }

        fn lookup_asm_program(&self, cmr: Cmr) -> Option<Arc<WitnessNode<Elements>>> {
            self.assembly.get(&cmr).cloned()
        }
    }

    fn get_satisfier(
        env: &ElementsEnv<Arc<elements::Transaction>>,
    ) -> PolicySatisfier<XOnlyPublicKey> {
        let mut preimages = HashMap::new();

        for i in 0..3 {
            let preimage = [i; 32];
            preimages.insert(sha256::Hash::hash(&preimage), preimage);
        }

        let secp = secp256k1_zkp::Secp256k1::new();
        let mut rng = secp256k1_zkp::rand::rngs::ThreadRng::default();
        let mut signatures = HashMap::new();

        for _ in 0..3 {
            let keypair = Keypair::new(&secp, &mut rng);
            let xonly = keypair.x_only_public_key().0;

            let sighash = env.c_tx_env().sighash_all();
            let msg = secp256k1_zkp::Message::from(sighash);
            let sig = elements::SchnorrSig {
                sig: keypair.sign_schnorr(msg),
                hash_ty: elements::SchnorrSighashType::All,
            };

            signatures.insert(xonly, sig);
        }

        PolicySatisfier {
            preimages,
            signatures,
            assembly: HashMap::new(),
            tx: env.tx(),
            index: env.ix() as usize,
        }
    }

    fn execute_successful(
        program: Arc<RedeemNode<Elements>>,
        env: &ElementsEnv<Arc<elements::Transaction>>,
    ) {
        let mut mac = BitMachine::for_program(&program);
        assert!(mac.exec(&program, env).is_ok());
    }

    fn execute_unsuccessful(
        program: Arc<RedeemNode<Elements>>,
        env: &ElementsEnv<Arc<elements::Transaction>>,
    ) {
        let mut mac = BitMachine::for_program(&program);
        assert!(mac.exec(&program, env).is_err());
    }

    fn to_witness(program: &RedeemNode<Elements>) -> Vec<&Arc<Value>> {
        program
            .post_order_iter::<NoSharing>()
            .into_witnesses()
            .collect()
    }

    #[test]
    fn satisfy_unsatisfiable() {
        let env = ElementsEnv::dummy();
        let satisfier = get_satisfier(&env);
        let policy = Policy::Unsatisfiable(FailEntropy::ZERO);

        assert!(policy.satisfy(&satisfier).is_err());

        let commit = policy.commit().expect("no asm");
        let program = commit
            .finalize(&mut SimpleFinalizer::new(std::iter::empty()))
            .expect("finalize");

        execute_unsuccessful(program, &env);
    }

    #[test]
    fn satisfy_trivial() {
        let env = ElementsEnv::dummy();
        let satisfier = get_satisfier(&env);
        let policy = Policy::Trivial;

        let program = policy.satisfy(&satisfier).expect("satisfiable");
        let witness = to_witness(&program);
        assert!(witness.is_empty());

        execute_successful(program, &env);
    }

    #[test]
    fn satisfy_pk() {
        let env = ElementsEnv::dummy();
        let satisfier = get_satisfier(&env);
        let mut it = satisfier.signatures.keys();
        let xonly = it.next().unwrap();
        let policy = Policy::Key(*xonly);

        let program = policy.satisfy(&satisfier).expect("satisfiable");
        let witness = to_witness(&program);
        assert_eq!(1, witness.len());

        let sighash = env.c_tx_env().sighash_all();
        let message = secp256k1_zkp::Message::from(sighash);
        let signature_bytes = witness[0].try_to_bytes().expect("to bytes");
        let signature =
            secp256k1_zkp::schnorr::Signature::from_slice(&signature_bytes).expect("to signature");
        assert!(signature.verify(&message, xonly).is_ok());

        execute_successful(program, &env);
    }

    #[test]
    fn satisfy_sha256() {
        let env = ElementsEnv::dummy();
        let satisfier = get_satisfier(&env);
        let mut it = satisfier.preimages.keys();
        let image = *it.next().unwrap();
        let policy = Policy::Sha256(image);

        let program = policy.satisfy(&satisfier).expect("satisfiable");
        let witness = to_witness(&program);
        assert_eq!(1, witness.len());

        let witness_bytes = witness[0].try_to_bytes().expect("to bytes");
        let witness_preimage = Preimage32::try_from(witness_bytes.as_slice()).expect("to array");
        let preimage = *satisfier.preimages.get(&image).unwrap();
        assert_eq!(preimage, witness_preimage);

        execute_successful(program, &env);
    }

    #[test]
    fn satisfy_after() {
        let height = Height::from_consensus(42).unwrap();
        let env =
            ElementsEnv::dummy_with(elements::LockTime::Blocks(height), elements::Sequence::ZERO);
        let satisfier = get_satisfier(&env);

        let policy0 = Policy::After(41);
        let program = policy0.satisfy(&satisfier).expect("satisfiable");
        let witness = to_witness(&program);
        assert!(witness.is_empty());
        execute_successful(program, &env);

        let policy1 = Policy::After(42);
        let program = policy1.satisfy(&satisfier).expect("satisfiable");
        let witness = to_witness(&program);
        assert!(witness.is_empty());
        execute_successful(program, &env);

        let policy2 = Policy::After(43);
        assert!(policy2.satisfy(&satisfier).is_err(), "unsatisfiable");
    }

    #[test]
    fn satisfy_older() {
        let env = ElementsEnv::dummy_with(
            elements::LockTime::ZERO,
            elements::Sequence::from_consensus(42),
        );
        let satisfier = get_satisfier(&env);

        let policy0 = Policy::Older(41);
        let program = policy0.satisfy(&satisfier).expect("satisfiable");
        let witness = to_witness(&program);
        assert!(witness.is_empty());
        execute_successful(program, &env);

        let policy1 = Policy::Older(42);
        let program = policy1.satisfy(&satisfier).expect("satisfiable");
        let witness = to_witness(&program);
        assert!(witness.is_empty());
        execute_successful(program, &env);

        let policy2 = Policy::Older(43);
        assert!(policy2.satisfy(&satisfier).is_err(), "unsatisfiable");
    }

    #[test]
    fn satisfy_and() {
        let env = ElementsEnv::dummy();
        let satisfier = get_satisfier(&env);
        let images: Vec<_> = satisfier.preimages.keys().copied().collect();
        let preimages: Vec<_> = images
            .iter()
            .map(|x| satisfier.preimages.get(x).unwrap())
            .collect();

        // Policy 0

        let policy0 = Policy::And {
            left: Arc::new(Policy::Sha256(images[0])),
            right: Arc::new(Policy::Sha256(images[1])),
        };
        let program = policy0.satisfy(&satisfier).expect("satisfiable");
        let witness = to_witness(&program);
        assert_eq!(2, witness.len());

        for i in 0..2 {
            let preimage_bytes = witness[i].try_to_bytes().expect("to bytes");
            let witness_preimage =
                Preimage32::try_from(preimage_bytes.as_slice()).expect("to array");
            assert_eq!(preimages[i], &witness_preimage);
        }

        execute_successful(program, &env);

        // Policy 1

        let policy1 = Policy::And {
            left: Arc::new(Policy::Sha256(sha256::Hash::from_byte_array([0; 32]))),
            right: Arc::new(Policy::Sha256(images[1])),
        };
        assert!(policy1.satisfy(&satisfier).is_err());

        // Policy 2

        let policy2 = Policy::And {
            left: Arc::new(Policy::Sha256(images[0])),
            right: Arc::new(Policy::Sha256(sha256::Hash::from_byte_array([0; 32]))),
        };
        assert!(policy2.satisfy(&satisfier).is_err());
    }

    #[test]
    fn satisfy_or() {
        let env = ElementsEnv::dummy();
        let satisfier = get_satisfier(&env);
        let images: Vec<_> = satisfier.preimages.keys().copied().collect();
        let preimages: Vec<_> = images
            .iter()
            .map(|x| satisfier.preimages.get(x).unwrap())
            .collect();

        let assert_branch = |policy: &Policy<XOnlyPublicKey>, bit: bool| {
            let program = policy.satisfy(&satisfier).expect("satisfiable");
            let witness = to_witness(&program);
            assert_eq!(2, witness.len());

            assert_eq!(Value::u1(bit as u8), *witness[0]);
            let preimage_bytes = witness[1].try_to_bytes().expect("to bytes");
            let witness_preimage =
                Preimage32::try_from(preimage_bytes.as_slice()).expect("to array");
            assert_eq!(preimages[bit as usize], &witness_preimage);

            execute_successful(program, &env);
        };

        // Policy 0

        let policy0 = Policy::Or {
            left: Arc::new(Policy::Sha256(images[0])),
            right: Arc::new(Policy::Sha256(images[1])),
        };
        assert_branch(&policy0, false);

        // Policy 1

        let policy1 = Policy::Or {
            left: Arc::new(Policy::Sha256(images[0])),
            right: Arc::new(Policy::Sha256(sha256::Hash::from_byte_array([1; 32]))),
        };
        assert_branch(&policy1, false);

        // Policy 2

        let policy2 = Policy::Or {
            left: Arc::new(Policy::Sha256(sha256::Hash::from_byte_array([0; 32]))),
            right: Arc::new(Policy::Sha256(images[1])),
        };
        assert_branch(&policy2, true);

        // Policy 3

        let policy3 = Policy::Or {
            left: Arc::new(Policy::Sha256(sha256::Hash::from_byte_array([0; 32]))),
            right: Arc::new(Policy::Sha256(sha256::Hash::from_byte_array([1; 32]))),
        };
        assert!(policy3.satisfy(&satisfier).is_err());
    }

    #[test]
    fn satisfy_thresh() {
        let env = ElementsEnv::dummy();
        let satisfier = get_satisfier(&env);
        let images: Vec<_> = satisfier.preimages.keys().copied().collect();
        let preimages: Vec<_> = images
            .iter()
            .map(|x| satisfier.preimages.get(x).unwrap())
            .collect();

        let assert_branches = |policy: &Policy<XOnlyPublicKey>, bits: &[bool]| {
            let program = policy.satisfy(&satisfier).expect("satisfiable");
            let witness = to_witness(&program);
            assert_eq!(
                witness.len(),
                bits.len() + bits.iter().filter(|b| **b).count(),
            );

            let mut witidx = 0;
            for (bit_n, bit) in bits.iter().copied().enumerate() {
                assert_eq!(*witness[witidx], Value::u1(bit.into()));
                witidx += 1;
                if bit {
                    let preimage_bytes = witness[witidx].try_to_bytes().expect("to bytes");
                    let witness_preimage =
                        Preimage32::try_from(preimage_bytes.as_slice()).expect("to array");
                    assert_eq!(preimages[bit_n], &witness_preimage);
                    witidx += 1;
                }
            }

            execute_successful(program, &env);
        };

        let image_from_bit = |bit: bool, j: u8| {
            if bit {
                images[j as usize]
            } else {
                sha256::Hash::from_byte_array([j; 32])
            }
        };

        for &bit0 in &[true, false] {
            let image0 = image_from_bit(bit0, 0);

            for &bit1 in &[true, false] {
                let image1 = image_from_bit(bit1, 1);

                for &bit2 in &[true, false] {
                    let image2 = image_from_bit(bit2, 2);

                    let policy = Policy::Threshold(
                        2,
                        vec![
                            Policy::Sha256(image0),
                            Policy::Sha256(image1),
                            Policy::Sha256(image2),
                        ],
                    );

                    match bit0 as u8 + bit1 as u8 + bit2 as u8 {
                        3 => assert_branches(&policy, &[bit0, bit1, false]),
                        2 => assert_branches(&policy, &[bit0, bit1, bit2]),
                        _ => assert!(policy.satisfy(&satisfier).is_err()),
                    }
                }
            }
        }
    }

    #[test]
    fn satisfy_asm() {
        let env = ElementsEnv::dummy();
        let mut satisfier = get_satisfier(&env);

        let mut assert_branch = |witness0: Arc<Value>, witness1: Arc<Value>| {
            let asm_program = serialize::verify_bexp(
                &Arc::<WitnessNode<Elements>>::pair(
                    &Arc::<WitnessNode<Elements>>::witness(Some(witness0.clone())),
                    &Arc::<WitnessNode<Elements>>::witness(Some(witness1.clone())),
                )
                .expect("sound types"),
                &Arc::<WitnessNode<Elements>>::jet(Elements::Eq8),
            );
            let cmr = asm_program.cmr();
            satisfier.assembly.insert(cmr, asm_program);

            let policy = Policy::Assembly(cmr);
            let program = policy.satisfy(&satisfier).expect("satisfiable");
            let witness = to_witness(&program);

            assert_eq!(2, witness.len());
            assert_eq!(&witness0, witness[0]);
            assert_eq!(&witness1, witness[1]);

            if witness0 == witness1 {
                execute_successful(program, &env);
            } else {
                execute_unsuccessful(program, &env);
            }
        };

        for a in 0..2 {
            for b in 0..2 {
                assert_branch(Value::u8(a), Value::u8(b))
            }
        }
    }
}